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COMBINATORIAL DICHOTOMIES AND CARDINAL
INVARIANTS

Dilip Raghavan and Stevo Todorcevic

Abstract. Assuming the P-ideal dichotomy, we attempt to isolate those cardinal char-
acteristics of the continuum that are correlated with two well-known consequences of

the proper forcing axiom. We find a cardinal invariant x such that the statement that
x > ω1 is equivalent to the statement that 1, ω, ω1, ω × ω1, and [ω1]<ω are the only
cofinal types of directed sets of size at most ℵ1. We investigate the corresponding prob-

lem for the partition relation ω1 → (ω1, α)2 for all α < ω1. To this effect, we investigate
partition relations for pairs of comparable elements of a coherent Suslin tree S. We show
that a positive partition relation for such pairs follows from the maximal amount of the

proper forcing axiom compatible with the existence of S. As a consequence, we conclude
that after forcing with the coherent Suslin tree S over a ground model satisfying this
relativization of the proper forcing axiom, ω1 → (ω1, α)2 for all α < ω1. We prove

that this positive partition relation for S cannot be improved by showing in ZFC that
S �→ (ℵ1, ω + 2)2.

1. Introduction

An interesting, though lesser known, phenomenon in set theory is that cardinal invari-
ants of the continuum can be used to calibrate the strength of various mathematical
propositions (that do not unnecessarily involve sets of reals) in the presence of certain
kinds of combinatorial dichotomies. These mathematical statements are invariably
consequences of forcing axioms such as Proper Forcing Axiom (PFA) or Martin’s
Maximum (MM), and they are negated by Continuum Hypothesis (CH). The com-
binatorial dichotomies we are interested in are compatible with CH, but they do
keep a considerable amount of the strength of PFA or MM by, for example, negating
square-principles or reflecting stationary sets. In fact, they have a tendency of push-
ing several mathematical statements down to concrete questions about combinatorial
properties of sets of reals that seem to be expressible in terms of cardinal invariants
of the continuum. A typical theorem of the sort we have in mind looks as follows.

Prototypical theorem. Assume CD. Then the following are equivalent:
(1) x > ω1.
(2) φ.

Here φ is some mathematical statement, x is a cardinal invariant, and CD is a
combinatorial dichotomy that is consistent with CH. As relations between cardinal
invariants have been well-investigated, theorems like this permit us to calibrate the
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relative strength of various mathematical propositions over the base theory ZFC+CD
(ZFC is Zermelo-Fraenkel set theory with the axiom of choice). Examples of CD
include Rado’s Conjecture (RC) and the P-ideal dichotomy (PID). The statement
φ can come from different areas of mathematics. We illustrate this with two recent
typical examples.

Theorem 1 (Todorčević and Torres Pérez [23]). Assume RC. Then the following are
equivalent:

(1) c > ω1.
(2) There are no special ω2-Aronszajn trees.

Here c is the size of the continuum, the most basic of cardinal invariants.

Theorem 2 (Brech and Todorčević [3]). Assume PID. Then the following are equiv-
alent:

(1) b > ω1.
(2) Every non-separable Asplund space has an uncountable almost bi-orthogonal

system.

Here b is the bounding number; its precise definition is given in Section 2. For more
regarding the big picture surrounding such results, consult [21].

The purpose of this paper is to add to the analysis of PID from this point of view;
we do not have results about RC here. PID is a well-known consequence of PFA that is
consistent with CH. (See Section 2 below where we give a definition of PID.) Indeed, it
is strong enough to imply many of the consequences of PFA that do not contradict CH.
For example, PID implies that there are no Suslin trees (see [1]), it implies that �(θ)
fails for every ordinal θ of cofinality > ω1 (see [19]), it implies the singular cardinals
hypothesis (see [25]), and it implies that �κ,ω fails for all uncountable cardinals κ
(see [12]). For many consequences of PFA contradicting CH, PID tends to reduce
the amount of PFA involved to the hypothesis that some cardinal invariant of the
continuum is bigger than ω1. The pseudo-intersection number p (see Section 2 for
definition), being smaller than most of the usual cardinals, almost always suffices. We
are interested in finding out the precise cardinal invariant which is needed for several
specific consequences of PFA. So our general project is twofold:

General Problem 1. Given a statement φ which is a consequence of PID + MAℵ1 ,
find a cardinal invariant x such that φ is equivalent to x > ω1 over ZFC + PID.

