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Notation

≤ is a quasi order on P if ≤ is a reflexive and transitive relation on P.
< is a partial order on P if < is an irreflexive and transitive relation on
P.
A quasi order ≤ on P is linear or total if for any x, y ∈ P, x ≤ y ∨ y ≤ x.
A partial order < on P is linear or total if for any x, y ∈ P,
x < y ∨ y < x ∨ x = y.
For a quasi order ≤ on P, E≤ is the equivalence relation on P defined
by

p E≤ q ⇐⇒ (p ≤ q ∧ q ≤ p).

For a quasi order ≤, x < y means x ≤ y ∧ y ≰ x. < is a partial order.
< induces a partial order on P/E≤, also denoted <.
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For a quasi order ≤ on P, < induces a partial order on P/E≤, also
denoted <.

Example 1: D = ⟨2ω,≤T ⟩, where ≤T is Turing reducibility.

Example 2: ⟨ωω,≤∗⟩, where f ≤∗ g iff ∀∞n ∈ ω
[
f (n) ≤ g(n)

]
.
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Definition
A quasi order P = ⟨P,≤⟩ is called a Borel quasi order if P is a Polish
space and ≤ is a Borel subset of P × P.

D and ⟨ωω,≤∗⟩ are both Borel quasi orders.

Definition
A quasi order P = ⟨P,≤⟩ is said to be locally countable (locally finite) if
for every x ∈ P, {y ∈ P : y ≤ x} is countable (finite).

D is locally countable.

⟨ωω,≤∗⟩ is not locally countable.
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Definition
Suppose ≤0 and ≤ are both quasi orders on P. ≤ is said to extend ≤0 if

1 x≤0y =⇒ x ≤ y and
2 x E≤0 y ⇐⇒ xE≤y,

for all x, y ∈ P.
If ≤ is a linear quasi order which extends ≤0, then we say ≤ linearizes ≤0.

≤ extends ≤0 iff
(a) P/E≤0 = P/E≤ and
(b) [x] <0

[
y
]
=⇒ [x] <

[
y
]
, for all x, y ∈ P.

If < is a partial order on P/E≤0 with <0 ⊆ <, then define ≤ on P by

x ≤ y ⇐⇒
(
x ≤0 y ∨ [x]E≤0

<
[
y
]
E≤0

)
Then ≤ is a quasi order on P which extends ≤0 and the partial order
induced by ≤ on P/E≤0 = P/E≤ is <.
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Definition (Dushnik–Miller [1], 1941)
For a quasi order P = ⟨P,≤⟩, the order dimension (or simply dimension)
of P is the smallest cardinality of a collection of linear orders on P/E≤
whose intersection is <.
odim(P) will denote the order dimension of P.

Fact
The order dimension of P is the minimal κ such that ⟨P/E≤, <⟩ embeds into
a product of κ many linear orders (with the coordinate wise ordering on the
product).

odim(P) is the minimal κ such that there is a sequence ⟨≤i : i ∈ κ⟩ of
quasi orders on P extending ≤ such that for any x, y ∈ P, if x ≰ y, then
y <i x, for some i ∈ κ.
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Elementary facts

The dimension of a linear order is 1.

The dimension of an antichain is 2.

The dimension of a (set-theoretic) tree is 2.

If P is an infinite quasi order, then odim(P) ≤ |P|.

If ⟨P,≤⟩ embeds into ⟨Q,≤0⟩, then odim (⟨Q,≤0⟩) ≥ odim (⟨P,≤⟩).
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Locally finite orders

If P is locally finite and |P| = κ, then P embeds into ⟨[κ]<ℵ0 ,⊆⟩.
So odim(P) ≤ odim

(
⟨[κ]<ℵ0 ,⊆⟩

)
.

odim
(
⟨[ω]<ℵ0 ,⊆⟩

)
is ℵ0.

odim
(
⟨[ω1]<ℵ0 ,⊆⟩

)
is . . .ℵ0.

odim
(
⟨[ω2]<ℵ0 ,⊆⟩

)
is . . .ℵ0.

odim
(
⟨[ω3]<ℵ0 ,⊆⟩

)
is . . .

1 if CH and 2ℵ1 = ℵ2, then it is ℵ1;
2 else it is ℵ0.

Theorem (Kierstead and Milner [5], 1996)
Let κ ≥ ω be any cardinal. Then odim

(
⟨[κ]<ω,⊆⟩

)
= log2(log2(κ)).
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Locally countable orders

Theorem (Higuchi, Lempp, R., and Stephan [3], 2019)
Suppose κ is any cardinal such that cf(κ) > ω and P = ⟨P,≤⟩ is any locally
countable quasi order of size κ+. Then P has dimension at most κ.

