
SUSLIN LATTICES
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Abstract. In their work on spreading models in Banach spaces, Dilworth,

Odell, and Sari [4] introduced the notion of a Suslin lower semi-lattice, a

seemingly slight weakening of the notion of a Suslin tree. They posed several
problems of a set theoretic nature regarding their notion. In this paper, we

make a systematic study of the notion of Suslin lower semi-lattice, answering

some of the questions raised by Dilworth, Odell, and Sari.

1. Introduction

Definition 1. 〈L,<〉 is a partial order if ∀x, y, z ∈ L [(x < y ∧ y < z) =⇒ x < z]
and ∀x ∈ L [x 6< x]. As usual, x ≤ y abbreviates x < y ∨ x = y. A partial order
〈L,<〉 is called a lower semi-lattice if every x, y ∈ L have a greatest lower bound
x ∧ y. A lower semi-lattice is called Suslin if

(1) 〈L,<〉 is well founded
(2) L is uncountable
(3) L does not contain any uncountable chains or uncountable set of pairwise

incomparable elements (which we will abbreviate to p.i.e.).

We have used the term “p.i.e.” in (3) instead of the term “antichain” in order to
avoid conflict with the conventional usage of that term for forcing notions. Suslin
lower semi-lattices are “lattice analogues” of Suslin trees. Any normal tree has a
natural notion of greatest lower bound defined on it, and so, any Suslin tree is an
example of a Suslin lower semi-lattice.

Dilworth, Odell, and Sari [4] considered this notion during their study of spread-
ing models of Banach spaces. As this notion is so similar to that of a Suslin tree,
one wants to reexamine with respect to this notion the classical questions about the
existence of Suslin trees, and moreover, since this notion seems to be only a slight
weakening of the notion of a Suslin tree, one wants to know whether the existence
of a Suslin lower semi-lattice implies the existence of a Suslin tree. In particular,
the following questions suggest themselves.

Question 2. Does ZFC imply the existence of a Suslin lower semi-lattice? (Prob-
lem 1.14 of [4])

Question 3. Does ZFC + CH imply the existence of a Suslin lower semi-lattice?
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Question 4. Does the existence of a Suslin lower semi-lattice imply the existence
of a Suslin tree?

Definition 5. Let 〈L,<〉 be any well-founded partial order. This means that
there is a rank function defined on 〈L,<〉. Given x ∈ L, let ht (x) denote the
rank of x. ht (x) will be called the height of x. For an ordinal α, Lα denotes
{x ∈ L : ht (x) = α}, and L<α denotes

⋃
β<αLβ . Finally, the height of L, ht (L), is

the least α such that Lα = 0.

Note that Lα is always a p.i.e. and hence |Lα| ≤ ω for a Suslin L. Therefore
for each α < ω1, L<α is countable. Since we are primarily concerned with the
existence of Suslin lower semi-lattices under various conditions, we may assume
that ht (L) = ω1. This is because if there a Suslin L, then there is one of height ω1.
Also, we may assume that for each x ∈ L, {y ∈ L : y ≥ x} is uncountable. This is
because for any Suslin L, {x ∈ L : |{y ∈ L : y ≥ x}| ≤ ω} is countable.

It is well known that the existence of a Suslin tree can be proved neither from ZFC
nor from ZFC + CH. So if Question 4 has a positive answer, then both Questions
2 and 3 have negative answers. Dilworth, Odell, and Sari [4] purport to give an
example showing that Question 3 has a positive answer in some remarks following
the statement of Problem 1.14. It is easily seen, however, that this example is not
well-founded.

In Sections 2 and 6 of this paper we give negative answers to Questions 2 and
4 respectively. In Section 3, we use the P-ideal dichotomy of Todorčević to give
partial answers to Question 3. We show that the P-ideal dichotomy implies that
if there is a Suslin lower semi-lattice, then there is one which a substructure of
〈P(ω),(,∩〉. This of some interest because it is impossible to have L ⊂ P(ω) such
that 〈L,(〉 is a Suslin tree. Therefore, if the P-ideal dichotomy fails to rule out the
existence of Suslin lower semi-lattices, then this must be because there are some
that are fundamentally different from Suslin trees.

However, in Section 4, we show that it is consistent to have a Suslin lower semi-
lattice that is a substructure of 〈P(ω),(,∩〉. In fact, such an object can always be
added in a generic extension. The statement expressing the existence of such an
L ⊂ P(ω) is a Σ2

2 sentence of a specific kind. It is shown in [5] that in the presence
of large cardinals, any Σ2

2 sentence of this specific variety which is consistent, follows
from ♦. As large cardinals ought to be irrelevant here, one would expect that the
construction of a Suslin lower semi-lattice which is a substructure of 〈P(ω),(,∩〉
can be carried out from ♦. This is done in Section 5.

In Section 6 we use the fact that it is possible to have a Suslin lower semi-lattice
that is so very different from a Suslin tree to produce a model where there is a
Suslin lower semi-lattice, but all Aronszajn trees are special.

We now make brief remarks on some variations on the notion of a Suslin lower
semi-lattice and on the history of their study. If the requirement that least up-
per bounds exist is dropped, then there is a ZFC example, namely Sierpinski’s well
known partial order. Let P = {xα : α < ω1} be a collection of distinct real numbers.
Define C on P by stipulating that xα C xβ iff α < β and xα < xβ . Then 〈P,C〉
is an uncountable well-founded partial order with no uncountable p.i.e. or chain.
However, not all pairs of elements will have least upper bounds. If the require-
ment that the semi-lattice be well-founded is dropped, then several examples from
ZFC + CH (and even weaker hypotheses) are known. Van Douwen and Kunen [11]
produced from ZFC + CH an uncountable lower semi-lattice that is a sub-structure
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of 〈P(ω),(,∩〉 with no uncountable p.i.e. or chain. Todorčević [9] showed how to
get such an example from b = ℵ1. These examples are not well-founded. Baumgart-
ner and Komjáth [2] produced an uncountable Boolean sub-algebra of P(ω) with
no uncountable p.i.e. or chain from ♦ and Shelah [7] weakened the hypothesis to
CH. Moreover, Baumgartner [1] produced a model where every uncountable sub-
order of 〈P(ω),(〉 either contains an uncountable p.i.e. or chain. Finally, we note
that by results of Harrington, Marker, and Shelah [6], any Borel partial order is
either the union of countably many chains or else contains a perfect set of pairwise
incomparable elements; so there are no “nicely definable” examples of any of the
above mentioned phenomena.

The only question that remains open is Question 3. We think there is enough
evidence to make the following

Conjecture 6. ZFC + CH implies the existence of a Suslin lower semi-lattice.

This paper is composed of the work of two authors as follows. The results in
Sections 2, 3, 4 and 6 are due to the first author and were obtained in late 2008/early
2009. The first author benefited from several conversations with Steprāns and
Todorčević. Section 5 is the work of the second author and was carried out in the
summer of 2010.

2. MAℵ1
and Suslin Lower Semi-lattices

In this section we answer Question 2 by showing that there are no Suslin lower
semi-lattices under MAℵ1

. This is a more or less trivial corollary of a well-known
theorem of Todorčević.

The following lemma will play a crucial role in our analysis of Suslin lower semi-
lattices throughout the paper. For a set A ⊂ L, x ∈ L is called an upper bound for
A if ∀a ∈ A [a ≤ x].

Lemma 7. Let 〈L,<〉 be any well-founded lower semi-lattice. Let A ⊂ L be a
subset with an upper bound. Then A has a least upper bound.

Proof. Let x be an upper bound for A of minimal rank. Let y be any other upper
bound of A. Note that x ∧ y is also an upper bound for A. Therefore, x ∧ y = x,
whence x ≤ y. a

This simple observation together with a theorem of Todorčević [8] can be used
to show that there are no Suslin lower semi-lattices under MAℵ1.

Definition 8. Let 〈L,<〉 be a well-founded lower semi-lattice. For a set A ⊂ L
with an upper bound, let

∨
A denote its least upper bound.

Theorem 9. MAℵ1 implies that there are no Suslin lower semi-lattices.

Proof. By a theorem of Todorčević [8], under MAℵ1
every uncountable partial order

〈L,<〉 either contains an uncountable p.i.e. or else an uncountable set each of whose
countable subsets has an upper bound in L. Applying this theorem to a Suslin L,
we get the second alternative. Namely, an uncountable subset X ⊂ L such that
every countable subset of X has an upper bound in L. For each α < ω1, put
xα =

∨
(X ∩ L<α). Clearly, {xα : α < ω1} is a chain. Moreover, it is uncountable

because X is uncountable. a
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3. P-Ideal Dichotomy and Suslin Lower Semi-Lattices

The P-ideal dichotomy (PID) is a strong combinatorial principle introduced by
Todorčević (see [10]). It is a consequence of the Proper Forcing Axiom (PFA), but
it is consistent with CH. On the other hand, it is still strong enough to imply many
of the things that PFA does. For example, PID implies that there are no Suslin
trees. So PID gives us an axiomatic method to show that certain consequences
of PFA are consistent with CH, allowing us to bypass iterated forcing arguments.
Hence it is natural to investigate whether PID implies that there are no Suslin lower
semi-lattices as well.

Definition 10. Let X be an uncountable set. An ideal I ⊂ [X]
≤ω

is called a
P-ideal if for every countable collection {xn : n ∈ ω} ⊂ I, there is x ∈ I such that
∀n ∈ ω [xn ⊂∗ x].

All ideals are assumed to be non-principal, meaning that [X]
<ω ⊂ I. Recall the

P-ideal dichotomy of Todorčević [10].