For example, if φ is the statement that every non-separable Asplund space has an
uncountable almost bi-orthogonal system (see [6] for definitions), then it is a theorem
of Todorčević [20] that PID + MAℵ1 implies φ, while another result of Todorčević
(see [18], Chapter 2) shows that φ implies b > ω1. So the result of Theorem 2 above
came as an answer to this version of the general problem.

General Problem 1 asks if the influence of PFA on φ can be decomposed into a
part which is consistent with CH and into another CH violating part that is precisely
captured by the cardinal invariant x. This reveals the nature of the combinatorial
phenomenon on the reals needed for φ. Another motivation is that one often has to
find a new and sharper proof of φ in order to accomplish this project. A slightly less
ambitious project is
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General Problem 2. Given a statement φ which is a consequence of PID + p > ω1,
investigate whether φ is equivalent to p > ω1 over ZFC + PID.

A canonical model for investigating this can be obtained by forcing with a coherent
Suslin tree S over a model of PFA(S) (see Section 2 for the precise definition of a
coherent Suslin tree). Here PFA(S) is the maximal amount of PFA that is consistent
with the existence of S.

Definition 3. Let S be a coherent Suslin tree. PFA(S) is the following statement.
If P is a poset which is proper and preserves S and {Dα : α < ω1} is a collection of
dense subsets of P, then there is a filter G on P such that ∀α < ω1 [G ∩ Dα �= 0].

The consistency of PFA(S) can be proved assuming the existence of a supercompact
cardinal by iterating with countable support all proper posets which preserve S. One
obtains an interesting model where a large number of consequences of PFA hold by
forcing with S over a ground model satisfying PFA(S). In particular, PID holds in
this extension. Moreover, almost all of the cardinal invariants of the continuum are
equal to ω2. However, p = ω1. Therefore, if a consequence of PFA is consistent with
PID+p = ω1, then it is very likely to be true in this model. Thus this model is useful
for providing negative answers to the General Problem 2 above.

In this paper, we investigate two well-known consequences of PFA in view of these
two general problems. The first one concerns Tukey theory. Recall that a poset 〈D,≤〉
is directed if any two members of D have an upper bound in D. A set X ⊂ D is
unbounded in D if it does not have an upper bound in D. A set X ⊂ D is said to be
cofinal in D if ∀y ∈ D∃x ∈ X [y ≤ x]. Given directed sets D and E, a map f : D → E
is called a Tukey map if the image of every unbounded subset of D is unbounded in E.
A map g : E → D is called a convergent map if the image of every cofinal subset of E
is cofinal in D. It is easy to see that there is a Tukey map f : D → E iff there exists a
convergent g : E → D. When this situation obtains, we say that D is Tukey reducible
to E, and we write D ≤T E. This induces an equivalence relation on directed posets
in the usual way: D ≡T E iff both D ≤T E and E ≤T D. If D ≡T E, we say that
D and E are Tukey equivalent or have the same cofinal type, and this is intended to
capture the idea that D and E have “the same cofinal structure.” As support for this,
it can be shown that D ≡T E iff there is a directed set R into which both D and E
embed as cofinal subsets, so that D and E describe the same cofinal type, the one
of R.

These notions first arose in the Moore–Smith theory of convergence studied by
general topologists (see [8,24]). The following result of Todorcevic gives a classification
of the possible cofinal types of directed posets of size at most ℵ1 under PFA.

