The dimension of Borel quasi orders

Dilip Raghavan (joint work with Ming Xiao)

National University of Singapore

Howard University Department of Mathematics Washington, DC, USA. October 18, 2024

イロト イ押 トイミト イミト

2 [Borel order dimension](#page-18-0)

3 [A dichotomy](#page-22-0)

Ε

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Notation

- ≤ is a **quasi order on** *P* if ≤ is a reflexive and transitive relation on *P*.
- < is a **partial order on** *^P* if < is an irreflexive and transitive relation on *P*.
- \bullet A quasi order \leq on P is **linear** or **total** if for any $x, y \in P$, $x \leq y \vee y \leq x$.
- A partial order \lt on *P* is **linear** or **total** if for any $x, y \in P$, *^x* < *^y* [∨] *^y* < *^x* [∨] *^x* ⁼ *^y*.
- For a quasi order ≤ on *P*, *E*[≤] is the equivalence relation on *P* defined by

$$
p E_{\leq} q \iff (p \leq q \land q \leq p).
$$

- For a quasi order [≤], *^x* < *^y* means *^x* [≤] *^y* [∧] *^y* [≰] *^x*. < is a partial order.
- < induces a partial order on *^P*/*E*≤, also den[ote](#page-1-0)[d](#page-3-0) [<](#page-1-0).

- For a quasi order [≤] on *^P*, < induces a partial order on *^P*/*E*≤, also denoted <.
- Example 1: $\mathcal{D} = \langle 2^{\omega}, \leq_T \rangle$, where \leq_T is Turing reducibility.
- Example 2: $\langle \omega^{\omega}, \leq^* \rangle$, where $f \leq^* g$ iff $\forall^{\infty} n \in \omega [f(n) \leq g(n)]$.

э

イロト イ押ト イヨト イヨト

Definition

A quasi order $P = \langle P, \le \rangle$ is called a **Borel quasi order** if P is a Polish space and \leq is a Borel subset of $P \times P$.

 $\mathcal D$ and $\langle \omega^\omega, \leq^* \rangle$ are both Borel quasi orders.

Definition

A quasi order $P = \langle P, \le \rangle$ is said to be **locally countable** (**locally finite**) if for every $x \in P$, $\{y \in P : y \leq x\}$ is countable (finite).

- \bullet $\mathcal D$ is locally countable.
- $\langle \omega^{\omega}, \leq^* \rangle$ is not locally countable.

Ε

≮ロ ▶ ⊀ 何 ▶ ⊀ ヨ ▶ ∢ ヨ ▶

Definition

Suppose \leq_0 and \leq are both quasi orders on P. \leq is said to **extend** \leq_0 if

- **1** $x≤_0y$ \implies $x ≤ y$ and
- **2** $x E_{\leq 0} y \iff x E_{\leq} y$,

for all $x, y \in P$.

If \leq is a linear quasi order which extends \leq_{0} , then we say \leq **linearizes** \leq_{0} .

 $\bullet \leq$ extends \leq_0 iff (a) $P/E_{\leq 0} = P/E_{\leq 0}$ and (b) $[x] <_0 [y] \implies [x] < [y]$, for all $x, y \in P$.

イロト イ母 トイヨ トイヨ トー

Definition

Suppose \leq_0 and \leq are both quasi orders on P. \leq is said to **extend** \leq_0 if

- **1** $x≤_0y$ \implies $x ≤ y$ and
- **2** $x E_{\leq 0} y \iff x E_{\leq} y$,

for all $x, y \in P$.

If \leq is a linear quasi order which extends \leq_{0} , then we say \leq **linearizes** \leq_{0} .

- $\bullet \leq$ extends \leq_0 iff
	- (a) $P/E_{\leq 0} = P/E_{\leq 0}$ and

(b) $[x] < 0 \ y] \implies [x] < 0 \ y]$, for all $x, y \in P$.

