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Chains of P-points

Dilip Raghavan and Jonathan L. Verner

Abstract. It is proved that the Continuum Hypothesis implies that any sequence of rapid P-points of
length < c+ that is increasing with respect to the Rudin–Keisler ordering is bounded above by a rapid
P-point. his is an improvement of a result from B. Kuzeljevic and D. Raghavan. It is also proved
that Jensen’s diamond principle implies the existence of an unbounded strictly increasing sequence of
P-points of length ω1 in the Rudin–Keisler ordering. his shows that restricting to the class of rapid
P-points is essential for the ûrst result.

1 Introduction

he Rudin–Keisler ordering on ultraûlters, introduced in the late sixties [6, 15, 16],
turned out to be a very useful tool for studying properties of ultraûlters. A vari-
ant of this ordering, the Rudin–Frolík ordering, was used by Frolík [4] to prove in
ZFC that the space of non-principal ultraûlters on ω is non-homogeneous. Many
combinatorial properties can be characterized in terms of the ordering; e.g., selective
(or Ramsey) ultraûlters are precisely those that are minimal in the Rudin–Keisler
ordering, Q-points are those that areminimal in the Rudin–Blass ordering, P-points
are those below which the Rudin–Keisler and Rudin–Blass orderings coincide.

he ûrst comprehensive studyof theRudin–Keisler (RK)orderwasdone byA.Blass
in his thesis [1]. He continued his investigations by considering the lower part of the
ordering, viz., the ordering of P-points [2]. He showed that, under suitable assump-
tions, the ordering can be very rich. Assuming Martin’sAxiom (MA), he showed that
● there are 2c many minimal P-points,
● there are no maximal P-points,
● the ordering of P-points is σ-closed, both downwards and upwards,
● the real line, as well as ω1, can be embedded into the P-points.

hese results were later extended by several authors [8, 12, 14]. he results mo-
tivating the research that went into this paper were obtained by B. Kuzeljević and
D. Raghavan [7]. hey proved the following result.

heorem 1.1 (Kuzeljević and Raghavan) AssumeMA. he ordinal c+ can be embed-
ded into the ordering of (rapid) P-points.
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Since any ultraûlter has at most c-many RK-predecessors, the above is the best
possible result as far as embedding of ordinals is concerned. Kuzeljević andRaghavan
used the notion of a δ-generic sequence of P-points, which allowed them to carry
through an inductive construction of length c+ [7].

In this paper we improve upon their results as follows. In heorem 3.4 we show
that, assuming the Continuum Hypothesis (CH), the ordering of rapid P-points is, in
fact, c+-closed.

heorem 1.2 Assume CH. Any increasing sequence of rapid P-points of length < c+ is
bounded above by a rapid P-point.

Unlikemany earlier results, this theorem ismore than just an embedding result, for
it provides new information about the global structure of the class of rapid P-points
under the Rudin–Keisler ordering.

We also show (heorem 4.10) that the fact that we are looking at rapid P-points is
crucial. Assuming ♢ (thoughwe suspect thatCH is enough),we construct an increas-
ing sequence of P-points of length ω1 without any P-point upper bound.

he chains of P-points of length c+ constructed in [7] enjoy a slightly stronger
property than the long chains that can be built using the technique from Section 3 of
this paper. he chains of [7] are all increasing in the ≤+RB ordering, but our technique
is insuõcient to ensure this property for any of the chains of length c+ here. hus the
existence statement proved in [7] is stronger than the existence result that is derivable
from the work in Section 3.

We should also comment on our assumptions. Since S. Shelah [20] showed that
P-points need not exist at all, or there might be just one [18, Chapter VI], some as-
sumption guaranteeing that the structure is rich is needed. For simplicity we use CH,
though a weaker assumption, e.g.,MA, would be suõcient for our results.

2 Preliminaries

In this section we introduce the basic notions and state some standard facts.

Deûnition 2.1 ([17]) An ultraûlter U on ω is a P-point provided that for any se-
quence ⟨Xn ∶ n < ω⟩ of elements of U there is an X ∈ U such that ∣X ∖ Xn ∣ < ω for
each n. he last condition will also be denoted by X ⊆∗ Xn .

he following is an alternate characterization that we will o�en use.

Folklore An ultraûlter U is a P-point if and only if every function f ∶ ω → ω is
either constant or ûnite-to-one on some set in U.

Deûnition 2.2 Given a family P of functions from ω to ω we say that a function
f ∶ ω → ω dominates P if g ≤∗ f for each g ∈ P, where

g ≤∗ f ⇐⇒ (∀∞n)(g(n) ≤ f (n)),

and where ∀∞n is a shortcut for “for all but ûnitely many n”.
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Deûnition 2.3 ([11]) An ultraûlter U on ω is rapid if for every f ∶ ω → ω there is
an X ∈ U such that the function enumerating X in increasing order dominates { f }.
To make notation simpler, we will write X(n) to denote the n-th element of X in its
increasing enumeration and X[n] = X ∖ X(n).