Definition 11. The P-ideal dichotomy (PID) is the following statement: For any
P-ideal I on an uncountable set X either

(1) There is an uncountable set Y ⊂ X such that [Y ]
≤ω ⊂ I

or

(2) There exist {Xn : n ∈ ω} such that the Xn are pairwise disjoint, X =⋃
n∈ωXn, and ∀n ∈ ω [[Xn]

ω ∩ I = 0].

Theorem 12. Assume PID. Let 〈L,<〉 be a well-founded lower semi-lattice with

ht(L) = ω1. Assume that for any A ∈ [L]
≤ω

,∣∣∣{∨B : B ⊂ A ∧B has an upper bound in L
}∣∣∣ < p.(∗)

Then 〈L,<〉 either has an uncountable p.i.e. or an uncountable chain.

Proof. Assume that L has no uncountable p.i.e. For each A ∈ [L]
≤ω

, put sups(A) =
{
∨
B : B ⊂ A ∧B has an upper bound in L}. Define I to be{

A ∈ [L]
≤ω

: ∀x ∈ L [|pred(x) ∩A| < ω]
}
.

Here pred(x) denotes {y ∈ L : y ≤ x}. It is clear that I is an ideal. Next,

note that for any A ∈ [L]
≤ω

, A ∈ I iff ∀x ∈ sups(A) [|pred(x) ∩A| < ω]. Indeed,
if A /∈ I, then for some x ∈ L, |pred(x) ∩A| = ω. Put B = pred(x) ∩ A and
y =

∨
B ∈ sups(A). Then |A ∩ pred(y)| = ω. Now, to check that I is a P-ideal,

fix {An : n ∈ ω} ⊂ I. Without loss of generality, the An are pairwise disjoint.
Put A =

⋃
n∈ωAn. By assumption, for each a ∈ sups(A) and n ∈ ω, pred(a) ∩ An

is finite. Since |sups(A)| < p, we can find H(n) ∈ [An]
<ω

such that for any
a ∈ sups(A), ∀∞n ∈ ω [pred(a) ∩An ⊂ H(n)]. Now, B =

⋃
n∈ω(An \H(n)) is in I

and ∀n ∈ ω [An ⊂∗ B].
First, suppose that alternative (1) of PID occurs. So fix Y ∈ [L]

ω1 such that
for any x ∈ L, pred(x) ∩ Y is finite. Then 〈Y,<〉 is an uncountable, well-founded
partial order. For any y ∈ Y , let htY (y) denote the rank of y in 〈Y,<〉. If there
is y ∈ Y with htY (y) ≥ ω, then pred(y) ∩ Y is infinite. Therefore, for any y ∈ Y ,
htY (y) < ω, and so there must be n ∈ ω such that {y ∈ Y : htY (y) = n} is
uncountable, whence L contains an uncountable p.i.e.



SUSLIN LATTICES 5

So alternative (1) of PID fails, and so there exist {Xn : n ∈ ω} such that the
Xn are pairwise disjoint, L =

⋃
n∈ωXn, and for each n ∈ ω, [Xn]

ω ∩ I = 0.
Say that a set A ⊂ L is finitely bounded if there exist x0, . . . , xi ∈ L such that
∀a ∈ A∃0 ≤ j ≤ i [a ≤ xj ]. Fix n ∈ ω and A ∈ [Xn]

ω
. We claim that A must be

finitely bounded. Suppose not. For any x ∈ L, let predA(x) denote A ∩ pred(x).
By the hypothesis that A is not finitely bounded, for any x0, . . . , xi ∈ sups(A),
A \ (predA(x0) ∪ · · · ∪ predA(xi)) is infinite. Since |sups(A)| < p, there is B ∈ [A]

ω

such that for any x ∈ sups(A), B ∩ predA(x) is finite. However, since B /∈ I, there
is x ∈ sups(B) ⊂ sups(A) such that pred(x)∩B is infinite. But then, predA(x)∩B
is infinite, a contradiction.

Now, define a relation R on L<ω \ {0} as follows. For σ, τ ∈ L<ω \ {0}, τRσ
iff there are η ∈ L<ω \ {0} and i < |σ| such that ∀j < |η| [η(j) < σ(i)] and τ =
(σ � i)_(η)

_
(σ � [i+ 1, |σ|)). We first check that R is well-founded on L<ω \ {0}.

Suppose for a contradiction that 〈σk : k ∈ ω〉 satisfies σk+1Rσk, for each k ∈ ω.
Let ik < |σk| and ηk witness σk+1Rσk. Define a finitely branching tree as follows.
The kth level of the tree is the set {〈k, j, σk(j)〉 : j < |σk|}. For j < ik, the sole
immediate successor of 〈k, j, σk(j)〉 is 〈k + 1, j, σk+1(j)〉 = 〈k + 1, j, σk(j)〉. The
immediate successors of 〈k, ik, σk(ik)〉 are {〈k + 1, ik + l, ηk(l)〉 : l < |ηk|}. For
j ∈ [ik + 1, |σk|), the sole immediate successor of 〈k, j, σk(j)〉 is 〈k + 1, j + |ηk| −
1, σk+1(j + |ηk| − 1)〉 = 〈k + 1, j + |ηk| − 1, σk(j)〉. For each k ∈ ω, let us call
〈k, ik, σk(ik)〉 the active node at level k. Note that if 〈k, j, x〉 is a split node at level
k, then it is active. Note also that if 〈k, j, x〉 is the active node at level k and if
〈k+1, l, y〉 is an immediate successor of it, then y < x. Now, choose a branch of this
tree as follows. Choose a node at level 0 with infinitely many active nodes above
it, and choose the first active node that is greater than or equal to it. There are
infinitely many active nodes above this one, and hence infinitely many above one
of its immediate successors. Choose such an immediate successor, and choose the
first active node that is greater than or equal to this immediate successor. Continue
in this fashion. There will be infinitely many active nodes along the branch thus
chosen. Let {〈k, jk, xk〉 : k ∈ ω} be all the nodes on this branch. Now, it is clear
that the set {xk : k ∈ ω} does not have a minimal element, contradicting the
well-foundedness of L.

Returning to the main thread of the argument, fix n ∈ ω such that Xn is un-
countable. The hypothesis that there is no uncountable p.i.e. means that L<α is
countable for any α < ω1. So choose σα ∈ L<ω\{0} such that for any x ∈ Xn∩L<α,
there exists i < |σα| satisfying x ≤ σα(i), ensuring moreover that σα is R-minimal
with respect to this property. Now, suppose α ≤ β < ω1. We claim that for
each i < |σα|, there is a j < σβ such that σα(i) ≤ σβ(j). Suppose not and fix
i < |σα| so that for all j < |σβ |, σα(i) ∧ σβ(j) < σα(i). Define η ∈ L<ω \ {0} by
η(j) = σα(i)∧ σβ(j), for each j < |σβ |. Now, τ = (σα � i)

_
(η)

_
(σα � [i+ 1, |σα|)).

Clearly, τRσα and yet, ∀x ∈ Xn ∩L<α∃k < |τ | [x ≤ τ(k)], contradicting the choice
of σα.

Now pick an uncountable chain in L as follows. It follows from the above and
the ∆-system lemma that there is a sequence 〈Fα : α < ω1〉 such that

(1) Fα ∈ [L]
<ω \ {0}

(2) for each α, β ∈ ω1, if α < β, then max{ht(x) : x ∈ Fα} < min{ht(x) : x ∈
Fβ}

(3) for each α, β ∈ ω1, if α < β, then ∀x ∈ Fα∃y ∈ Fβ [x < y].
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Now, choose xα ∈ Fα such that ∀α < β < ω1 [xα < xβ ] as follows. Given xα ∈ Fα,
use (3) to choose xα+1 ∈ Fα+1 with xα < xα+1. If α is a limit and {xξ : ξ < α} is
given, then again by (3), there is xα ∈ Fα so that {ξ ∈ α : xξ < xα} is cofinal in α,
whence ∀ξ < α [xξ < xα]. a

Corollary 13. Assume PID + p > ω1. Then there is no Suslin lower semi-lattice.

Theorem 14. Assume PID. Suppose there is a Suslin lower semi-lattice. Then
there is R ⊂ P(ω) such that 〈R,(〉 is Suslin lower semi-lattice. Moreover, for any
x, y ∈ R, x ∧ y = x ∩ y.

Proof. Suppose 〈L,<〉 is Suslin. Without loss of generality, ht(L) = ω1. By
Theorem 12, there is a set A ∈ [L]

ω
such that sups(A) = {

∨
B : B ⊂ A ∧

B has an upper bound in L} has size ω1. Now, we find R as needed in P(A).
Let R = {predA(x) : x ∈ sups(A)} ∪ {∅}. First, note that for each x ∈ sups(A),
x =

∨
predA(x). Therefore, for any x, y ∈ sups(A), if predA(x) ⊂ predA(y), then

x ≤ y. On the other hand, it is clear that if x ≤ y, then predA(x) ⊂ predA(y). Next,
fix x, y ∈ sups(A) and note that z =

∨
(predA(x) ∩ predA(y)) exists and is a mem-

ber of sups(A). Note also that x∧y is an upper bound for predA(x)∩predA(y). So
z ≤ x∧y. It follows that predA(z) = predA(x)∩predA(y). So predA(x)∩predA(y) ∈
R and therefore R is as needed. a

There are two things worth noting about Theorem 14. First, there can be no
R ⊂ P(ω) such that 〈R,(〉 is a Suslin tree. The easiest way to see this is to suppose
that there is such an R and to force with 〈R,⊃〉. Since ω1 is preserved, this adds
a sequence 〈xα : α < ω1〉 such that ∀α < β < ω1 [xα ( xβ ], which is impossible.
So under PID, there must be Suslin lower semi-lattices that are very different from
Suslin trees, provided of course that there are any at all.