■ If < is a partial order on $P/E_{\leq 0}$ with ≤ 0 ⊆ <, then define \leq on P by

$$
x\leq y\iff \bigg(x\leq_0 y\vee [x]_{E_{\leq_0}}<\ [y]_{E_{\leq_0}}\bigg)
$$

• Then \leq is a quasi order on P which extends \leq_0 and the partial order induced by \leq on $P/E_{\leq 0} = P/E_{\leq}$ is <.

Dilip Raghavan (joint work with Ming Xiao) The dimension of Borel quasi orders $2Q$

Definition (Dushnik–Miller [\[1\]](#page-40-1), 1941)

For a quasi order $P = \langle P, \le \rangle$, the **order dimension** (or simply **dimension**) of ^P is the smallest cardinality of a collection of linear orders on *^P*/*E*[≤] whose intersection is \lt .

odim(P) will denote the order dimension of P.

Fact

The order dimension of P is the minimal κ such that $\langle P/E_{\leq}, \leq \rangle$ embeds into a product of κ many linear orders (with the coordinate wise ordering on the product).

イロト イ母 トイヨ トイヨ トー

Definition (Dushnik–Miller [\[1\]](#page-40-1), 1941)

For a quasi order $P = \langle P, \le \rangle$, the **order dimension** (or simply **dimension**) of ^P is the smallest cardinality of a collection of linear orders on *^P*/*E*[≤] whose intersection is \lt .

odim(P) will denote the order dimension of P.

Fact

The order dimension of P is the minimal κ such that $\langle P/E_{\leq}, \leq \rangle$ embeds into a product of κ many linear orders (with the coordinate wise ordering on the product).

 $\text{odim}(\mathcal{P})$ is the minimal κ such that there is a sequence $\langle \leq_i : i \in \kappa \rangle$ of coker on P extending \leq such that for any $x, y \in P$ if $x \not\prec y$ the quasi orders on *P* extending \leq such that for any $x, y \in P$, if $x \nleq y$, then $y \leq i$ *x*, for some $i \in K$.

Ε

イロト イ押ト イヨト イヨト

- The dimension of a linear order is 1.
- The dimension of an antichain is 2.
- The dimension of a (set-theoretic) tree is 2.
- **•** If P is an infinite quasi order, then $\text{odim}(P) \leq |P|$.
- \bullet If $\langle P, \leq \rangle$ embeds into $\langle Q, \leq_0 \rangle$, then odim $(\langle Q, \leq_0 \rangle) \geq \text{odim}(\langle P, \leq \rangle)$.

Ε

イロト イ押ト イヨト イヨト

Locally finite orders

- If P is locally finite and $|P| = \kappa$, then P embeds into $\langle [\kappa]^{<\aleph_0}, \subseteq \rangle$.
- So odim $(P) \leq \text{odim}(\langle [\kappa]^{<\aleph_0}, \subseteq \rangle).$
- $\text{odim}\big(\langle [\omega]^{<\aleph_0},\subseteq\rangle\big)$ is \aleph_0 .

B

イロト イ押 トイヨ トイヨ トー

Locally finite orders

- If P is locally finite and $|P| = \kappa$, then P embeds into $\langle [\kappa]^{<\aleph_0}, \subseteq \rangle$.
- So odim $(P) \leq \text{odim}(\langle [\kappa]^{<\aleph_0}, \subseteq \rangle).$
- $\text{odim}\Big(\langle[\omega]^{<\aleph_0},\subseteq\rangle\Big)$ is \aleph_0 .
- $\text{odim}\big(\langle [\omega_1]^{<\aleph_0}, \subseteq \rangle\big)$ is \ldots

Ε

イロト イ押 トイヨ トイヨ トー

Locally finite orders

- If P is locally finite and $|P| = \kappa$, then P embeds into $\langle [\kappa]^{<\aleph_0}, \subseteq \rangle$.
- So odim $(P) \leq \text{odim}(\langle [\kappa]^{<\aleph_0}, \subseteq \rangle).$
- $\text{odim}\Big(\langle[\omega]^{<\aleph_0},\subseteq\rangle\Big)$ is \aleph_0 .
- $\text{odim}\left(\langle[\omega_1]^{<\aleph_0},\subseteq\rangle\right)$ is $\ldots\aleph_0$.
- $\text{odim}\big(\langle [\omega_2]^{<\aleph_0}, \subseteq \rangle\big)$ is \ldots