Again we will use an alternate characterization.

Fact 2.4 An ultraûlter U is rapid if and only if for every partition of ω into ûnite
sets {Kn ∶ n < ω} there is X ∈ U such that ∣X ∩ Kn ∣ ≤ n for all n < ω if and only if for
every inûnite A ⊆ ω there is X ∈ U such that ∣X ∩ n∣ ≤ ∣A∩ n∣2 for all n < ω.

Deûnition 2.5 ([6]) he Rudin–Keisler ordering of ultraûlters is deûned as follows.
Given two ultraûlters U,V on ω, we say that U is Rudin–Keisler below (or that it is
Rudin–Keisler reducible to) V, denotedU ≤RK V, if there is a function f ∶ ω → ω such
that U = f∗(V) = {X ⊆ ω ∶ f −1[X] ∈ V} . If the function is ûnite-to-one, we say that
U is Rudin–Blass below V, U ≤RB V. If the function is both ûnite-to-one and nonde-
creasing, we write U ≤+RB V.

More information about the ≤+RB ordering on the ultraûlters can be found in [9].
A major diòerence between the ≤RB and ≤+RB orderings, which was discovered by
La�amme and Zhu [9], is that ≤+RB is a tree-like ordering. In other words, for any ul-
traûlters U, V, andW, if U≤+RBW and V≤+RBW, then either U≤+RBV or V≤+RBU. his is
verymuch false for the ≤RB ordering, evenwhen it is restricted to the class of P-points,
as was shown by Blass [2], who constructed a P-point with two incomparable prede-
cessors assuming MA.

It is easy to see that being rapid and being a P-point are preserved when going
down in the Rudin–Keisler ordering and that the Rudin–Keisler and Rudin–Blass or-
derings coincide below every P-point. Also, since Rudin–Keisler reducibility has to
be witnessed by some function f ∶ ω → ω and since two RK-inequivalent ultraûlters
cannot be witnessed to be below a third by a single function, it immediately follows
that every ultraûlter has at most c-many RK-predecessors.
Another ordering of ultraûlters is the Tukey ordering. It was introduced by Tukey

[19] for comparing the coûnal type of arbitrary directed partial orders. Isbell [5] was
the ûrst to use the Tukey ordering to compare ultraûlters.

Deûnition 2.6 ([5]) Let U and V be ultraûlters on ω. We say that U≤TV, i.e., U is
Tukey reducible to V or U is Tukey below V if there is a map ϕ ∶ V → U such that
∀A, B ∈ V[A ⊆ B Ô⇒ ϕ(A) ⊆ ϕ(B)] and ∀A ∈ U∃B ∈ V[ϕ(B) ⊆ A]. We say that
U≡TV, i.e., U is Tukey equivalent to V if U≤TV and V≤T U.

Recently, interest in this ordering on ultraûlters has been revived [3, 10, 13].
Finally, to eliminate some extraneous brackets,wewill use the convenient standard

shorthand f −1(n) to denote the preimage of {n} instead of the formallymore correct
f −1[{n}].
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3 There Is No Short Unbounded Chain of Rapid P-points

We start with a few simple observations. Below we use Poly to denote the following
set of polynomial1 functions: {nk ∶ k < ω}.

Observation 3.1 If f ∶ ω → ω dominates Poly, then so does f ′(n) = f (n)
2n − n2.

It is easy to see that the function n in Fact 2.4 could as well have been replaced by
any function tending to inûnity.

Observation 3.2 If s ∶ ω → ω is a function tending to inûnity (for instance, lim inf
s(n) = ∞), π ∶ ω → ω is a ûnite-to-one function, and U is a rapid ultraûlter, then
there is X ∈ U such that (∀n < ω)(∣π−1(n) ∩ X∣ ≤ s(n)).

We aim to show that each RK-increasing chain of rapid P-points of length less
than ω2 has a rapid P-point on top. We do this by taking the chain and recursively
constructing the future projections (called g in the following proposition) from the
top to each ultraûlter in the sequence. If these projections commute with each of
the maps witnessing the RK-relations in the chain, then the inverse images of the
chain by these projections will generate a P-ûlter. By a relatively easy argument we
can guarantee that it will be an ultraûlter (making sure that at each step we decide
one set). To make it rapid, we have to work more. For this purpose, we will also build
a tower on the side (the Ts in the following proposition) that will generate a rapid
P-point and,moreover, this P-point will be compatible with the ûnal P-ûlter.