Next, it is not possible to prove Theorem 14 in ZFC. In other words, Suslin
lower semi-lattices may exist even if there are none inside P(ω). This is because
the OCA of Todorčević [9] implies that for any uncountable R ⊂ P(ω), 〈R,(〉
either contains an uncountable p.i.e. or an uncountable chain. Therefore, if 〈R,(〉
is well-founded, then 〈R,(〉 must contain an uncountable p.i.e. On the other hand,
it is well-known that OCA is consistent with the existence of a Suslin tree, a fortiori
with the existence of a Suslin lower semi-lattice.

4. A generic Suslin lower semi-lattice in P(ω)

In this section, we show that in contrast to Suslin trees, it is consistent to have
a Suslin lower semi-lattice inside P(ω). Therefore, Theorem 14 by itself does not
tell us whether PID rules out the existence of Suslin lower semi-lattices. In fact,
we can add by a c.c.c. forcing a Suslin lower semi-lattice in P(ω) with some strong
properties.

Definition 15. Let 〈P,≤〉 be a poset. For any n ∈ ω and σ, τ ∈ Pn, we write
σ ≤ τ to mean that ∀i < n [σ(i) ≤ τ(i)]. We say that 〈P,≤〉 is powerfully c.c.c. if
for each n ∈ ω, 〈Pn,≤〉 does not contain an uncountable p.i.e. In other words, for
each n ∈ ω and for any X ∈ [Pn]

ω1 , ∃σ, τ ∈ X [σ 6= τ ∧ σ ≤ τ ].

This usage of the term “powerfully c.c.c.” deviates somewhat from the standard
usage. When applied to a poset, powerfully c.c.c. usually means that none of its
finite powers has an uncountable family of pairwise incompatible elements – i.e. all
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of the finite powers of that poset have the countable chain condition when considered
as forcing notions. Since we are more concerned with uncountable p.i.e.s in this
paper, we feel that this non–standard usage is justified. Having said that, we will
be concerned with forcing notions having the countable chain condition both in
this section and in Section 6. So when we say that a forcing notion has the c.c.c.
we still mean as usual that it does not have any uncountable family of pairwise
incompatible elements. This should cause no confusion.

The next theorem shows that there is a c.c.c. forcing notion of size ℵ1 which not
only adds L ⊂ P(ω) such that 〈L,(〉 is a Suslin lower semi-lattice, but also ensures
that 〈L,⊂〉 is powerfully c.c.c. Again, this is in stark contrast with the situation
for Suslin trees. It is to be expected that the existence of such an object can be
proved from ♦. This is demonstrated in the next section, although the construction
is more intricate than the corresponding construction of a Suslin tree.

In Section 6 we will require a ground model where there exist such L ⊂ P(ω)
and the GCH holds. The results in this section and the next one show that such a
ground model exists.

Theorem 16. There is a c.c.c. poset of size ω1 which adds L ⊂ P(ω) such that

(1) 〈L,(〉 is a well-founded lower semi-lattice with ht(L) = ω1

(2) for any x, y ∈ L [x ∧ y = x ∩ y]
(3) for each n ∈ ω for any X ∈ [Ln]

ω1 , there exist σ, τ ∈ X such that σ 6= τ
and ∀i < n [σ(i) ⊂ τ(i)].

Moreover, if GCH holds in V, then GCH also holds in the extension.

Proof. Put D = {〈0, 0〉} ∪ {〈α, n〉 : 1 ≤ α < ω1 ∧ n ∈ ω}. P is defined as follows. p
is in P iff p = 〈Fp,∧p, np, σp〉 where

(4) Fp ∈ [D]
<ω

with 〈0, 0〉 ∈ Fp. 〈Fp, <p,∧p〉 is a lower semi-lattice, where for
any 〈α, n〉, 〈β,m〉 ∈ Fp,

[〈α, n〉 <p 〈β,m〉] ⇐⇒ [〈α, n〉 6= 〈β,m〉 and 〈α, n〉 = 〈α, n〉 ∧p 〈β,m〉] .

(5) for any 〈α, n〉, 〈β,m〉 ∈ Fp, if 〈α, n〉 <p 〈β,m〉, then α < β. In particular,
for any 〈β,m〉 ∈ Fp, 〈0, 0〉 ≤p 〈β,m〉.

(6) np ∈ ω and σp : Fp → 2np

(7) for any 〈α, n〉, 〈β,m〉, and 〈γ, l〉 in Fp, if 〈α, n〉 = 〈β,m〉 ∧p 〈γ, l〉, then
∀i < np [σp(〈α, n〉)(i) = 1 ⇐⇒ (σp(〈β,m〉)(i) = 1 and σp(〈γ, l〉)(i) = 1)].

For p, q ∈ P, define q ≤ p to mean

(8) Fq ⊃ Fp and ∧q � (Fp × Fp) = ∧p.
(9) nq ≥ np and for each 〈α, n〉 ∈ Fp, σq(〈α, n〉) � np = σp(〈α, n〉).

If G is a (V,P)-generic filter, then for each 〈α, n〉 ∈ D, put xα,n = {i ∈ ω :
∃p ∈ G [〈α, n〉 ∈ Fp ∧ i < np ∧ σp(〈α, n〉)(i) = 1]}. Put L = {xα,n : 〈α, n〉 ∈ D}.
Verifying that L satisfies (1) and (2) involves checking that several sets are dense.
It is routine and we leave this to the reader. Note that for any 〈α, n〉, 〈β,m〉 ∈ D,
if 〈α, n〉 6= 〈β,m〉, then xα,n 6= xβ,m. Mark also that L0 = {x0,0} and that for each
1 ≤ α < ω1, Lα = {xα,n : n ∈ ω}.

The proof that (3) is satisfied is very similar to the proof that P is c.c.c. So we

will just check that (3) holds. Let L̊ be a P name for L, and for each 〈α, n〉 ∈ D, let
x̊〈α,n〉 be a P name for xα,n, where L and xα,n are as defined above. Fix n ∈ ω and

X̊ ∈ VP such that 
 X̊ ⊂ L̊n. Suppose p ∈ P and p 
 X̊ is uncountable and ∀σ, τ ∈
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X̊ [if ∀i < n [σ(i) ⊂ τ(i)] , then σ = τ ]. Find {pα : α < ω1} ⊂ P and {sα : α < ω1}
such that for each α < ω1, pα ≤ p, sα ∈ Dn, sα /∈ {sξ : ξ < α}, and pα 
 ∃σ ∈
X̊∀i < n

[
σ(i) = x̊sα(i)

]
. To make the notation easier, use Fα, ∧α, nα, and σα

for Fpα , ∧pα , npα , and σpα respectively. Now, we may assume that there exist

F ∈ [D]
<ω

, and u ⊂ i such that

(10) {Fα : α < ω1} forms a ∆-system with root F (so 〈0, 0〉 ∈ F ).
(11) for all α < β < ω1, ∀〈γ, k〉 ∈ F∀〈ξ,m〉 ∈ Fα \F∀〈ζ, l〉 ∈ Fβ \F [γ < ξ < ζ].
(12) ∀α < ω1∀i < n [sα(i) ∈ Fα]. Moreover for each α < ω1 and i < n, sα(i) ∈

F ⇐⇒ i ∈ u
(13) for any α < β < ω1 there is a map πα,β : Fβ → Fα such that πα,β is

an isomorphism between 〈Fβ , <β ,∧β〉 and 〈Fα, <α,∧α〉. Moreover, for any
〈γ, k〉 ∈ F , πα,β(〈γ, k〉) = 〈γ, k〉, for any i < n, πα,β(sβ(i)) = sα(i), and for
any 〈γ, k〉 ∈ Fβ , σβ(〈γ, k〉) = σα(πα,β(〈γ, k〉)). Note that this implies that
nα = nβ .

Now, take α < β < ω1. Define a condition q as follows. Fq = Fα ∪ Fβ . nq = nα =
nβ . σq = σα ∪ σβ . To get ∧q, extend ∧α ∪ ∧β to all of Fq by stipulating that for
any 〈ξ, l〉 ∈ Fα \ F and any 〈ζ, j〉 ∈ Fβ \ F , 〈ξ, l〉 ∧q 〈ζ, j〉 = 〈ξ, l〉 ∧α πα,β(〈ζ, j〉).
It is not hard to verify that q is a condition and that q ≤ pα and q ≤ pβ . Now,
fix i < n. If i ∈ u, then sα(i) and sβ(i) are in F . Since πα,β fixes everything in
F , and since πα,β(sβ(i)) = sα(i), sβ(i) = sα(i), and so sα(i)≤qsβ(i). If i /∈ u, then
sα(i) ∈ Fα \ F and sβ(i) ∈ Fβ \ F . So sα(i) ∧q sβ(i) = sα(i) ∧α πα,β(sβ(i)) =
sα(i) ∧α sα(i) = sα(i). Therefore, in either case sα(i) ≤q sβ(i). Now, let G be

a (V,P)-generic filter with q ∈ G. In V[G], there exist σ, τ ∈ X̊[G] such that
∀i < n

[
σ(i) = xsα(i) ∧ τ(i) = xsβ(i)

]
. Therefore, for each i < n, σ(i) ⊂ τ(i). On

the other hand, there is i < n such that sα(i) 6= sβ(i). For that i, xsα(i) 6= xsβ(i).
So, σ 6= τ . But this contradicts our hypothesis about p. a

5. ♦ and a Suslin lower semi-lattice

In this section, we demonstrate a construction of a powerfully c.c.c. well-founded
lower semi-lattice from♦, which will be used in the next section. Let L<ω := FT<ℵ0 ,
where FT<ℵ0 is the set of finite trees on ω, and for each j ∈ ω \ {0},

L[ω·j,ω·(j+1)) :=

{
x ∪ {c � l; c ∈ F & l ∈ ω} ;x ∈ L<ω & F ∈ [ωω]

j

& every member of F is eventually constant

}
.