Ε

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

Locally finite orders

- If P is locally finite and $|P| = \kappa$, then P embeds into $\langle [\kappa]^{<\aleph_0}, \subseteq \rangle$.
- So odim $(P) \leq \text{odim}(\langle [\kappa]^{<\aleph_0}, \subseteq \rangle).$
- $\text{odim}\Big(\langle[\omega]^{<\aleph_0},\subseteq\rangle\Big)$ is \aleph_0 .
- $\text{odim}\left(\langle[\omega_1]^{<\aleph_0},\subseteq\rangle\right)$ is $\ldots\aleph_0$.
- $\text{odim}\left(\langle[\omega_2]^{<\aleph_0},\subseteq\rangle\right)$ is $\dots\aleph_0$.
- $\text{odim}\left(\langle [\omega_3]^{<\aleph_0}, \subseteq \rangle\right)$ is \dots

Ε

 $\sqrt{2}$) $\sqrt{2}$) $\sqrt{2}$

Locally finite orders

- If P is locally finite and $|P| = \kappa$, then P embeds into $\langle [\kappa]^{<\aleph_0}, \subseteq \rangle$.
- So odim $(P) \leq \text{odim}(\langle [\kappa]^{<\aleph_0}, \subseteq \rangle).$
- $\text{odim}\Big(\langle[\omega]^{<\aleph_0},\subseteq\rangle\Big)$ is \aleph_0 .
- $\text{odim}\left(\langle[\omega_1]^{<\aleph_0},\subseteq\rangle\right)$ is $\ldots\aleph_0$.
- $\text{odim}\left(\langle[\omega_2]^{<\aleph_0},\subseteq\rangle\right)$ is $\dots\aleph_0$.
- odim $((\omega_3)^{<\aleph_0}, \subseteq)$ is ...
	- **1** if CH and $2^{\aleph_1} = \aleph_2$, then it is \aleph_1 ;
	- **2** else it is \aleph_0 .

Ε

K 何 ▶ K ヨ ▶ K ヨ ▶

Locally finite orders

- If P is locally finite and $|P| = \kappa$, then P embeds into $\langle [\kappa]^{<\aleph_0}, \subseteq \rangle$.
- So odim $(P) \leq \text{odim}(\langle [\kappa]^{<\aleph_0}, \subseteq \rangle).$
- $\text{odim}\Big(\langle[\omega]^{<\aleph_0},\subseteq\rangle\Big)$ is \aleph_0 .
- $\text{odim}\left(\langle[\omega_1]^{<\aleph_0},\subseteq\rangle\right)$ is $\ldots\aleph_0$.
- $\text{odim}\left(\langle[\omega_2]^{<\aleph_0},\subseteq\rangle\right)$ is $\dots\aleph_0$.
- odim $((\omega_3)^{<\aleph_0}, \subseteq)$ is ...
	- **1** if CH and $2^{\aleph_1} = \aleph_2$, then it is \aleph_1 ;
	- **2** else it is \aleph_0 .

Theorem (Kierstead and Milner [\[5\]](#page-40-2), 1996)

Let $\kappa \geq \omega$ be any cardinal. Then $\text{odim}\left(\langle [\kappa]^{<\omega}, \subseteq \rangle\right) = \log_2(\log_2(\kappa)).$ $\text{odim}\left(\langle [\kappa]^{<\omega}, \subseteq \rangle\right) = \log_2(\log_2(\kappa)).$ $\text{odim}\left(\langle [\kappa]^{<\omega}, \subseteq \rangle\right) = \log_2(\log_2(\kappa)).$

Locally countable orders

Theorem (Higuchi, Lempp, R., and Stephan [\[3\]](#page-40-3), 2019)

Suppose *κ* is any cardinal such that $c f(x) > \omega$ and $\mathcal{P} = \langle P, \le \rangle$ is any locally countable quasi order of size κ^+ . Then $\mathcal P$ has dimension at most κ .