Proposition 3.3 gives a single step of the construction. he set A in the assumption
will be later used to make sure that the top ûlter is both an ultraûlter and rapid. he
key property that will keep the induction going will be the fact that the gαs are ûnite-
to-one, but not bounded-to-one in a very strong sense: the size of the preimages of
points (we will call this somewhat imprecisely the growth rate of g) will dominate a
function s whichwill in turn dominate the set Poly (conditions (i) and (ii)). Moreover
the ûrst part of condition (iv) will guarantee that the maps gα will not be bijections
on some large set (otherwise our supposed upper bound would be RK-equivalent to
some Uα).

We use the following conventions: we imagine each Uα lives on a separate copy
of ω (the α-the level). We will use the letter m to denote numbers on the ûrst level,
i.e., where U0 lives, the letter n will denote numbers living on some level 0 < α < δ,
the letter l will denote numbers living on the ûnal level, i.e., where the top ultraûlter
we will be constructing lives, and the letter k will denote numbers living on level δ.
he letters i and j will be used as unrelated natural numbers. If a function has two
ordinal indices αβ, they indicate that it goes from the α-th level down to the β-th
level. Finally, the functions gα go from the ûnal level to the level indicated by their
ordinal index.

1he fact that they are polynomials is not important. We could as well have chosen all functions of
some countable elementary submodel of the universe; all that we need is that each function grows much
faster than the previous one.
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Proposition 3.3 Assume δ < ω1 and ⟨Uα ∶ α ≤ δ⟩ is an RK-increasing sequence of
rapid P-points as witnessed by ûnite-to-onemaps Π = {παβ ∶ β ≤ α ≤ δ} with παα = Id
for each α ≤ δ. Also, let s = ⟨sα ∶ α < δ⟩ be a sequence of maps, each dominating Poly,
let g = ⟨gα ∶ α < δ⟩ be a sequence of ûnite-to-one maps, let T = ⟨Tα ∶ α < δ⟩ be a ⊆∗-
decreasing sequence of subsets of ω, and let A ⊆ ω. Suppose,moreover, that the following
conditions are satisûed.
(i) he growth rate of gα dominates sα ○ πα0, i.e.,

(∀α)(∀∞n)(∣g−1
α [{n}]∣ ≥ sα(πα0(n))).

(ii) he sequence s is <∗ decreasing in the following (stronger) sense:

(∀α < β < δ)(∀∞m)(sα(m) ≥ sα(m)
2m

−m2 ≥ sβ(m)) .

(iii) Π∪{gα ∶ α < δ} commute, i.e., for all β ≤ α < δ, the following diagram commutes
on a Uα-large set:

ω ω

ω .

παβ

gα

gβ

Formally, there is X ∈ Uα such that gβ(l) = παβ(gα(l)) for each l ∈ g−1
α [X].

(iv) For each α < δ, there is X ∈ Uα such that limn∈X ∣g−1
α (n) ∩ Tα ∣ = ∞, while also

∣g−1
α (n) ∩ Tα ∣ ≤ min(g−1

α (n) ∪ {πα0(n)}) for each n ∈ X.

hen we can extend the sequences g , s, T by constructing the maps gδ and sδ and a
set Tδ so that (corresponding modiûcations of) (i–iv) are still satisûed and, moreover,
(∀i)(∣Tδ ∩ i∣ ≤ ∣A∩ i∣2) and Tδ decides A, i.e., Tδ ⊆ A or Tδ ∩ A = ∅.

Proof We ûrst introduce some notation. FixD ⊆ δ a coûnal subset of δ of order type
ω such that 0 ∈ D. In our construction we will only deal with α ∈ D. Given α ∈ D, we
write α+ = min({β ∈ D ∶ α < β}) for the successor of α in D. We also let #α = ∣D∩α∣,
i.e., α is the #α-th element of D. Next we use D to enumerate Poly in an increasing
sequence: Poly = {pα ∶ α ∈ D}, where pα ≤ pα+ .

Given α ∈ D, let cαn = π−1
δα(n). SinceUδ is rapid,we can use Fact 2.4 to ûnd Xα ∈ Uδ

such that ∣Xα ∩ cαn ∣ ≤ n for each n < ω. We can also assume2 that

(3.1) ∣g−1
α (n)∣ ≥ sα(πα0(n))

for all n such that Xα ∩ cαn ≠ ∅ and that if n ∈ πδα[Xα], then

(3.2) ∣g−1
α (n) ∩ Tα ∣ ≤ min(g−1

α (n) ∪ {πα0(n)}) .