Then L<ω·ω is a countable well-founded lower semi-lattice closed under (finite)
intersections of height ω · ω. Let 〈ξα;α ∈ ω1〉 be the increasing enumeration of the
set [ω · ω, ω1) ∩ Lim (so ξ0 = ω · ω, ξ1 = ω · ω + ω, etc). Let FT be the set of finite
branching trees on ω. Let X be a set, which plays a role of some kind of guessing
sequence. In this section, X will work as a ♦-sequence in Proposition 22 to our
aim.

We will define forcing notions P(K) for countable subsets K of FT, which makes
next ω many levels of well-founded lower semi-lattice, and we will build a sequence
〈Mα, Gα;α ∈ ω1〉 such that for each α ∈ ω1,

• Mα is a countable elementary submodel of H (c+) with ω1,X ∈Mα,
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• Gα is an (Mα,P(L<ξα))-generic (so G0 is an (M0,P(L<ω·ω))-generic), and
let L[ξα,ξα+1) be the countable subset of FT which comes from Gα,
• 〈Mβ , Gβ ;β ∈ α〉 ∈Mα.

We will see below that Lω1
is a powerfully c.c.c. well-founded lower semi-lattice

closed under (finite) intersections if X is a ♦-sequence. More precise statement
of Conjecture 6 is that Lω1 is a powerfully c.c.c. well-founded lower semi-lattice
closed under (finite) intersections if X is an enumeration of the set of reals of length
ω1.

5.1. Definitions. For each t ∈ ω<ω, let

cone(t) :=
{
s ∈ ω<ω; t ⊆ s

}
,

and define

T :=
{
〈x,w, h〉 ∈ FT×

[
ω<ω

]<ℵ0 × ω;w ⊆ ω≤h
}
,

S :=

{
〈x,w, h〉 ∈ T ;

(
x \

⋃
t∈w

cone(t)

)
∩ ωh 6= ∅

}
,

and

S+ :=

{
〈x,w, h〉 ∈ T ;∃c ∈ ωω such that ∀l ∈ ω, c � l ∈ x \

⋃
t∈w

cone(t)

}
.

For 〈x,w, h〉 and 〈x′, w′, h′〉 in T , define the order on T as follows:

〈x,w, h〉� 〈x′, w′, h′〉 if

x ⊆ x′ & w ⊆ w′ & h ≤ h′ & x ∩ ω≤h = x′ ∩ ω≤h

& ∀s ∈ x′ \ x, s 6∈
⋃
t∈w

cone(t).

For 〈x,w, h〉 ∈ T , define

x�w,h :=
(
x ∩ ω≤h

)
∪
⋃
t∈w

(x ∩ cone(t)) .

We note that for 〈x,w, h〉 and 〈x′, w′, h′〉 in T , if 〈x,w, h〉� 〈x′, w′, h′〉, then

x�w,h = x′�w,h.

We extend the order � to the one on the product of n many copies of L<α for each
n ∈ ω. For each n ∈ ω, we let

Sn :=
{
〈x,w, h〉 ∈ FTn ×

[
ω<ω

]<ℵ0 × ω; 〈x(k), w, h〉 ∈ S for every k ∈ n
}
,

and for each 〈x,w, h〉 and 〈x′, w′, h′〉 in Sn, we define

〈x,w, h〉�n 〈x′, w′, h′〉 if 〈x(k), w, h〉� 〈x′(k), w′, h′〉 holds for every k ∈ n.

We fix an enumeration 〈〈wi, hi〉 ; i ∈ ω〉 of the set [ω<ω]
<ℵ0 × ω. In the con-

struction of the semi-lattice, for each n ∈ ω and α ∈ ω1, we fix an enumeration
〈xα,j ; j ∈ ω〉 of the set (L≤α

n) \ (L<α
n), and we add one more property for an

elementary submodel Mα such that

• 〈〈wi, hi〉 ; i ∈ ω〉 and 〈xγ,j ; γ ∈ α & j ∈ ω〉 are members of Mα.
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For n ∈ ω, α ∈ ω1 + 1 and a subset A of L<α
n, we assign a subset ρα(A) of

L<α
n as follows:

ρ0,0,0
α (A) := A.

By recursion on γ ∈ α, i ∈ ω, and j ∈ ω, we define

ργ,i,j+1
α (A) :=



ργ,i,jα (A) ∪ {xγ,j} if 〈xγ,j , wi, hi〉 ∈ S holds and for every
a ∈ ργ,i,jα (A), “ 〈a,wi, hi〉 6∈ Sn holds ”
or “ 〈a,wi, hi〉 and 〈xγ,j , wi, hi〉 are
incomparable with respect to �n ”

ργ,i,jα (A) otherwise,

ργ,i+1,0
α (A) :=

⋃
j∈ω

ργ,i,jα (A),

and

ργ,0,0α (A) :=
⋃

β<γ, i,j∈ω

ρβ,i,jα (A),

and define

ρα(A) :=
⋃

γ∈α, i,j∈ω
ργ,i,jα (A).

We note that for each n ∈ ω,

• if A is a p.i.e. in L<α
n (i.e. for any distinct a and b in A, there is k ∈ n

such that a(k) and b(k) are incomparable with respect to ⊆), then for every

〈w, h〉 ∈ [ω<ω]
<ℵ0 × ω and a, b ∈ ρα, whenever both 〈a,w, h〉 and

〈
b, w, h

〉
are in Sn, they are incomparable with respect to �n,

• if A is a subset of L<α
n, then for every b ∈ L<αn and 〈w, h〉 ∈ [ω<ω]

<ℵ0×ω
with

〈
b, w, h

〉
∈ Sn, there exists a ∈ ρα(A) such that 〈a,w, h〉 and

〈
b, w, h

〉
are comparable with respect to �n,
• if A is a subset of L<ω1

, and M is a countable elementary submodel of
H (c+) so that A, 〈〈wi, hi〉 ; i ∈ ω〉, 〈Lα;α ∈ ω1〉 and 〈xα,j ;α ∈ ω1 & j ∈ ω〉
are members of M , then

ρω1∩M (A ∩M) = ρω1∩M (A) ∩M.

For each n ∈ ω and α ∈ ω1 + 1, we define that a subset A of L<α
n is called

�n-mc in L<α
n if there exists a maximal p.i.e. A′ in L<α

n such that A = ρα(A′).
We note that for each n ∈ ω, if a well-founded semi-lattice has no uncountable
subsets of L<ω1

n which are �n-mc in L<ω1

n, then it has no uncountable p.i.e. in
L<ω1

n.

When we build L<α for some countable limit ordinal α, we build members xG〈i,j〉
of FT for all i, j ∈ ω as the rank α + j-th member of the set L<α+ω, by the
forcing notion P(L<α). To work our desired density arguments, we build L<α
which satisfies the following property A(L<α):

For every 〈x,w, h〉 ∈
(
L<α × [ω<ω]

<ℵ0 × ω
)
∩ S+, s ∈ ω>h with

s�h ∈ x \
⋃
t∈w cone(t), y ∈ L<α with y�w,h ⊆ x�w,h, and γ ∈ α,
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there exists z ∈ L<α such that

〈x,w, h〉� 〈z, w, h〉 & y ⊆ z & ht(z) ≥ γ

& z ∩ ω≤|s| =
(

(x ∪ y) ∩ ω≤|s|
)
∪ {s}

& ∃c ∈ ωω such that s ⊆ c and ∀l ∈ ω, c�l ∈ z.

We recall that L<ω := FT ∩ [ω<ω]
<ℵ0 , and for each j ∈ ω \ {0},

L[ω·j,ω·(j+1)) :=

{
x ∪ {c�l; c ∈ F & l ∈ ω} ;x ∈ L<ω & F ∈ [ωω]

j

& every member of F is eventually constant

}
.

Then L<ω·ω is a countable well-founded lower semi-lattice closed under (finite)
intersections of height ω · ω, which satisfies A(L<ω·ω).

In the next paragraph, we will define the forcing notion P(L<α) which consists
of the tuples 〈〈xpσ;σ ∈ mp × np〉 , wp, hp, fp〉. Each xpσ is a non-decreasing sequence
of members of L<α, which is a approximation of xGσ . fp is a finite function which
assigns the role of z for each pair x and y of members of L<α+ω in the property
A(L<α+ω). The requirement 5 in the definition of P(L<α) works for P(L<α+ω) to
be closed under finite intersection (Proposition 20).