Theorem 4 (Todorčević [16]). Under PID + p > ω1, there are only five Tukey types
of size at most ℵ1: 1, ω, ω1, ω × ω1, and [ω1]

<ω.

Here, the ordering on ω × ω1 is the product ordering and [ω1]
<ω is ordered by

inclusion. In Section 4, we solve General Problem 1 for the statement that 1, ω,
ω1, ω × ω1, and [ω1]

<ω are the only cofinal types of size at most ℵ1. Interestingly,
the cardinal invariant that captures this statement turns out not to be one of the
commonly occurring ones; rather, it is the minimum of two mutually independent
cardinals. The result in this section answers both Questions 24.14 and 24.17 of [21],
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which ask whether the statement that 1, ω, ω1, ω × ω1, and [ω1]
<ω are the only

cofinal types of size at most ℵ1 is equivalent over ZFC+PID to b = ω2 and to p = ω2,
respectively. The answer to both questions turns out to be “no.”

In Section 3, we investigate a strong version of the ordinary partition relation on ω1,
namely the relation ω1 → (ω1, α)2. Recall that for an ordinal α, ω1 → (ω1, α)2 means
that for any c : [ω1]

2 → 2 either there exists X ∈ [ω1]
ω1 such that c′′[X]2 = {0}

or there exists X ⊂ ω1 such that otp(X) = α and c′′[X]2 = {1}. The Dushnik–
Miller theorem says that ω1 → (ω1, ω)2 (see [4]), and its strengthening proved by
Erdős and Rado states that ω1 → (ω1, ω + 1)2 (see [5]), while the classical coloring
of Sierpinski [13] shows that ω1 → (ω1, ω1)

2 is false. Thus the following theorem of
Todorčević [15] gives the strongest possible version of the ordinary partition relation
on ω1.

Theorem 5 (Todorcevic). PID + p > ω1 implies that ω1 → (ω1, α)2, for every
α < ω1.

This should be compared with the following result of Todorčević [18] (Chapter 2) that
is relevant to General Problem 1.

Theorem 6 (Todorcevic). b = ω1 implies ω1 �→ (ω1, ω + 2)2.

In Section 3, we solve General Problem 2 for the statement that ω1 → (ω1, α)2, for
every α < ω1 by showing that it holds after forcing with the coherent Suslin tree S

over a ground model satisfying PFA(S). This shows that p > ω1 is not equivalent over
ZFC + PID to the statement that ω1 → (ω1, α)2 for every α < ω1 so it remains to
look for another cardinal invariant of the continuum that would capture this partition
relation for ω1.

2. Notation

We set up some basic notation that will be used throughout the paper. “a ⊂ b” means
∀x [x ∈ a =⇒ x ∈ b], so the symbol “⊂” does not denote proper subset. “∀∞” means
for all but finitely many and “∃∞” stands for there exists infinitely many.

Definition 7. Let X be an uncountable set. An ideal I ⊂ [X]≤ω is called a P-
ideal if for every countable collection {xn : n ∈ ω} ⊂ I, there is x ∈ I such that
∀n ∈ ω [xn ⊂∗ x].

All ideals are assumed to be non-principal, meaning that [X]<ω ⊂ I.

Definition 8. The PID is the following statement: for any P-ideal I on an uncount-
able set X either

(1) there is an uncountable set Y ⊂ X such that [Y ]≤ω ⊂ I
or

(2) there exist {Xn : n ∈ ω} such that the Xn are pairwise disjoint, X =
⋃

n∈ωXn,
and ∀n ∈ ω [[Xn]ω ∩ I = 0].

The following well-known cardinal invariants will occur throughout the paper. For
functions f, g ∈ ωω, f <∗ g means ∀∞n ∈ ω [f(n) < g(n)]. A set F ⊂ ωω is said to be
unbounded if there is no g ∈ ωω such that ∀f ∈ F [f <∗ g]. For sets a and b, a ⊂∗ b iff



COMBINATORIAL DICHOTOMIES AND CARDINAL INVARIANTS 5

a \ b is finite. A family F ⊂ [ω]ω is said to have the finite intersection property (FIP)
if for any A ∈ [F ]<ω,

⋂
A is infinite.