Theorem (Kumar and Raghavan [\[6\]](#page-41-1), 2020)

 $\mathcal{D} = \langle 2^{\omega}, \leq_T \rangle$ has the largest order dimension among all locally countable
quasi orders of size 2⁸% quasi orders of size 2^{\aleph_0} .

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Theorem (Kumar and Raghavan [\[6\]](#page-41-1), 2020)

Each of the following is consistent:

$$
\bullet \ \mathcal{S}_1 < \text{odim}(\mathcal{D}) < 2^{\aleph_0};
$$

2
$$
odim(\mathcal{D}) = 2^{\aleph_0}
$$
 and 2^{\aleph_0} is weakly inaccessible;

$$
\text{O} \quad \text{odim}(\mathcal{D}) = 2^{\aleph_0} = \aleph_{\omega_1};
$$

$$
\text{O} \text{odim}(\mathcal{D}) = 2^{\aleph_0} = \aleph_{\omega+1}.
$$

Ğ.

イロト イ押 トイヨ トイヨ トー

Most Borel quasi orders do not have any Borel linearizations.

Definition (Harrington, Marker, and Shelah [\[2\]](#page-40-4), 1988)

P is **thin** if there is no perfect set of pairwise incomparable elements.

Theorem (Harrington, Marker, and Shelah [\[2\]](#page-40-4), 1988)

If $\mathcal{P} = \langle P, \le \rangle$ is a thin Borel quasi order, then for some $\alpha < \omega_1$, there is a Borel $f: P \to 2^{\alpha}$ such that

$$
x \le y \implies f(x) \le_{\text{lex}} f(y) \text{ and }
$$

$$
x E_{\leq} y \iff f(x) = f(y), \text{ for all } x, y \in P.
$$

The Harrington, Marker, and Shelah theorem implies that there are no Borel realizations of Suslin trees of lattices (see [\[9\]](#page-41-2)).

K ロ ト K 伺 ト K ヨ ト K ヨ ト

• Hence if $\langle P, \leq_0 \rangle$ is a Borel quasi order and if \leq is a Borel total quasi order extending \leq_0 , then for some $\alpha < \omega_1$, there is a Borel $f: P \to 2^{\alpha}$ such that

$$
x \leq_0 y \implies x \leq y \implies f(x) \leq_{\text{lex}} f(y) \text{ and,}
$$

 $x E_{\leq_0} y \iff x E_{\leq} y \iff f(x) = f(y),$

for all $x, y \in P$.

B

K ロ K K 何 K K ヨ K K ヨ K .

Kanovei [\[4\]](#page-40-5) found a Borel quasi order $\langle 2^{\omega}, \leq_0 \rangle$ which is the canonical
obstruction to Borel linearizability obstruction to Borel linearizability.

Theorem (Kanovei [\[4\]](#page-40-5), 1998)

Suppose $\langle P,\leq\rangle$ is a Borel quasi order. Then exactly one of the following two conditions is satisfied:

- \bigcirc $\langle P, \leq \rangle$ is Borel linearizable;
- **2** there is a continuous 1-1 map $F: 2^{\omega} \rightarrow P$ such that:

 $(2a)$ $a \leq_0 b \implies F(a) \leq F(b)$ and

(2b) $a E_0 b \implies F(a)$ and $F(b)$ are \leq -incomparable.

B

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Borel order dimension

Definition

Suppose $P = \langle P, \le \rangle$ is a Borel quasi order. The **Borel order dimension of** P, denoted odim_B (P), is the minimal κ such that there is a sequence ⟨≤*ⁱ* : *ⁱ* [∈] κ⟩ of Borel quasi orders on *^P* extending [≤] such that for any $x, y \in P$, if $x \nleq y$, then $y \leq i$, x, for some $i \in \kappa$.