The forcing notion P(L<α) consists of the tuples 〈〈xpσ;σ ∈ mp × np〉 , wp, hp, fp〉
such that

1: there exists lp ∈ ω such that for every σ ∈ mp × np, xpσ is a sequence
of members of L<α of length lp such that for every k < lp − 1, xpσ(k) ⊆
xpσ(k + 1),

2: for every σ ∈ mp × np, 〈xpσ(lp − 1), wp, hp〉 ∈ S+,
3: for every 〈i, j〉 ∈ mp × (np − 1) and k ∈ lp, xp〈i,j〉(k) ⊆ xp〈i,j+1〉(k),

4: fp is a finite partial function from the set(
(L<α × (mp × np)) ∪ ((mp × np)× L<α) ∪ (mp × np)2

)
×
[
ω<ω

]<ℵ0×ω×ω<ω×ω
into mp × np such that
• for every 〈〈y, σ〉 , w, h, s, j〉 in the set

dom(fp) ∩
(

(L<α × (mp × np))×
[
ω<ω

]<ℵ0 × ω × ω<ω × ω
)
,

– w ⊆ wp ∩ ω≤h, h ≤ hp, and 〈xpσ(lp − 1), w, h〉 ∈ S+,
– s ∈ ω>h with

s�h ∈ xpσ(lp − 1) \
⋃
t∈w

cone(t)

and |s| ≤ hp,
– y�w,h ⊆ xpσ(lp − 1)�w,h,
– (2nd cor. of fp(〈y, σ〉 , w, h, s, j))
≥ max {j, (2nd cor. of σ) + 1},

– for every k ∈ lp,

〈xpσ(k), w, h〉�
〈
xpfp(〈y,σ〉,w,h,s,j)(k), w, h

〉
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and

y ⊆ xpfp(〈y,σ〉,w,h,s,j)(k),

–

xpfp(〈y,σ〉,w,h,s,j)(l
p − 1) ∩ ω≤|s| =

(
(xpσ(lp − 1) ∪ y) ∩ ω≤|s|

)
∪ {s}

and

∃c ∈ ωω such that s ⊆ c and ∀l ∈ ω, c�l ∈ xpfp(〈y,σ〉,w,h,s,j)(l
p − 1),

• for every 〈〈σ, y〉 , w, h, s, j〉 in the set

dom(fp) ∩
(

((mp × np)× L<α)×
[
ω<ω

]<ℵ0 × ω × ω<ω × ω
)
,

– w ⊆ wp ∩ ω≤h, h ≤ hp and 〈y, w, h〉 ∈ S+,
– s ∈ ω>h with

s�h ∈ y \
⋃
t∈w

cone(t)

and |s| ≤ hp,
– xpσ(lp − 1)�w,h ⊆ y�w,h,
– (2nd cor. of fp(〈σ, y〉 , w, h, s, j))
≥ max {j, (2nd cor. of σ) + 1},

– for every k ∈ lp,

〈y, w, h〉�
〈
xpfp(〈σ,y〉,w,h,s,j)(k), w, h

〉
and

xpσ(k) ⊆ xpfp(〈σ,y〉,w,h,s,j)(k),

–

xpfp(〈σ,y〉,w,h,s,j)(l
p − 1) ∩ ω≤|s| =

(
(y ∪ xpσ(lp − 1)) ∩ ω≤|s|

)
∪ {s}

and

∃c ∈ ωω such that s ⊆ c and ∀l ∈ ω, c�l ∈ xpfp(〈σ,y〉,w,h,s,j)(l
p − 1),

• for every 〈〈σ, τ〉 , w, h, s, j〉 in the set

dom(fp) ∩
((

(mp × np)2
)
×
[
ω<ω

]<ℵ0 × ω × ω<ω × ω
)
,

– w ⊆ wp ∩ ω≤h, h ≤ hp, and 〈xpσ(lp − 1), w, h〉 ∈ S+,
– s ∈ ω>h with

s�h ∈ xpσ(lp − 1) \
⋃
t∈w

cone(t)

and |s| ≤ hp,
– xpτ (lp − 1)�w,h ⊆ xpσ(lp − 1)�w,h,
–

(2nd cor. of fp(〈σ, τ〉 , w, h, s, j))
≥ max {j, (2nd cor. of σ) + 1, (2nd cor. of τ) + 1} ,
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– for every k ∈ lp,

〈xpσ(k), w, h〉�
〈
xpfp(〈σ,τ〉,w,h,s,j)(k), w, h

〉
and

xpτ (k) ⊆ xpfp(〈σ,τ〉,w,h,s,j)(k),

–

xpfp(〈σ,τ〉,w,h,s,j)(l
p − 1) ∩ ω≤|s| =

(
(xpσ(lp − 1) ∪ xpτ (lp − 1)) ∩ ω≤|s|

)
∪ {s}

and

∃c ∈ ωω such that s ⊆ c and ∀l ∈ ω, c�l ∈ xpfp(〈σ,τ〉,w,h,s,j)(l
p − 1),

• for any 〈〈σ, y〉 , w, h, s, j〉, 〈〈y, σ〉 , w, h, s, j〉 and 〈〈σ, τ〉 , w, h, s, j〉 in
dom(fp),

(1st cor. of fp(〈σ, y〉 , w, h, s, j)) 6= (1st cor. of σ) ,

(1st cor. of fp(〈y, σ〉 , w, h, s, j)) 6= (1st cor. of σ) ,

(1st cor. of fp(〈σ, τ〉 , w, h, s, j)) 6= (1st cor. of σ) ,

(1st cor. of fp(〈σ, τ〉 , w, h, s, j)) 6= (1st cor. of τ) ,

• for any distinct 〈Σ, w, h, s, j〉 and 〈Σ′, w′, h′, s′, j′〉 in dom(fp),

(1st cor. of fp(Σ, w, h, s, j)) 6= (1st cor. of fp(Σ′, w′, h′, s′, j′)) ,

5: for every 〈i, j〉 and 〈i′, j′〉 in mp × np with i 6= i′,〈
xp〈i,j〉(l

p − 1) ∩ xp〈i′,j′〉(l
p − 1), wp, hp

〉
6∈ S,

unless there are y ∈ L<α, τ ∈ mp × np, j0 ≥ j, j′0 ≥ j′, j1 ≤ j, j′1 ≤ j′,

w ∈ [ω<ω]
<ℵ0 , h, k and j′ in ω and s ∈ ω<ω such that

• 〈〈y, 〈i, j0〉〉 , w, h, s, k〉 ∈ dom(fp) and

fp(〈y, 〈i, j0〉〉 , w, h, s, k) = 〈i′, j′1〉 ,
or
• 〈〈〈i, j0〉 , y〉 , w, h, s, k〉 ∈ dom(fp) and

fp(〈〈i, j0〉 , y〉 , w, h, s, k) = 〈i′, j′1〉 ,
or
• 〈〈τ, 〈i, j0〉〉 , w, h, s, k〉 ∈ dom(fp) and

fp(〈τ, 〈i, j0〉〉 , w, h, s, k) = 〈i′, j′1〉 ,
or

• 〈〈〈i, j0〉 , τ〉 , w, h, s, k〉 ∈ dom(fp) and

fp(〈〈i, j0〉 , τ〉 , w, h, s, k) = 〈i′, j′1〉 ,
or

• 〈〈y, 〈i′, j′0〉〉 , w, h, s, k〉 ∈ dom(fp) and

fp(〈y, 〈i′, j′0〉〉 , w, h, s, k) = 〈i, j1〉 ,
or

• 〈〈〈i′, j′0〉 , y〉 , w, h, s, k〉 ∈ dom(fp) and

fp(〈〈i′, j′0〉 , y〉 , w, h, s, k) = 〈i, j1〉 ,
or
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• 〈〈τ, 〈i′, j0〉〉 , w, h, s, k〉 ∈ dom(fp) and

fp(〈τ, 〈i′, j′0〉〉 , w, h, s, k) = 〈i, j1〉 ,
or

• 〈〈〈i′, j′0〉 , τ〉 , w, h, s, k〉 ∈ dom(fp) and

fp(〈〈i′, j′0〉 , τ〉 , w, h, s, k) = 〈i, j1〉 .
For conditions p and q in P(L<α), define that q ≤P(L<α) p if

• mq ≥ mp, nq ≥ np, wq ⊇ wp, hq ≥ hp, fq ⊇ fp,
• for every σ ∈ mp × np, xqσ is an end-extension of xpσ,
• for every σ ∈ mp × np and k ∈ lq \ lp,

〈xpσ(lp − 1), wp, hp〉� 〈xqσ(k), wq, hq〉 ,
• for every σ ∈ ran(fq) \ ran(fp), (1st cor. of σ) ∈ mq \mp.

For a P(L<α)-generic G and σ ∈ ω × ω, we define

xGσ :=
⋃
{xpσ(l); p ∈ G, σ ∈ mp × np, and l < lp} .

We note here that for any p ∈ P(L<α) and i, i′ ∈ ω, if both i and i′ are in mp, then
p decides whether xG〈i,j〉 is comparable with xG〈i′,j′〉 for every j, j′ ∈ ω. In fact, for

each 〈i, j〉 and 〈i′, j′〉 in mp × np,
• if i = i′, then xG〈i,j〉 ⊆ xG〈i,j′〉 iff j ≤ j′,
• if i 6= i′ and one of the unless-cases in the requirement 5 happens, then
xG〈i,j〉 and xG〈i,j′〉 are comparable, and

• if i 6= i′ and any of the unless-cases in the requirement 5 doesn’t happen,
then xG〈i,j〉 and xG〈i,j′〉 are incomparable and moreover,

xG〈i,j〉 ∩ xG〈i,j′〉 = xp〈i,j〉(l
p − 1) ∩ xp〈i′,j′〉(l

p − 1).