Next, choose Yα ∈ Uδ such that

{gβ ∶ β ∈ D & β ≤ α+} ∪ {πγβ ∶ γ ≤ β ≤ α+ , γ, β ∈ D}

2Otherwise, throw ûnitelymany elements of Xα away to get the ûrst requirement, and for the second,
intersect it with the set π−1δα[X], where X is the set guaranteed to exist by condition (iv) above.
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commute on Yα ; more precisely, for every β ≤ γ ≤ α+ all in D and every k ∈ Yα and
any l ∈ g−1

γ [πδγ(k)] we have

(3.3) πγβ(πδγ(k)) = πδβ(k) = gβ(l).
Finally, since gα and Tα satisfy the ûrst part of (iv), we can use Observation 3.2 to

ûnd Zα ∈ Uδ such that

(3.4) (∀n)(∣π−1
δα(n) ∩ Zα ∣ ≤

∣g−1
α (n) ∩ Tα ∣

#α
) ,

i.e., Zα is #α-times more sparse then Tα . (Just apply Observation 3.2 to π = πδα ,
U = Uδ , and s(n) = ∣g−1

α (n) ∩ Tα ∣/#α.)
SinceUδ is a P-point, we can ûnd X ∈ Uδ that is a pseudo-intersection of {Xα ,Yα ,

Zα ∶ α ∈ D}. Recursively construct a partition {Kα ∶ α ∈ D} of X into ûnite sets and
sδ ∶ ω → ω such that Kα ⊆ ⋂β∈D∩α+ Xβ ∩ Yβ ∩ Zβ , and
(iv) sα(m) ≥ sα(m)/m −m2 ≥ sδ(m) ≥ pα(m) whenever m = πδ0(n) and n ∈ Kα ;
(v) π−1

δα[πδα[Kα]] ∩ X ⊆ Kα ;
(vi) #α ≤ ∣A∩min (πδ0[Kα]) ∩min (g−1

α [πδα[Kα]])∣ .
his is not hard to do: ûrst ûnd an increasing sequence {kα ∶ α ∈ D} of natural

numbers such that X ∖ kα ⊆ ⋂β∈D∩α+ Xβ ∩ Yβ ∩ Zβ , and

sα(m) ≥ sα(m)
m

−m2 ≥ pα+(m) and #α ≤ ∣A∩m ∩ i∣

for all m = πδ0(n) and i ∈ g−1
α (πδα(n)) with n ∈ X ∖ kα . hen let

Kα = π−1
δα[πδα[X ∩ [kα , kα+)]] and sδ ↾ πδ0[Kα] = pα .

(Formally, this will not be a partition, since it will not cover X ∩ [0, k0); we can just
throw these ûnitely many elements out of X).

Let Jα = πδα[Kα] and Lα = g−1
α [Jα]. Notice that since Kα ⊆ Yα , we can use (3.3)

and (v) to conclude that Lα ∩ Lβ = ∅ for distinct α ≠ β ∈ D. his allows us to deûne
gδ separately on each Lα (see Figure 1). For n ∈ Jα let bαn = g−1

α (n).
Fix α ∈ D and n ∈ Jα and let m = πα0(n). hen, since Kα ⊆ Xα , by (3.1) and (iv)

we have ∣bαn ∣ ≥ msδ(m) +m3. Moreover, since Kα ⊆ Zα , by (3.4) and (3.2) we have

∣Kα ∩ π−1
δα(n)∣ ≤ m,

∣Kα ∩ π−1
δα(n)∣ ≤

∣bαn ∩ Tα ∣
#a

≤ min(bαn ∪ {m})
#a

.

It follows that we can partition bαn into pieces {enk ∶ k ∈ Kα ∩ π−1
δα(n)}, each of size

≥ sδ(m) +m2, that,moreover, satisfy #α ≤ ∣enk ∩ Tα ∣ ≤ min(bαn ∪ {m}).
Due to (vi) we can shrink enk to a smaller set dn

k (throwing away at most m-many
elements of enk ∩ Tα) such that

(3.5) #α ≤ ∣dn
k ∩ Tα ∣ ≤ ∣A∩m ∩min bαn ∣.

Since we threw away at most m elements from each enk , we still have ∣dn
k ∣ ≥ sδ(m).

Now let gδ[dn
k ] = {k} and extend gδ to all of ω arbitrarily so that the new values are

outside of X and that the requirements on gδ are satisûed, i.e., that it is ûnite-to-one,
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Figure 1: Constructing gδ .

its growth rate is bounded below by sδ , etc. his ûnishes the construction of gδ . For
future reference, let us note that gδ ↾ (Tα ∩ l) is at most ∣A∩ l ∣-to-one for any l < ω.