 209

イロト イ母 トイヨ トイヨ トー

Definition

Let *X* be a set and *R* a binary relation on *X* that is disjoint from the diagonal. An *R***-cycle** is a finite sequence $x_0, \ldots, x_k \in X$ so that (x_i, x_{i+1}) ∈ *R* for all $i < k$, (x_k, x_0) ∈ *R*.

Definition

Let $X = \langle X, R \rangle$ be a structure as in the previous definition. The **dichromatic number of** X, denoted $H(X)$, is the minimal κ such that $X = \bigcup_{\lambda \leq \kappa} X_{\lambda}$, where no X_{λ} contains an *R*-cycle.

If *X* is a Polish space and *R* is a Borel binary relation on *X* that is disjoint from the diagonal, then the **Borel dichromatic number of** X, denoted $H_B(X)$, is the minimal *κ* such that $X = \bigcup_{\lambda \le \kappa} X_\lambda$, where each X_λ is a Borel
set that does not contain any *B-cycles* set that does not contain any *R*-cycles.

- Suppose $P = \langle P, \leq \rangle$ is a quasi order. Let $\mathcal{A}_P = (P \times P) \setminus \geq$ and define \mathcal{R}_P on $\mathcal{A}_P \times \mathcal{A}_P$ by (p_0, q_0) \mathcal{R}_P $(p_1, q_1) \iff q_0 \leq p_1$.
- \mathcal{R}_P is disjoint from the diagonal because for any $(p, q) \in \mathcal{A}_P$, $q \nleq p$.

э

イロト イ押ト イヨト イヨト

- Suppose $P = \langle P, \leq \rangle$ is a quasi order. Let $\mathcal{A}_P = (P \times P) \setminus \geq$ and define \mathcal{R}_P on $\mathcal{A}_P \times \mathcal{A}_P$ by (p_0, q_0) \mathcal{R}_P $(p_1, q_1) \iff q_0 \leq p_1$.
- \mathcal{R}_P is disjoint from the diagonal because for any $(p, q) \in \mathcal{A}_P$, $q \nleq p$.
- Suppose $\kappa = \text{odim}(\mathcal{P})$ and that $\langle \leq_{\lambda} : \lambda < \kappa \rangle$ is a witness.
- Let $X_{\lambda} = \leq_{\lambda} \setminus \geq 0$. Then $\mathcal{A}_{\mathcal{P}} = \bigcup_{\lambda \leq \kappa} X_{\lambda}$.
- If $(p_0, q_0), \ldots, (p_k, q_k)$ is an $\mathcal{R}_{\mathcal{P}}$ -cycle in X_λ , then p_0 E_{\leq_λ} q_0 , which
implies p_0 E_{\leq_λ} which is impossible as $q_0 \not\leq p_0$ implies $p_0 E \leq q_0$, which is impossible as $q_0 \nleq p_0$.
- Hence $H(\langle \mathcal{A}_{\varphi}, \mathcal{R}_{\varphi} \rangle) \leq \text{odim}(\varphi)$.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{A}$

- **Conversely suppose** $H(\langle \mathcal{A}_{P}, \mathcal{R}_{P} \rangle) = \kappa$ and that $\langle X_{\lambda} : \lambda \langle \kappa \rangle$ is a witness.
- Let \leq_{λ} be the transitive closure of $\leq \cup X_{\lambda}$.
- $\bullet \leq_{\lambda}$ is then a quasi order on *P* and $\leq \leq_{\lambda}$.
- $E_{\leq \lambda} = E_{\lambda}$ because X_{λ} is $\mathcal{R}_{\mathcal{P}}$ -cycle free.

G.

イロト イ押ト イヨト イヨト

- **Conversely suppose** $H(\langle \mathcal{A}_{\rho}, \mathcal{R}_{\rho} \rangle) = \kappa$ and that $\langle X_{\lambda} : \lambda \langle \kappa \rangle$ is a witness.
- Let \leq_{λ} be the transitive closure of $\leq \cup X_{\lambda}$.
- $\bullet \leq_{\lambda}$ is then a quasi order on *P* and $\leq \leq_{\lambda}$.
- $E_{\leq \lambda} = E_{\lambda}$ because X_{λ} is $\mathcal{R}_{\mathcal{P}}$ -cycle free.
- For example, if $pX_{\lambda}qX_{\lambda}rX_{\lambda}p$, then $(p,q),(q,r),(r,p)$ would be an \mathcal{R}_{φ} -cycle in X_{λ} .
- \bullet Similarly if $p \le qX_1rX_1s \le tX_1p$, then (q, r) , (r, s) , (t, p) is an \mathcal{R}_p -cycle in X_λ .