5.2. Density arguments.

Lemma 17. If p ∈ P(L<α), w ∈ [ω<ω]
<ℵ0 and h ∈ ω with w ⊆ ω≤h such that

for every σ ∈ mp × np, 〈xpσ(lp − 1), w, h〉 ∈ S, 〈zσ;σ ∈ mp × np〉 is a sequence of
members of L<α such that for every σ ∈ mp × np,

〈xpσ(lp − 1), wp, hp〉� 〈zσ, wp, hp〉 and 〈zσ, wp, hp〉 ∈ S+,

and y ∈ L<α with 〈y, wp, hp〉 ∈ S+ and 〈y, w, h〉 ∈ S, then there exists q ∈ P(L<α)
such that q ≤P(L<α) p, mq ≥ mp+1, lq = lp+1, wq ⊇ w, and for every σ ∈ mp×np,

〈zσ(lp), wp, hp〉� 〈xqσ(lp), wp, hp〉 ,

and 〈y, wp, hp〉�
〈
xq〈mp,np−1〉(l

p), wp, hp
〉

.

Proof. Suppose that p ∈ P(L<α), w ∈ [ω<ω]
<ℵ0 , 〈zσ;σ ∈ mp × np〉 is a sequence of

members of L<α such that for every σ ∈ mp × np,
〈xpσ(lp − 1), wp, hp〉� 〈zσ, wp, hp〉 and 〈zσ, wp, hp〉 ∈ S+,

and y ∈ L<α with 〈y, wp, hp〉 ∈ S+. We will make an extension q of p as desired.

We let lq := lp + 1, mq := mp + 1, nq := np. and take hq ∈ ω which is larger
than both hp and h such that w ⊆ ω≤h

q

. To simplify notation, for every j ∈ np,
we define a non-decreasing sequence xp〈mp,j〉 of members of L<α of length lp such
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that for each k ∈ lp, xp〈mp,j〉(k) := y, and let z〈mp,j〉 := y. We notice that the tuple

〈〈xpσ;σ ∈ (mp + 1)× np〉 , wp, hp, fp〉 may not be a condition in P(L<α), because it
may not satisfy the requirement 5.

We take a sequence 〈sσ;σ ∈ (mp + 1)× np〉 of members of ωh
q

such that

• for each σ ∈ (mp + 1)× np,

sσ�h
p ∈ zσ \

⋃
t∈wp

cone(t),

• if σ and τ are different elements of (mp + 1)× np, then sσ 6= sτ ,
• for each σ ∈ (mp + 1)× np,

sσ 6∈

 ⋃
τ∈(mp+1)×np

zτ

 ∪ ⋃
t∈w

cone(t).

By induction on j ∈ np, we choose xq〈i,j〉(l
p) ∈ L<α such that

• for every i ∈ (mp + 1),

xq〈i,j−1〉(l
p) ⊆ xq〈i,j〉(l

p) and
〈
z〈i,j〉, w

p, hp
〉
�

〈
xq〈i,j〉(l

p), wp, hp
〉
,〈

xq〈i,j〉(l
p), wp, hp

〉
∈ S+,

• if there exists 〈〈σ′, y′〉 , w′, h′, s′, j′〉 ∈ dom(fp) such that

fp(〈σ′, y′〉 , w′, h′, s′, j′) = 〈i, j〉 ,
then

y′ ⊆ xq〈i,j〉(l
p), 〈xqσ′(l

p), w′, h′〉�
〈
xq〈i,j〉(l

p), w′, h′
〉
,

and

xq〈i,j〉(l
p) ∩ ω≤h

q

=
((
y′ ∪ xqσ′(l

p) ∪ z〈i,j〉
)
∩ ω≤h

q
)
∪ {s〈i,j〉}

• if there exists 〈〈y′, σ′〉 , w′, h′, s′, j′〉 ∈ dom(fp) such that

fp(〈y′, σ′〉 , w′, h′, s′, j′) = 〈i, j〉 ,
then

xqσ′(l
p) ⊆ xq〈i,j〉(l

p), 〈y′, w′, h′〉�
〈
xq〈i,j〉(l

p), w′, h′
〉
,

and

xq〈i,j〉(l
p) ∩ ω≤h

q

=
((
xqσ′(l

p) ∪ y′ ∪ z〈i,j〉
)
∩ ω≤h

q
)
∪ {s〈i,j〉}

• if there exists 〈〈σ′, τ ′〉 , w′, h′, s′, j′〉 ∈ dom(fp) such that

fp(〈σ′, τ ′〉 , w′, h′, s′, j′) = 〈i, j〉 ,
then

xqσ′(l
p) ⊆ xq〈i,j〉(l

p), 〈xqτ (lp), w′, h′〉�
〈
xq〈i,j〉(l

p), w′, h′
〉
,

and

xq〈i,j〉(l
p) ∩ ω≤h

q

=
((
xqσ′(l

p) ∪ xqτ ′(l
p) ∪ z〈i,j〉

)
∩ ω≤h

q
)
∪ {s〈i,j〉},

• otherwise,

xq〈i,j〉(l
p) ∩ ω≤h

q

=
(
z〈i,j〉 ∩ ω≤h

q
)
∪ {s〈i,j〉}.
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This can be done by the property A(L<α). We demonstrate the case that there
exists 〈〈σ′, τ ′〉 , w′, h′, s′, j′〉 ∈ dom(fp) such that fp(〈σ′, τ ′〉 , w′, h′, s′, j′) = 〈i, j〉.
By the inductive construction, xqσ′(lp) and xqτ ′(lp) have already been defined in this
situation. It is true that xpσ′(lp − 1) ⊆ xp〈i,j〉(l

p − 1) and xpτ ′(lp − 1) ⊆ xp〈i,j〉(l
p − 1).

Moreover, since

〈xpσ′(l
p − 1), wp, hp〉� 〈zσ′ , wp, hp〉� 〈xqσ′(l

p), wp, hp〉

and

〈xpτ ′(l
p − 1), wp, hp〉� 〈zτ ′ , wp, hp〉� 〈xqτ ′(l

p), wp, hp〉 ,

it is also true that

xqσ′(l
p)�wp,hp = xpσ′(l

p − 1)�wp,hp ⊆ x
p
〈i,j〉(l

p − 1)�wp,hp = z〈i,j〉�wp,hp

and

xqτ ′(l
p)�wp,hp = xpτ ′(l

p − 1)�wp,hp ⊆ x
p
〈i,j〉(l

p − 1)�wp,hp = z〈i,j〉�wp,hp .

Since xp〈i,j−1〉(l
p − 1) ⊆ xp〈i,j〉(l

p − 1) ⊆ z〈i,j〉 and〈
xp〈i,j−1〉(l

p − 1), wp, hp
〉
�
〈
z〈i,j−1〉, w

p, hp
〉
�

〈
xq〈i,j−1〉(l

p), wp, hp
〉
,

we note that

xq〈i,j−1〉(l
p)�wp,hp = xp〈i,j−1〉(l

p − 1)�wp,hp ⊆ z〈i,j〉�wp,hp .

So by applying the property A(L<α) four times with
〈
wp, hp, s〈i,j〉

〉
repeatedly, we

can take xq〈i,j〉(l
p) ∈ L<α such that

〈xqσ′(l
p), wp, hp〉�

〈
xq〈i,j〉(l

p), wp, hp
〉

, 〈xqτ ′(l
p), wp, hp〉�

〈
xq〈i,j〉(l

p), wp, hp
〉

,〈
xq〈i,j−1〉(l

p), wp, hp
〉
�

〈
xq〈i,j〉(l

p), wp, hp
〉

,
〈
z〈i,j〉, w

p, hp
〉
�

〈
xq〈i,j〉(l

p), wp, hp
〉
,

and

xq〈i,j〉(l
p) ∩ ω≤h

q

=
((
xqσ′(l

p) ∪ xqτ ′(l
p) ∪ z〈i,j〉

)
∩ ω≤h

q
)
∪ {s〈i,j〉}.

Then we note that for each 〈i, j〉 ∈ mp × np,
• if there is 〈〈〈i′, j′〉 , y′〉 , w′, h′, s′, k′〉, 〈〈y′, 〈i′, j′〉〉 , w′, h′, s′, k′〉 or
〈〈〈i′, j′〉 , 〈i′′, j′′〉〉 , w′, h′, s′, k′〉 in dom(fp) such that

fp(〈〈i′, j′〉 , y′〉 , w′, h′, s′, k′) = 〈i, j1〉 or fp(〈y′, 〈i′, j′〉〉 , w′, h′, s′, k′) = 〈i, j1〉

holds for some j1 ≤ j, then

xq〈i,j〉(l
p) ∩ ω≤h

q

=

⋃
≤j

z〈i,〉 ∪
⋃
≤j′

z〈i′,〉

 ∩ ω≤hq
 ∪ {s〈i,〉;  ≤ j} ∪ {s〈i′,〉;  ≤ j′} ,
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• if there is 〈〈〈i′, j′〉 , 〈i′′, j′′〉〉 , w′, h′, s′, k′〉 in dom(fp) such that
fp(〈〈i′, j′〉 , 〈i′′, j′′〉〉 , w′, h′, s′, k′) = 〈i, j1〉 holds for some j1 ≤ j, then

xq〈i,j〉(l
p) ∩ ω≤h

q

=

⋃
≤j

z〈i,〉 ∪
⋃
≤j′

z〈i′,〉 ∪
⋃
≤j′′

z〈i′′,〉

 ∩ ω≤hq


∪
{
s〈i,〉;  ≤ j

}
∪
{
s〈i′,〉;  ≤ j′

}
∪
{
s〈i′′,〉;  ≤ j′′

}
,

• otherwise,

xq〈i,j〉(l
p) ∩ ω≤h

q

=

⋃
≤j

z〈i,〉

 ∩ ω≤hq
 ∪ {s〈i,〉;  ≤ j} .