Theorem (Kumar and Raghavan [6], 2020)
D = ⟨2ω,≤T ⟩ has the largest order dimension among all locally countable
quasi orders of size 2ℵ0 .
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Theorem (Kumar and Raghavan [6], 2020)
Each of the following is consistent:

1 ℵ1 < odim (D) < 2ℵ0 ;
2 odim (D) = 2ℵ0 and 2ℵ0 is weakly inaccessible;
3 odim (D) = 2ℵ0 = ℵω1 ;
4 odim (D) = 2ℵ0 = ℵω+1.
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Most Borel quasi orders do not have any Borel linearizations.

Definition (Harrington, Marker, and Shelah [2], 1988)
P is thin if there is no perfect set of pairwise incomparable elements.

Theorem (Harrington, Marker, and Shelah [2], 1988)
If P = ⟨P,≤⟩ is a thin Borel quasi order, then for some α < ω1, there is a
Borel f : P→ 2α such that

1 x ≤ y =⇒ f (x) ≤lex f (y) and
2 x E≤ y ⇐⇒ f (x) = f (y), for all x, y ∈ P.

The Harrington, Marker, and Shelah theorem implies that there are no
Borel realizations of Suslin trees of lattices (see [9]).
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Hence if ⟨P,≤0⟩ is a Borel quasi order and if ≤ is a Borel total quasi
order extending ≤0, then for some α < ω1, there is a Borel f : P→ 2α

such that

x≤0y =⇒ x ≤ y =⇒ f (x) ≤lex f (y) and,

x E≤0 y ⇐⇒ x E≤ y ⇐⇒ f (x) = f (y),

for all x, y ∈ P.
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Kanovei [4] found a Borel quasi order ⟨2ω,≤0⟩ which is the canonical
obstruction to Borel linearizability.

Theorem (Kanovei [4], 1998)
Suppose ⟨P,≤⟩ is a Borel quasi order. Then exactly one of the following
two conditions is satisfied:

1 ⟨P,≤⟩ is Borel linearizable;
2 there is a continuous 1-1 map F : 2ω → P such that:

(2a) a ≤0 b =⇒ F(a) ≤ F(b) and
(2b) a�E0 b =⇒ F(a) and F(b) are ≤-incomparable.
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Borel order dimension

Definition
Suppose P = ⟨P,≤⟩ is a Borel quasi order. The Borel order dimension of
P, denoted odimB (P), is the minimal κ such that there is a sequence
⟨≤i : i ∈ κ⟩ of Borel quasi orders on P extending ≤ such that for any
x, y ∈ P, if x ≰ y, then y <i x, for some i ∈ κ.
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Definition
Let X be a set and R a binary relation on X that is disjoint from the
diagonal. An R-cycle is a finite sequence x0, . . . , xk ∈ X so that
(xi, xi+1) ∈ R for all i < k, (xk, x0) ∈ R.

Definition
Let X = ⟨X,R⟩ be a structure as in the previous definition. The
dichromatic number of X, denoted H(X), is the minimal κ such that
X =
⋃
λ<κ Xλ, where no Xλ contains an R-cycle.

If X is a Polish space and R is a Borel binary relation on X that is disjoint
from the diagonal, then the Borel dichromatic number of X, denoted
HB(X), is the minimal κ such that X =

⋃
λ<κ Xλ, where each Xλ is a Borel

set that does not contain any R-cycles.
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Suppose P = ⟨P,≤⟩ is a quasi order. Let AP = (P × P)\ ≥ and define
RP on AP ×AP by (p0, q0) RP (p1, q1) ⇐⇒ q0 ≤ p1.

RP is disjoint from the diagonal because for any (p, q) ∈ AP, q ≰ p.

Suppose κ = odim(P) and that ⟨≤λ : λ < κ⟩ is a witness.

Let Xλ = ≤λ\ ≥. Then AP =
⋃
λ<κXλ.

If (p0, q0), . . . , (pk, qk) is an RP-cycle in Xλ, then p0 E≤λ q0, which
implies p0 E≤ q0, which is impossible as q0 ≰ p0.

Hence H (⟨AP,RP⟩) ≤ odim (P).
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Conversely suppose H (⟨AP,RP⟩) = κ and that ⟨Xλ : λ < κ⟩ is a
witness.

Let ≤λ be the transitive closure of ≤ ∪Xλ.

≤λ is then a quasi order on P and ≤⊆ ≤λ.

E≤λ = Eλ because Xλ is RP-cycle free.

For example, if pXλqXλrXλp, then (p, q), (q, r), (r, p) would be an
RP-cycle in Xλ.

Similarly if p ≤ qXλrXλs ≤ tXλp, then (q, r), (r, s), (t, p) is an RP-cycle
in Xλ.