G.

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

- **Conversely suppose** $H(\langle \mathcal{A}_{\rho}, \mathcal{R}_{\rho} \rangle) = \kappa$ and that $\langle X_{\lambda} : \lambda \langle \kappa \rangle$ is a witness.
- Let \leq_{λ} be the transitive closure of $\leq \cup X_{\lambda}$.
- $\bullet \leq_{\lambda}$ is then a quasi order on *P* and $\leq \leq \leq_{\lambda}$.
- $E_{\leq \lambda} = E_{\lambda}$ because X_{λ} is $\mathcal{R}_{\mathcal{P}}$ -cycle free.
- For example, if $pX_{\lambda}qX_{\lambda}rX_{\lambda}p$, then $(p,q),(q,r),(r,p)$ would be an \mathcal{R}_{φ} -cycle in X_{λ} .
- Similarly if $p \le qX_\lambda rX_\lambda s \le tX_\lambda p$, then (q, r) , (r, s) , (t, p) is an \mathcal{R}_p -cycle in X_λ .
- If $q \nleq p$, then $(p, q) \in \mathcal{A}_{\mathcal{P}} = \bigcup_{\lambda \leq \kappa} X_{\lambda}$. So $p \leq_{\lambda} q$, and since $E_{\leq \lambda} = E_{\leq \lambda}$, $p \leq \lambda q$.
- Hence odim $(P) \leq H(\langle \mathcal{A}_P, \mathcal{R}_P \rangle)$
- Conclusion: odim $(\mathcal{P}) = \mathcal{H}(\langle \mathcal{A}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}} \rangle)$.

KOD KARD KED KED A GAA

Theorem (R. and Xiao [\[8\]](#page-41-3))

If P is a Borel quasi order, then $\text{odim}_B(P) = \mathcal{H}_B(\langle \mathcal{A}_P, \mathcal{R}_P \rangle)$.

ă

K ロ K K 何 K K ヨ K K ヨ K .

Theorem (R. and Xiao [\[8\]](#page-41-3))

If P is a Borel quasi order, then $\text{odim}_B(P) = H_B(\langle \mathcal{A}_P, \mathcal{R}_P \rangle)$.

- Suppose $s = \langle n_k : k \in \omega \rangle \in \omega^\omega$ is such that $n_k \geq 2$, for all $k \in \omega$.
- Define $T(s) = \begin{bmatrix} 1 \end{bmatrix} \prod n_k$. *l*<ω *k*<*l*

B

イロト イ押ト イヨト イヨト

Theorem (R. and Xiao [\[8\]](#page-41-3))

If P is a Borel quasi order, then $\text{odim}_B(P) = H_B(\langle \mathcal{A}_P, \mathcal{R}_P \rangle)$.

Suppose $s = \langle n_k : k \in \omega \rangle \in \omega^\omega$ is such that $n_k \geq 2$, for all $k \in \omega$.

• Define
$$
T(s) = \bigcup_{l < \omega} \prod_{k < l} n_k
$$
.

- Let *D* be a dense subset of $T(s)$ that intersects each level exactly once.
- For $(b_0, b_1) \in [T(s)]$, define $(b_0, b_1) \in R_0(D)$ iff there is a $d \in D$ and an $x \in \omega^{\omega}$, so that either:

$$
b_0 = d^{\frown} \langle i \rangle^{\frown} x \text{ and } b_1 = d^{\frown} \langle i + 1 \rangle^{\frown} x, or
$$

$$
b_0 = d^{\frown} \langle n_{|d|} - 1 \rangle^{\frown} x \text{ and } b_1 = d^{\frown} \langle 0 \rangle^{\frown} x.
$$

э

K ロ ト K 伺 ト K ヨ ト K ヨ ト

 \bullet Let $G_0(s, D) = \langle [T(s)], R_0(D) \rangle$.