We let

〈xqσ�lp;σ ∈ mq × nq〉 = 〈xpσ;σ ∈ (mp + 1)× np〉 ,

wq := wp ∪
⋃

σ∈(mp+1)×np

(
zσ ∩ ωh

q
)
,

and fq = fp. Then by the above observation, q is a condition of P(L<α). So q is a
desired extension of p. a

Proposition 18. (Dense sets which guarantee that each xG〈i,j〉 is defined)

(1) For each n ∈ ω, the set {p ∈ P(L<α);np ≥ n} is dense in P(L<α).
(2) For each l ∈ ω, the set {p ∈ P(L<α); lp ≥ l} is dense in P(L<α).
(3) For each h ∈ ω, the set {p ∈ P(L<α);hp ≥ h} is dense in P(L<α).
(4) For each m ∈ ω, the set {p ∈ P(L<α);mp ≥ m} is dense in P(L<α).

Proof. (1) For a given p ∈ P(L<α), if np < n, then for each i ∈ mp and j ∈ [np, n),
we define x〈i,j〉 := xp〈i,np−1〉. Then the tuple

〈{〈σ, xpσ〉 ;σ ∈ mp × np} ∪ {〈τ, xτ 〉 ; τ ∈ mp × [np, n)} , wp, hp, fp〉
is an extension of p.

(2) For a given p ∈ P(L<α), if lp < l, then for each σ ∈ mp × np and k ∈ l, we
define

xσ(k) :=

{
xpσ(k) if k < lp

xpσ(lp − 1) if k ≥ lp .

Then the tuple

〈〈xσ;σ ∈ mp × np〉wp, hp, fp〉
is an extension of p.

(3) For a given p ∈ P(L<α), if hp < h, then the tuple

〈〈xpσ;σ ∈ mp × np〉wp, h, fp〉
is an extension of p.

(4) This is a corollary of Lemma 17. a
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Proposition 19. (Dense sets which guarantee that each xG〈i,j〉 has rank α + j in

L<α+ω)

(1) For each γ < α and σ ∈ ω × ω, the set{
p ∈ P(L<α);σ ∈ mp × np and ht(xpσ(lp − 1)) ≥ γ

}
is dense in P(L<α).

(2) For each i and j in ω, the set{
p ∈ P(L<α); 〈i, j〉 ∈ mp × np and

(
xp〈i,j+1〉(l

p − 1) \ xp〈i,j〉(l
p − 1)

)
∩ ω≤h

p

6= ∅
}

is dense in P(L<α).

Proof. These are corollaries of Lemma 17, because we have the property A(L<α).
a

Proposition 20. (Dense sets which guarantee that L<α+ω is closed under inter-
sections)

(1) For each z ∈ L<α and σ ∈ ω × ω, the set{
p ∈ P(L<α);σ ∈ mp × np and 〈xpσ(lp − 1) ∩ z, wp, hp〉 6∈ S

}
is dense in P(L<α).

(2) For each σ and τ in ω × ω, the set

{
p ∈ P(L<α);σ ∈ mp × np, τ ∈ mp × np, and

either “ p decides that xGσ and xGτ are comparable ”

or “ p decides that xGσ and xGτ are not comparable and

(xpσ(lp − 1) \ xpτ (lp − 1)) ∩ ω≤h
p

6= ∅ ”

}
is dense in P(L<α).

Proof. Let p ∈ P(L<α). By extending p if necessary, we may assume that σ ∈
mp × np. By applying Lemma 17 to p and the set (xpσ(lp − 1) ∩ z)∩ ωhp , we find a
desired extension. a

Proposition 21. (Dense sets which guarantee that L<α+ω still has the property
A)



SUSLIN LATTICES 19

(1) For each y ∈ L<α, σ ∈ ω×ω, h ∈ ω, w ∈ [ω<ω]
<ℵ0 with w ⊆ ω≤h, s ∈ ω<ω

with |s| > h, and j ∈ ω j ≥ (2nd cor. of σ) + 1, the set{
p ∈ P(L<α);σ ∈ mp × np, wp ⊇ w, hp ≥ h, and

“ 〈xpσ(lp − 1), w, h〉 6∈ S+

or s�h 6∈ xpσ(lp − 1) \
⋃
t∈w cone(t)

or y�w,h 6⊆ xpσ(lp − 1)�w,h

or 〈〈y, σ〉 , w, h, s, j〉 ∈ dom(fp) ”

}
is dense in P(L<α).

(2) For each σ ∈ ω × ω, 〈y, w, h〉 ∈
(
L<α × [ω<ω]

<ℵ0 ω
)
∩ S+, s ∈ ω<ω with

|s| > h and s�h 6∈ y \
⋃
t∈w cone(t), and j ∈ ω j ≥ (2nd cor. of σ) + 1, the

set{
p ∈ P(L<α);σ ∈ mp × np, wp ⊇ w, hp ≥ h, and

“ xpσ(lp − 1)�w,h 6⊆ y�w,h

or 〈〈σ, y〉 , w, h, s, j〉 ∈ dom(fp) ”

}
is dense in P(L<α).

(3) For each σ, τ ∈ ω × ω, h ∈ ω, w ∈ [ω<ω]
<ℵ0 with w ⊆ ω≤h, s ∈ ω<ω with

|s| > h, and j ∈ ω j ≥ (2nd cor. of σ) + 1, the set{
p ∈ P(L<α);σ, τ ∈ mp × np, wp ⊇ w, hp ≥ h, and

“ 〈xpτ (lp − 1), w, h〉 6∈ S+

or s�h 6∈ xpτ (lp − 1) \
⋃
t∈w cone(t)

or xpσ(lp − 1)�w,h 6⊆ xpτ (lp − 1)�w,h

or 〈〈σ, τ〉 , w, h, s, j〉 ∈ dom(fp) ”

}
is dense in P(L<α).

Proof. These proof are almost same to the proof of Lemma 17. The only difference
is that if possible, we put on a tuple in the domain of a function fp. a

Proposition 22. (Dense sets for powerfully c.c.c.) Assume that ♦ holds, and let
X be a ♦-sequence. If n ∈ ω and A is �-mc in L<α

n, then for each σ ∈ (ω × ω)n,
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w ∈ [ω<ω]
<ℵ0 and h ∈ ω, the set{

p ∈ P(L<α); ran(σ) ⊆ mp × np, wp ⊇ w, hp ≥ h, and

“ either 〈xpσ(lp − 1)(k), w, h〉 6∈ S for some k ∈ n

or ∃a ∈ A such that 〈a,w, h〉 ∈ Snand

for any k ∈ n, 〈a(k), w, h〉�
〈
xpσ(k)(l

p − 1), w, h
〉

”

}
is dense in P(L<α).

Proof. This is a corollary of Lemma 17 and the property A(L<α). Even if σ(k) =
σ(k′) holds for some different k and k′ in n, we can build an extension because
of the property A(L<α). (This point is quite different from the construction of a
Suslin tree from ♦.) a

Proof that L<ω1
is a powerfully c.c.c. well-founded lower semi-lattice. Suppose

that n ∈ ω and A is an uncountable �n-mc in L<ω1

n. Then there exists α ∈ ω1

such that

• A ∩ L<αn is �n-mc in L<α
n, and

• ρα(A ∩ L<αn) = ρω1(A) ∩ L<αn,
• ρα(A ∩ L<αn) is coded by the α-th coordinate of the ♦-sequence X .

Then ρα(A∩L<αn) ∈Mβ for every β ∈ [α, ω1) (because both X and α are members
of Mβ for every β ∈ [α, ω1)). So by the density arguments (Proposition 22), A ∩
L<α

n is �n-mc in L<ω1

n, and A∩L<αn = ρω1
(A∩L<αn) = ρα(A∩L<αn), which

is countable. This is a contradiction. 2

6. A model where there is a Suslin lower semi-lattice and all
Aronszajn trees are special

In this section, we give a negative answer to Question 4. The strategy is to start
with L as constructed in either Section 4 or 5 and to specialize all Aronszajn trees
while preserving L. The idea is that L is so different from a Suslin tree that this can
be done. We do a finite support (FS) iteration of c.c.c. forcings, and at each stage
we consider an Aronszajn tree T and attempt to specialize T by a c.c.c. forcing. If
this specializing forcing kills L, then we show that there is a c.c.c. forcing which
adds a cofinal branch to T while preserving L, so that T is no longer an Aronszajn
tree. It is here that the fact that L is powerfully c.c.c. is used.

The following two lemmas are folklore. We include the proof for the reader.

Lemma 23. Suppose 〈P,≤〉 is a powerfully c.c.c. poset. Fix n ∈ ω. Let Q ⊂ Pn.
Then 
QP is powerfully c.c.c..

Proof. Fix m ∈ ω. Let X̊ be a Q name such that 
X̊ ⊂ Pm. Suppose q ∈ Q and
q 
 X̊ is an uncountable p.i.e.. Find {rα : α < ω1} ⊂ Q and {σα : α < ω1} ⊂ Pm
such that for each α < ω1, rα ≤ q, σα /∈ {σξ : ξ < α}, and rα
σα ∈ X̊. For each
α < ω1, put τα = σα

_rα ∈ Pm+n. As P is powerfully c.c.c. there exist ξ, α ∈ ω1

such that ξ 6= α and τα ≤ τξ. But then rα ≤ rξ and so rα 
 σα ∈ X̊ ∧ σξ ∈ X̊. On
the other hand, σα ≤ σξ, and since α 6= ξ, σα 6= σξ, contradicting the hypothesis

that q 
 X̊ is a p.i.e.. a
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Lemma 24. Suppose 〈L,C〉 is powerfully c.c.c. Suppose 〈Pα, Q̊α : α ≤ δ〉 is a FS
iteration of c.c.c. forcing notions such that for each α < δ


α 
Q̊α 〈L,C〉 is powerfully c.c.c.