If q ≰ p, then (p, q) ∈ AP =
⋃
λ<κXλ. So p ≤λ q, and since E≤λ = E≤,

p <λ q.

Hence odim (P) ≤ H (⟨AP,RP⟩)

Conclusion: odim (P) = H (⟨AP,RP⟩).
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Theorem (R. and Xiao [8])
If P is a Borel quasi order, then odimB (P) = HB (⟨AP,RP⟩).

Suppose s = ⟨nk : k ∈ ω⟩ ∈ ωω is such that nk ≥ 2, for all k ∈ ω.

Define T (s) =
⋃
l<ω

∏
k<l

nk.

Let D be a dense subset of T (s) that intersects each level exactly
once.

For (b0, b1) ∈ [T (s)], define (b0, b1) ∈ R0(D) iff there is a d ∈ D and an
x ∈ ωω, so that either:

b0 = d⌢⟨i⟩⌢x and b1 = d⌢⟨i + 1⟩⌢x, or

b0 = d⌢⟨n|d| − 1⟩⌢x and b1 = d⌢⟨0⟩⌢x.
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Let G0(s,D) = ⟨[T (s)],R0(D)⟩.

Definition
M = {M ⊆ 2ω : M is Borel and meager}.
cov(M) = min {|F | : F ⊆ M∧ 2ω =

⋃
F }.

Lemma (R. and Xiao [8])
HB (G0(s,D)) ≥ cov(M).

Proof.
Every Borel non-meager set must contain a cycle. □
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Theorem (R. and Xiao [8])
Suppose X is Polish R ⊆ X × X is Borel and disjoint from the diagonal.
Then either:

1 HB (⟨X,R⟩) ≤ ℵ0, or
2 there exist s, D, and a continuous homomorphism

f : G0(s,D)→ ⟨X,R⟩.
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Definition
For s and D, define P0(s,D) = ⟨[T (s)] × 2,≤0⟩, where (b0, i)≤0(b1, j) iff
((b0, i) = (b1, j)) or (i = 0, j = 1, and (b0, b1) ∈ R0(D)).

Note that {((b, 1), (b, 0)) : b ∈ [T (s)]} ⊆ AP0(s,D).

Further, ((b, 1), (b, 0)) RP0(s,D) ((b′, 1), (b′, 0)) iff (b, 0) ≤0 (b′, 1) iff
b R0(D) b′.

Therefore, there is a copy of G0(s,D) inside the structure
⟨AP0(s,D),RP0(s,D)⟩.

Hence odimB (P0(s,D)) ≥ cov(M).
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Theorem (R. and Xiao [8])
For any Borel quasi order P = ⟨P,≤⟩ exactly one of the following holds:

1 odimB (P) ≤ ℵ0.
2 There exist s, D, and a continuous f : [T (s)] × 2→ P such that:

(2a) (b0, 0) ≤0 (b1, 1) =⇒ f ((b0, 0)) ≤ f ((b1, 1)) and
(2b) for every b ∈ [T (s)], f ((b, 0)) and f ((b, 1)) are ≤-incomparable.

Corollary (R. and Xiao [8])
For every Borel quasi order P, odimB(P) is either countable or at least
cov(M).

Theorem (R. and Xiao [8])
For every Borel quasi order P, if odimB(P) is countable, then P has a
Borel linearization.
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The Turing degrees

Combining these results with my earlier results with Higuchi, Lempp,
and Stephan, we get that odimB(D) is usually strictly bigger than
odim(D).

For example, if cf(κ) > ω, 2ℵ0 = κ+, and MAκ(countable) holds. Then
odim(D) ≤ κ < κ+ = cov(M) = odimB(D).

In particular, if PFA holds, then odim(D) = ℵ1 < ℵ2 = odimB(D) = 2ℵ0 .
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Theorem (R. and Xiao [8])
If P is a locally finite Borel quasi order, then odimB(P) ≤ ℵ0.

Our dichotomy does not provide any natural upper bound on
odimB(D) other than 2ℵ0 .

So it is natural to wonder weather odimB(D) = 2ℵ0 .
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Theorem (R. and Xiao [8])
There is a c.c.c. forcing which forces that for every locally countable Borel
quasi order P, odimB(P) = ℵ1.

So starting with a ground model V where 2ℵ0 = ℵ17, there is a
cardinal preserving forcing extension in which 2ℵ0 = ℵ17 and for every
locally countable Borel quasi order P, odimB(P) = ℵ1.

Each P0(s,D) is locally countable. So in this model,
HB (G0(s,D)) = ℵ1 < 2ℵ0 , for every s and D.

This forcing relies crucially on ideas from [7].
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