Definition

 $\mathcal{M} = \{M \subseteq 2^{\omega} : M \text{ is Borel and meager}\}.$ $cov(M) = min\{|\mathcal{F}| : \mathcal{F} \subseteq M \wedge 2^{\omega} = \bigcup \mathcal{F}\}.$

Lemma (R. and Xiao [\[8\]](#page-41-3))

 $\mathcal{H}_B(\mathcal{G}_0(s, D)) \geq \text{cov}(\mathcal{M}).$

Proof.

Every Borel non-meager set must contain a cycle.

э

イロト イ押ト イヨト イヨト

Theorem (R. and Xiao [\[8\]](#page-41-3))

Suppose *X* is Polish $R \subseteq X \times X$ is Borel and disjoint from the diagonal. Then either:

$$
\bigodot \mathcal{H}_B(\langle X,R\rangle) \leq \aleph_0, \text{ or }
$$

² there exist *s*, *D*, and a continuous homomorphism $f: G_0(s, D) \to \langle X, R \rangle$.

B

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Definition

For *s* and *D*, define $P_0(s, D) = \langle [T(s)] \times 2, \leq_0 \rangle$, where $(b_0, i) \leq_0 (b_1, i)$ iff $((b_0, i) = (b_1, i))$ or $(i = 0, i = 1, \text{ and } (b_0, b_1) \in R_0(D)).$

- Note that $\{((b, 1), (b, 0)) : b \in [T(s)]\} \subseteq \mathcal{A}_{\mathcal{P}_0(s, D)}$.
- Further, $((b, 1), (b, 0))$ $\mathcal{R}_{\mathcal{P}_0(s, D)}$ $((b', 1), (b', 0))$ iff $(b, 0) \leq_0 (b', 1)$ iff
b $R_0(D)$ b' $b R_0(D) b'.$
- Therefore, there is a copy of $G_0(s, D)$ inside the structure $\langle \mathcal{A}_{\mathcal{P}_0(s,D)}, \mathcal{R}_{\mathcal{P}_0(s,D)} \rangle.$
- \bullet Hence odim_{*B*} ($\mathcal{P}_0(s, D)$) \geq cov(*M*).

э

イロト イ母 トイヨ トイヨ トー

Theorem (R. and Xiao [\[8\]](#page-41-3))

For any Borel quasi order $P = \langle P, \leq \rangle$ exactly one of the following holds:

1 odim_{*B*} (\mathcal{P}) \leq \aleph_0 .

2 There exist *s*, *D*, and a continuous $f : [T(s)] \times 2 \rightarrow P$ such that:

- $(2a)$ $(b_0, 0) \leq_0 (b_1, 1) \implies f((b_0, 0)) \leq f((b_1, 1))$ and
- (2b) for every $b \in [T(s)]$, $f((b, 0))$ and $f((b, 1))$ are \leq -incomparable.

Corollary (R. and Xiao [\[8\]](#page-41-3))

For every Borel quasi order P , odim_B(P) is either countable or at least $cov(M)$.

э

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Theorem (R. and Xiao [\[8\]](#page-41-3))

For any Borel quasi order $P = \langle P, \le \rangle$ exactly one of the following holds:

1 odim_{*B*} (\mathcal{P}) \leq \aleph_0 .

2 There exist *s*, *D*, and a continuous $f : [T(s)] \times 2 \rightarrow P$ such that:

- $(2a)$ $(b_0, 0) \leq_0 (b_1, 1) \implies f((b_0, 0)) \leq f((b_1, 1))$ and
- (2b) for every $b \in [T(s)]$, $f((b, 0))$ and $f((b, 1))$ are \leq -incomparable.

Corollary (R. and Xiao [\[8\]](#page-41-3))

For every Borel quasi order P , odim_B(P) is either countable or at least $cov(M)$.