Then 
δ 〈L,C〉 is powerfully c.c.c.

Proof. The proof is by induction on δ. When δ is 0 or a successor, there is nothing
to prove. So assume δ is a limit and that the statement holds for all smaller
ordinals. Fix n ∈ ω. Let X̊ ∈ VPδ such that 
δ X̊ ⊂ Ln. Fix p ∈ Pδ, and suppose
p 
δ X̊ is an uncountable p.i.e.. Find {pα : α < ω1} and {σα : α < ω1} ⊂ Ln such

that for each α < ω1, pα ≤ p, σα /∈ {σξ : ξ < α}, pα 
δ σα ∈ X̊. Without loss

of generality, there is F ∈ [δ]
<ω

such that {suppt(pα) : α < ω1} forms a ∆-system
with root F . Fix γ < δ such that F ⊂ γ. Note that for any ξ < α < ω1, if σξ and
σα are comparable under C, then pξ ⊥δ pα, and so pξ � γ ⊥γ pα � γ. Now, for
each α < ω1, pα � γ ≤ p � γ. So by a standard argument, there is q ∈ Pγ such that

q ≤ p � γ and q 
γ {α < ω1 : pα � γ ∈ G̊γ} is uncountable. Take a (V,Pγ)-generic
filter Gγ with q ∈ Gγ . Put Y = {α < ω1 : pα � γ ∈ Gγ}. For any ξ < α in Y , pξ � γ
and pα � γ are compatible, and so σξ and σα are incomparable under C. But then
{σα : α ∈ Y } ⊂ Ln is an uncountable p.i.e. in V [Gγ ], contradicting the inductive
hypothesis. a

Lemma 25. Let T be an ω1-Aronszajn tree. Then there can be no sequence 〈Fα :
α < ω1〉 and m ∈ ω such that

(1) Fα ∈ [T ]
<ω

(2) for all α < β < ω1∀x ∈ Fα∀y ∈ Fβ [ht(x) < ht(y)]
(3) for any H ∈ [ω1]

m
, there exist α, β ∈ H such that α < β and ∃x ∈ Fα∃y ∈

Fβ [x < y].

Proof. Note that for (3) to hold, m must be at least 2. When m = 2, the result
follows by a well known argument of Baumgartner, Malitz, and Reinhardt [3].
So assume that m > 2 and that the result holds for m − 1. Fix 〈Fα : α <

ω1〉 satisfying (1)-(3). It follows that for any δ < ω1, ∃H ∈ [ω1 \ δ]m−1∀α, β ∈
H [if α < β, then ∀x ∈ Fα∀y ∈ Fβ [x 6< y]]. Now, reduce it to the case m = 2 as
follows. Select 〈Hξ : ξ < ω1〉 and 〈Gξ : ξ < ω1〉 such that

(4) Hξ ∈ [ω1]
m−1

and Gξ =
⋃
α∈HξFα

(5) ∀ξ < ζ < ω1∀α ∈ Hξ∀β ∈ Hζ [α < β]
(6) ∀ξ < ω1∀α, β ∈ Hξ [if α < β, then ∀x ∈ Fα∀y ∈ Fβ [x 6< y]]
(7) ∀ξ < ζ < ω1∃x ∈ Gξ∃y ∈ Gζ [x < y].

To see that this is possible, suppose 〈Hη : η < ξ〉 and 〈Gη : η < ξ〉 are given.

Put δ = sup
(⋃

η<ξHη

)
. Choose Hξ ∈ [ω1 \ δ + 1]

m−1
such that (6) holds and put

Gξ =
⋃
α∈HξFα. To see that (7) holds, fix η < ξ. Then |Hη ∪Hξ| ≥ m. Because of

(6), there must be α ∈ Hη, β ∈ Hξ, x ∈ Fα, and y ∈ Fβ such that x < y. a

Let T be an Aronszajn tree. Recall the usual poset for specializing T , which
we will denote PT . A condition p in PT is a function p : Fp → Q, where Fp ∈
[T ]

<ω
, Q is the set of rational numbers, and p has the property that ∀x, y ∈

Fp [x < y =⇒ p(x) < p(y)]. And q ≤ p iff q ⊃ p. It is well known that PT is
c.c.c. and that it adds a specializing map from T to Q.
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Lemma 26. Let L ⊂ P(ω) be such that 〈L,(〉 is a Suslin lower semi-lattice of
height ω1. Assume moreover that 〈L,⊂〉 is powerfully c.c.c. Let 〈T,C〉 be an
Aronszajn tree. Suppose

6
PT 〈L,⊂〉 is powerfully c.c.c.

Then there is n ∈ ω and M ⊂ Ln such that

(1) 
〈M,⊃〉 T has a cofinal branch
(2) 
〈M,⊃〉 〈L,⊂〉 is powerfully c.c.c.

Proof. Fix n ∈ ω. Let Z̊ be a PT name such that 
Z̊ ⊂ Ln, and let p ∈ PT be
so that p 
 Z̊ is an uncountable p.i.e.. Choose {pα : α < ω1} and {σα : α < ω1}
such that for each α < ω1, pα ≤ p, σα /∈ {σξ : ξ < α}, and pα 
 σα ∈ Z̊. For each

α < ω1, write Fα for Fpα . Find X ∈ [ω1]
ω1 , R ∈ [T ]

<ω
, l ∈ ω, and f : R→ Q such

that

(3) {Fα : α ∈ X} forms a ∆-system with root R
(4) for each α, β ∈ X, if α < β, then for all s ∈ Fα \R, t ∈ Fβ \R, and u ∈ R,

ht(u) < ht(s) < ht(t)
(5) ∀α ∈ X [pα � R = f ∧ |Fα \R| = l].

Now, fix ξ < α in X. If σξ and σα are comparable under ⊂, then pξ and pα must
be incompatible in PT , and hence, there must be s ∈ Fξ \ R and t ∈ Fα \ R such
that s C t. Now, {α ∈ X : |{ξ ∈ X : σξ and σα are comparable under ⊂}| ≤ ω}
must be countable because 〈Ln,⊂〉 does not have an uncountable p.i.e. Let Y be
{α ∈ X : {ξ ∈ X : σξ and σα are comparable under ⊂} is uncountable}. Put
M = {σα : α ∈ Y }. Consider 〈M,⊃〉 as a forcing notion. It has the c.c.c. Also, for
each α ∈ Y , there are uncountably many ξ ∈ Y such that σα and σξ are compatible

conditions. So by a standard argument 
M {α ∈ Y : σα ∈ G̊M} is uncountable,

where G̊M is the canonical M -name for a (V,M)-generic filter. Now, we claim
that 
M T has a cofinal branch. Fix a (V,M)-generic filter G, and work inside
V[G]. Y ∗ = {α ∈ Y : σα ∈ G} is uncountable. We check that (1)-(3) of Lemma 25

are satisfied by 〈Fα\R : α ∈ Y ∗〉. To check (3) of Lemma 25, fix H ∈ [Y ∗]
l+1

. There
is ξ ∈ Y ∗ such that ∀α ∈ H [σα ⊂ σξ]. Now, there are uncountably many ζ ∈ X
such that σζ and σξ are comparable under ⊂. On the other hand, {τ ∈ Ln : τ ⊂ σξ}
is countable. So it is possible to find ζ ∈ X such that ∀α ∈ H [α < ζ ∧ σα ⊂ σζ ].
So for each α ∈ H, there is sα ∈ Fα \ R and tα ∈ Fζ \ R such that sα C tα. Since
|Fζ \R| = l, and |H| = l + 1, it follows that there are α, β ∈ H with α < β such
that tα = tβ . But then, sα C sβ , as needed.

For (2), note that for any poset 〈P,≤〉, 〈P,≤〉 is powerfully c.c.c. iff 〈P,≥〉 is also
powerfully c.c.c. So since M ⊂ Ln, and 〈L,⊃〉 is powerfully c.c.c., it follows from
Lemma 23 that 
〈M,⊃〉 〈L,⊃〉 is powerfully c.c.c., whence (2). a

Theorem 27. It is consistent that there is a Suslin lower semi-lattice and yet all
Aronszajn trees are special.

Proof. Start with a ground model V where there is L ⊂ P(ω) such that 〈L,(〉 is a
Suslin lower semi-lattice such that ht(L) = ω1, ∀x, y ∈ L [x ∧ y = x ∩ y], and 〈L,⊂〉
is powerfully c.c.c. Assume moreover that GCH holds in V. Such a V exists by
the results of the previous sections. Using a suitable bookkeeping device to ensure
that all names for Aronszajn trees are eventually considered, do a FS iteration
〈Pα, Q̊α : α ≤ ω2〉 of c.c.c. posets as follows. At a stage α < ω2, let T̊ be a Pα
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name for an Aronszajn tree given by the bookkeeping device. Fix a (V,Pα)-generic
filter G, and work inside V[G]. If 
PT̊ [G]

〈L,⊂〉 is powerfully c.c.c., then let Q be

PT̊ [G]. Otherwise, use Lemma 26 to find n ∈ ω and M ⊂ Ln such that (1) and

(2) of Lemma 26 hold. Now, put Q = 〈M,⊃〉. In either case, back in V, let Q̊α
be a Pα name for Q. In the end, 
ω2

〈L,⊂〉 is powerfully c.c.c. So 〈L,(〉 has no
uncountable p.i.e. On the other hand, it can never have an uncountable chain. So
〈L,(〉 is Suslin. a
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