Notice that if β < α ∈ D, k ∈ Kα , and gδ(l) = k, then gβ(l) = παβ(gα(l)), and
so πδβ(k) = παβ(πδα(k)) = gβ(l); so Proposition 3.3(iii) is satisûed for gδ . hat
condition (ii) for sδ is satisûed follows from (iv). hat condition (i) is satisûed for sδ
and gδ follows from the construction (∣dn

k ∣ ≥ sδ(m)). (Formally,we have only checked
the conditions for β, α ∈ D, but this is clearly enough, since D is coûnal in δ.)
Finally we must construct Tδ . Without loss of generality we may assume that

Tα ⊆ Tβ for β < α ∈ D. (Otherwise we could have carried out the construction for
some ûnitemodiûcations of Tαs and the resulting Tδ would stillwork for the original
Tαs). Let T ′ = ⋃α∈D g−1

δ [Kα] ∩ Tα . hen T ′ is a pseudo-intersection of {Tα ∶ α ∈ D}.
Moreover, gδ was constructed (see (3.5)) so that #α ≤ ∣g−1

δ (k)∩Tα ∣ ≤ min{m}∪g−1
δ (k)

for each k ∈ Kα and m = πδ0(k). It follows that T ′ and gδ satisfy (the corresponding
modiûcation of) Proposition 3.3(iv) and, in particular, that gδ[T ′] ∈ Uδ .

Claim here is an X′ ∈ Uδ , X′ ⊆ X ∩ gδ[T ′] such that ∣X′ ∩ gδ[l]∣ ≤ ∣A∩ l ∣,

Proof of Claim Since ∣gδ[l]∣ ≤ l , we can ûnd a bijection π ∶ ω → ω such that
π[gδ[l]] ⊆ l . Since π is a bijection, the ultraûlter π∗(Uδ) is rapid, so there is
Y ∈ π∗(Uδ) such that ∣Y ∩ l ∣ ≤ ∣A∩ l ∣. Let X′ = π−1[Y] ∩ X ∩ gδ[T ′] ∈ Uδ . hen we
have

X′ ∩ gδ[l] ⊆ X′ ∩ π−1[l] ⊆ π−1[Y] ∩ π−1[l] = π−1[Y ∩ l].
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Using this, the fact that π is a bijection, and the choice of Y, we get

∣X′ ∩ gδ[l]∣ ≤ ∣π−1[Y ∩ l]∣ = ∣Y ∩ l ∣ ≤ ∣A∩ l ∣,
which ûnishes the proof of the claim. ∎

Let T ′′ = g−1
δ [X′] ⊆ T ′. Now, since gδ ↾ T ′ ∩ l is at most ∣A∩ l ∣-to-1, we have
∣T ′′ ∩ l ∣ ≤ ∣A∩ l ∣ ⋅ ∣X′ ∩ gδ[l]∣ ≤ ∣A∩ l ∣ ⋅ ∣A∩ l ∣ ≤ ∣A∩ l ∣2 .

Finally notice that

gδ[T ′′ ∩ A] ∪ gδ[T ′′ ∖ A] = gδ[T ′′] = X′ ∈ Uδ .
So, since Uδ is an ultraûlter, we can choose Tδ ⊆ T ′′ that decides A and still satisûes
Proposition 3.3(iv). his ûnishes the proof. ∎

heorem 3.4 Assume CH. Every RK-increasing chain of rapid P-points of length ω1
has an upper bound that is also a rapid P-point.

Proof Let ⟨Uα ∶ α < ω1⟩ be an RK-increasing chain of rapid P-points as witnessed
by ûnite-to-one maps Π = {παβ ∶ β ≤ α < ω1}. Without loss of generality we can as-
sume that themaps commute in the sense of Proposition 3.3(iii). Enumerate [ω]ω as
{Aα ∶ α < ω1}. Recursively build a sequence of ûnite-to-onemaps ⟨gα ∶ α < ω1⟩ and a
decreasing tower ⟨Tα ∶ α < ω1⟩ so that Tα decides Aα and ∣Tα∩n∣ ≤ ∣Aα∩n∣2. his can
be done by repeatedly applying Proposition 3.3 at each step. In the end ⟨Tα ∶ α < ω1⟩
generates a rapid P-point and themap gα witnesses that this P-point is above Uα . ∎

We do not know the optimal hypothesis needed to carry out the above proof. We
leave it as a question for further research.

Question What is the optimal hypothesis needed to get the conclusion of heo-
rem 3.4 with ω1 replaced by c? In particular, does this hold if we replace CH by b = c?
Or even d = c?

4 A Short Unbounded Chain of P-points

In this section we show, assuming◇, that there is an RK-chain of P-points of length
ω1 that has no P-point RK-above. We assume◇ only for simplicity; amore involved
argument using the Devlin–Shelahweak diamond can be used to construct the chain,
e.g., under CH.