Theorem (R. and Xiao [\[8\]](#page-41-3))

For every Borel quasi order P, if odim_B(P) is countable, then P has a Borel linearization.

The Turing degrees

- Combining these results with my earlier results with Higuchi, Lempp, and Stephan, we get that $\text{odim}_B(D)$ is usually strictly bigger than $odim(\mathcal{D})$.
- For example, if $cf(k) > \omega$, $2^{\aleph_0} = \kappa^+$, and MA_k (countable) holds. Then $odim(\mathcal{D}) \leq k \leq \kappa^+ = cov(\mathcal{M}) odim(\mathcal{D})$ odim(f)) $\leq \kappa \leq \kappa^+ = \text{cov}(\mathcal{M}) = \text{odim}_B(\mathcal{D}).$
- In particular, if PFA holds, then $\text{odim}(\mathcal{D}) = \aleph_1 < \aleph_2 = \text{odim}_B(\mathcal{D}) = 2^{\aleph_0}$.

 Ω

э

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Theorem (R. and Xiao [\[8\]](#page-41-3))

If P is a locally finite Borel quasi order, then $\text{odim}_B(P) \leq \aleph_0$.

ă

K ロ K K 何 K K ヨ K K ヨ K .

Theorem (R. and Xiao [\[8\]](#page-41-3))

If P is a locally finite Borel quasi order, then $\text{odim}_B(P) \leq \aleph_0$.

- Our dichotomy does not provide any natural upper bound on odim_{*B*}(*D*) other than 2^{\aleph_0} .
- So it is natural to wonder weather o $\dim_B(\mathcal{D}) = 2^{\aleph_0}$.

Ε

イロト イ押 トイヨ トイヨ トー

Theorem (R. and Xiao [\[8\]](#page-41-3))

There is a c.c.c. forcing which forces that for every locally countable Borel quasi order P, odim_B $(P) = N_1$.

- So starting with a ground model ${\bf V}$ where $2^{\bf \hat{N}_0} = {\bf \hat{N}}_{17},$ there is a cardinal preserving forcing extension in which $2^{\boldsymbol{\aleph}_0}=\boldsymbol{\aleph}_{17}$ and for every locally countable Borel quasi order P, odim_B $(P) = N_1$.
- Each $\mathcal{P}_0(s, D)$ is locally countable. So in this model, $\mathcal{H}_B(\mathcal{G}_0(s, D)) = \mathbf{N}_1 < 2^{\mathbf{N}_0}$, for every *s* and *D*.
- This forcing relies crucially on ideas from [\[7\]](#page-41-4).

э

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Bibliography I

- B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. **63** (1941), 600–610.
- L. Harrington, D. Marker, and S. Shelah, Borel orderings, Trans. Amer. Math. Soc. **310** (1988), no. 1, 293–302.
- F K. Higuchi, S. Lempp, D. Raghavan, and F. Stephan, On the order dimension of locally countable partial orderings, Proc. Amer. Math. Soc. **148** (2020), no. 7, 2823–2833.
- V. Kanovei, When a partial Borel order is linearizable, Fund. Math. **155** (1998), no. 3, 301–309.
- H. A. Kierstead and E. C. Milner, The dimension of the finite subsets of κ, Order **¹³** (1996), no. 3, 227–231.

イロト イ押 トイヨ トイヨ トー

Bibliography II

- A. Kumar and D. Raghavan, Separating families and order dimension of Turing degrees, Ann. Pure Appl. Logic **172** (2021), no. 5, Paper No. 102911, 19 pp.
- Ashutosh Kumar and Dilip Raghavan, Supersaturated ideals, Topology Appl. **323** (2023), Paper No. 108289, arXiv:2106.15663, 12 pages.
- D. Raghavan and M. Xiao, Borel order dimension, arXiv:2409.06516, preprint (2024), 30 pages.
- D. Raghavan and T. Yorioka, Suslin lattices, Order **31** (2014), no. 1, 55–79.

イロト イ押ト イヨト イヨト