Deûnition 4.1 LetU = ⟨Uα ∶ α < δ⟩ be a sequence of ultraûlters and Π = ⟨παβ ∶ β ≤
α ≤ δ⟩ a family ofmaps from ω to ω. We say that Π commutes with respect to U, if for
β ≤ α ≤ γ ≤ δ there is X ∈ Uγ such that παβ(πγα(i)) = πγβ(i) for all i ∈ X. When the
sequence U is clear from the context, we just say that Π commutes.

Notation 4.2 Given two families Π i = ⟨π i
δα ∶ α < δ⟩, i < 2 ofmaps and a sequence

of ultraûlters U as above, we write f ∶ Π0 →U
Π1 to indicate that f is a map from ω

to ω and for each α < δ there is an X ∈ (π0
δα)−1[Uα] such that π0

δα(n) = π1
δα( f (n))

for all n ∈ X.
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Deûnition 4.3 Given two families of maps Π i = ⟨π i
δα ∶ α < δ⟩, i < 2, we say that

Π1 ≺ Π0 if

(∀α < δ)(∀∞n < ω)(∣(π1
δα)−1(n)∣ > n ⋅ ∣(π0

δα)−1(n)∣) .
Moreover, if π0 , π1 are two maps, U is an ultraûlter, and X ∈ [ω]ω , we write

π1 ≺X ,U π0

if there is a Y ∈ U and s ∶ ω → ω tending to inûnity such that

(∀n ∈ Y)(∣π−1
1 (n) ∩ X∣ > s(n) ⋅ ∣π−1

0 (n) ∩ X∣) .

Observation 4.4 Assume U = ⟨Uα ∶ α < δ⟩ is an RK-increasing chain of P-points
of length δ < ω1 as witnessed by a family of ûnite-to-onemaps Π = ⟨παβ ∶ β ≤ α < δ⟩.
Suppose,moreover, thatwe are given a family of ûnite-to-onemaps Π0 = ⟨π0

δα ∶ α < δ⟩
such that Π ∪ Π0 commute. hen there is a family Π1 = ⟨π1

δα ∶ α < δ⟩ such that
Π1 ≺ Π0 and Π ∪Π1 still commute.

Proof Fix an arbitrary ûnite-to-one π such that ∣π−1(n)∣ ≥ n and let π1
δα(n) =

π0
δα(π(n)). ∎

Deûnition 4.5 Given an RK-increasing chain of P-points U of length δ for some
limit δ < ω1, a family of ûnite-to-onemaps Π = ⟨παβ ∶ β ≤ α < δ⟩ witnessing that the
chain is RK-increasing, and two families of ûnite-to-onemapsΠ i = ⟨π i

δα ∶ α < δ⟩, i < 2,
such that Π1 ≺ Π0 and Π ∪ Π i commutes with respect to U for i < 2, we deûne the
forcing

P(U,Π,Π0 ,Π1) = ({X ∈ [ω]ω ∶ (∀α < δ)(π1
δα ≺X ,Uα π0

δα)} , ⊆∗) .

For the following observation and propositions, ûx δ, U, Π,Π0, and Π1 as in the
deûnition.

Observation 4.6 he forcing P(U,Π,Π0 ,Π1) contains ω.

Proposition 4.7 he forcing P(U,Π,Π0 ,Π1) is σ-closed.

Proof Let ⟨Xn ∶ n < ω⟩ be a descending sequence of conditions and, without loss of
generality, assume Xn+1 ⊆ Xn for all n < ω. Fix a coûnal subset D ⊆ δ of order type
ω and, as before, write α+ = min (D ∖ (α + 1)) and #α = ∣D ∩ α∣. For each n < ω
and α ∈ D, ûx Y αn ∈ Uα and sαn witnessing π1

δα ≺Xn ,Uα π0
δα . hen for each α ∈ D, let

Y α ∈ Uα be a pseudo-intersection of {Y αn ∶ n < ω} ⊆ Uα and ûx a function s ∶ ω → ω,
tending to inûnity, such that s ≤∗ sαn for all α ∈ D, n < ω. For each α ∈ D, ûx mα < ω
such that

∣(π1
δβ)−1(m) ∩ X#α ∣ ≥ s(m) ⋅ ∣(π0

δβ)−1(m) ∩ X#α ∣
for each β ∈ D∩ α+ andm ∈ Y α ∖mα . We also choose each mα large enough to make
sure that

(4.1) max ((π i
δβ′)−1[m′]) < min ((π j

δβ)
−1(m))
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for each β, β′ ∈ D ∩ α+, i , j < 2 and m′ < mα < mα+ < m. For α ∈ D let

Xα = ⋃
β∈D∩α+

(π1
δβ)−1[mα ,mα+) ∩ X#α .

Next let D0 and D1 be the set of even and odd elements of D, respectively. Choose a
coûnal D′ ⊆ D and i < 2 so that Zα = ⋃β∈D i [mβ ,mβ+) ∩ Y α ∈ Uα . Finally, deûne
X = ⋃α∈D i Xα . By (4.1) it is clear that

(4.2) X ∩ (π j
δβ)

−1[mα ,mα+) = X#α ∩ (π j
δβ)

−1[mα ,mα+)

for each α ∈ D i , β < α, and j < 2. It is clear that X is a pseudo-intersection of the Xns.
We need to show that X ∈ P(U,Π,Π0 ,Π1), i.e., that for each α < δ we have
(4.3) π1

δα ≺X ,Uα π0
δα .

First assume α ∈ D′. We show that Zα ∖ mα witnesses (4.3). Let m ∈ Zα ∖ mα be
arbitrary. Find α′ ∈ D i so that m ∈ [mα′ ,mα′+). hen α < α′ so, in particular,we have

∣(π1
δα)−1(m) ∩ X#α′ ∣ ≥ s(m) ⋅ ∣(π0

δα)−1(m) ∩ X#α′ ∣.
his, together with (4.2), shows (4.3). Finally notice that if α < β < α′,

π1
δα ≺X ,Uα π0

δα , and π1
δα′ ≺X ,Uα′

π0
δα′ ,

then also π1
δβ ≺X ,Uβ π0

δβ . Since D
′ was coûnal in δ, this ûnishes the proof of (4.3) for

all α < δ. ∎

Proposition 4.8 If A ⊆ ω, then the set

DA = {X ∈ P(U,Π,Π0 ,Π1) ∶ X ⊆ A∨ X ⊆ ω ∖ A}
is dense.

Proof Notice that if π1
δα ≺X ,Uα π0

δα , then either

π1
δα ≺X∩A,Uα π0

δα or π1
δα ≺X∖A,Uα π0

δα .

his follows from the fact that either

∣(π1
δα)−1(m) ∩ X ∩ A∣ ≥

∣(π1
δα)−1(m) ∩ X∣

2
or

∣(π1
δα)−1(m) ∩ X ∖ A∣ ≥

∣(π1
δα)−1(m) ∩ X∣

2
forUα-manyms and that if s tends to inûnity then so does s/2. he result then imme-
diately follows because one of the two cases must happen for coûnallymany α < δ. ∎

Proposition 4.9 If f ∶ Π0 →U
Π1 is ûnite-to-one, then the set

D f = {X ∈ P(U,Π,Π0 ,Π1) ∶ (∃Y ∈ U0)(X ∩ f [(π0
δ0)−1[Y]] = ∅}

is dense.

Proof Let X ∈ P(U,Π,Π0 ,Π1). For each α < δ, choose Yα ∈ Uα and sα ∶ ω → ω
tending to inûnity witnessing π1

δα ≺X ,Uα π0
δα . We can also assume that
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(1) π1
δα( f (k)) = π0

δα(k) for all k ∈ (π0
δα)−1[Yα],

(2) πα0(π1
δα(k)) = π1

δ0(k) for each k ∈ (π1
δα)−1[Yα] and α < δ, and

(3) Yα ⊆ (πα0)−1[Y0].
Since U0 is a P-point, there is a Y ∈ U0 that is a pseudo-intersection of πα0[Yα]

and let nα < ω be such that πα0[Yα ∖ nα] ⊆ Y . Also write Z = (π0
δ0)−1[Y]. Let

X′ = ((π1
δ0)−1[Y] ∩ X) ∖ f [Z ∩ X]. Notice that for each n ∈ Yα ∖ nα , we have

f −1[(π1
δα)−1(n)] ∩ X ⊆ (π0

δα)−1(n) ∩ X (since f , π0
δα , π

1
δα commute on Yα ∖ nα), so

that
∣(π1

δα)−1(n) ∩ X ∩ f [Z ∩ X]∣ ≤ ∣(π0
δα)−1(n) ∩ X∣ .

By the choice of Yα we also have ∣(π1
δα)−1(n)∩X∣ ≥ sα(n) ⋅ ∣(π0

δα)−1(n)∩X∣. Putting
this together gives

∣(π1
δα)−1(n) ∩ X′∣ ≥ (sα(n) − 1) ⋅ ∣(π0

δα)−1(n) ∩ X′∣.
Since sα tends to inûnity, so does sα − 1. his shows that sα − 1 and Yα ∖ nα witness
the fact that X′ ∈ P(U,Π,Π0 ,Π1). ∎

We now put Propositions 4.8 and 4.9 together and prove the following.

heorem 4.10 Assume◇. here is a sequence of ultraûlters of length ω1 that is strictly
increasing in the RK-order and has no upper bound that would be a P-point.

Proof Let ⟨Πα ∶ α < ω1⟩, where Πα = ⟨pαω1γ ∶ γ < α⟩, be a diamond sequence guess-
ing sequences of functions from ω to ω, i.e., such that, for every sequence of such
functions Π = ⟨πω1α ∶ α < ω1⟩, the set {α ∈ Lim(ω1) ∶ Π ↾ α = Πα} is stationary.
We recursively construct an RK-increasing sequence ⟨Uα ∶ α < ω1⟩ of P-points and
witnessing maps Πα

1 = ⟨π1
αβ ∶ β < α⟩ as follows.

At a successor step α+ 1,we just construct an arbitrary P-pointUα+1 aboveUα and
let Πα+1

1 be the appropriate witnessing maps.
At a limit step α, let Π = ⟨π1

βγ ∶ γ ≤ β < α⟩, U = ⟨Uβ ∶ β < α⟩, and write Πα = Πα
0 =

{π0
αβ ∶ β < α}, i.e., π0

αβ = pαω1β . If Π ∪Πα
0 do not commute with respect to U, we con-

struct Uα to be an arbitrary P-point above U and let Πα
1 be appropriate ûnite-to-one

witnessing maps. Otherwise, we use heorem 4.4 to construct Πα
1 = {π1

αβ ∶ β < α}
satisfying
(1) Πα

1 ≺ Πα
0 .

hen we recursively construct a P-ûlter Uα on P(U,Π,Πα
0 ,Π

α
1 ) so that

(2) for all ûnite-to-one f ∶ Πα
0 →U

Πα
1 there is X ∈ Uα and Y ∈ U0 such that

∅ = f [(π0
α0)−1[Y]] ∩ X .

To guarantee (1) we just need to ensure that it hits each of the ω1-many dense sets
{D f ∶ f ∶ Πα

0 →U
Πα

1 }; we also make sure that it hits the dense sets {DA ∶ A ⊆ ω}, so
that it is an ultraûlter. his can be done since the forcing is σ-closed by heorem 4.7.
his ûnishes the recursive construction.
Finally notice that the chain of P-points thus constructed cannot have a P-point

on top. Otherwise suppose U is RK-above the chain as witnessed by ûnite-to-one
maps Πω1 = {πω1α ∶ α < ω1} that commute with ⋃α<ω1 Π

α
1 . Since the Παs formed a
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diamond sequence, there is a limit α < ω1 such that Πω1 ↾ α = Πα . hen Πα = Πα
0

commuteswith Π, sowe can apply (2) to f = πω1α and conclude that there are X ∈ Uα
and Y ∈ U0 such that

∅ = πω1α[(π0
α0)−1[Y]] ∩ X = πω1α[(pαω10)

−1[Y]] ∩ X = πω1α[π−1
ω10[Y]] ∩ X ,

contradicting the fact that πω1α witnesses that U is above Uα . ∎

5 Concluding Remarks

It was proved in Section 3 that, given a Rudin–Keisler increasing chain of rapid
P-points ⟨Uα ∶ α < ω1⟩ together with a commuting sequence of ûnite-to-one witness-
ing maps ⟨πβ ,α ∶ α ≤ β < ω1⟩, it is possible to ûnd a sequence of ûnite-to-one maps
⟨gα ∶ α < ω1⟩ together with a rapid P-point V such that gα is a witness to Uα≤RKV.
However, the argument in Section 3 does not guarantee that any of the gα will be
nondecreasing, even when it is given that each of themaps πβα is nondecreasing. In
other words, the rapid P-point V may not be an ≤+RB upper bound of the sequence
⟨Uα ∶ α < ω1⟩ even if that sequence itself is assumed to be ≤+RB-increasing.

It appears that one must fall back on the construction given in [7] if one wants a
chain of P-points of length c+ that is increasing in the ≤+RB ordering. Nevertheless,
the ideas from Section 3 can be combined with the work in [7] to show that CH im-
plies that the rapid P-points are c+-closed with respect to ≤+RB. More precisely, the
following theorem will appear in a forthcoming paper of Kuzeljević, Raghavan, and
Verner. Assume the ContinuumHypothesis. Suppose δ < c+. If ⟨Uα ∶ α < δ⟩ is any se-
quence of rapidP-points that is increasingwith respect to≤+RB, then there exists a rapid
P-point V such that ∀α < δ[Uα≤+RBV]. herefore every strictly increasing sequence
of rapid P-points of length < c+ can be extended to one of length c+ with respect to
the ≤+RB ordering.
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