Definition 9. c denotes 2ω. Additionally,

p = min{|F | : F ⊂ [ω]ω ∧ F has the FIP ∧ ¬∃b ∈ [ω]ω ∀a ∈ F [b ⊂∗ a]} .

b = min{|F | : F ⊂ ωω ∧ F is unbounded} .

cov(M) is the least κ such that R can be covered by κ many meager sets.

It is easy to show ω1 ≤ p ≤ b ≤ c. Moreover, p ≤ cov(M) ≤ c, while b and cov(M)
are independent.

We will frequently make use of elementary submodels. We will simply write “M ≺
H(θ)” to mean “M is an elementary submodel of H(θ), where θ is a regular cardinal
that is large enough for the argument at hand.”

Recall that a Suslin tree is an uncountable tree with no uncountable chains or
antichains. We will use the following notation when dealing with a tree S. For t ∈ S,
ht(t) is the height of t. For an ordinal α, let Sα = {s ∈ S : ht(s) = α} and S<α =
{s ∈ S : ht(s) < α}. For t ∈ S, pred(t) denotes the set of predecessors of t, that is
{s ∈ S : s ≤ t}. For a set X and t ∈ S, predX(t) = pred(t)∩X. Dually, cone(t) denotes
the cone above t, for all t ∈ S. In other words, cone(t) = {u ∈ S : t ≤ u}. Similarly,
for a set X and t ∈ S, coneX(t) = cone(t)∩X. Next, for t ∈ S, succ(t) = {u ∈ S : u >
t and ht(u) = ht(t) + 1}. Once again, for t ∈ S and a set X, succX(t) = succ(t) ∩ X.
If S happens to be a normal tree, then for any non-empty F ⊂ S,

∧
F denotes the

greatest lower bound in S of the elements of F .
Throughout the paper, we work with a fixed Suslin tree S. We assume that S is a

coherent strongly homogeneous Suslin tree. More precisely, this means that
(1) S is a Suslin tree and is a subtree of ω<ω1 .
(2) For each s ∈ S, ∃∞n ∈ ω [s�〈n〉 ∈ S] and {t ∈ S : t ≥ s} is uncountable.
(3) ∀s, t,∈ S [|ξ ∈ dom(s) ∩ dom(t) : s(ξ) �= t(ξ)| < ω] (coherence).
(4) For each ξ < ω1 and s, t ∈ Sξ, there is an automorphism φ : S → S such that

φ(s) = t and ∀α ≥ ξ∀u ∈ Sα [φ(u) = φ(u � ξ) ∪ u � [ξ, α)] (strong homogene-
ity).

Thus fix once and for all a coherent strongly homogeneous Suslin tree S. Though we
remark that the coherence and strong homogeneity of S will not be needed until the
proof of Lemma 19.

We will be studying colorings of the pairs of comparable elements of S. We set
up some basic notation relevant to such colorings here. For any A, B ⊂ S, A ⊗ B =
{{a, b} : a ∈ A and b ∈ B and a < b}. A[2] = A ⊗ A. The following variation of A[2]

will also be important in Section 3. Let Y ⊂ S and g : Y → S. Then Y
[2]
g denotes

{{a, b} : a, b ∈ Y and a < b and g(a) ≤ b}. If S ⊂ S and c : S[2] → 2 is a coloring, then
Ki,c =

{{s, t} ∈ S[2] : c({s, t}) = i
}
, for each i ∈ 2. We will often omit the subscript

“c” when it is clear from the context.
We will use a C-sequence in the proof of Theorem 14. Recall that 〈cα : α < ω1〉 is

called a C-sequence if for each α < ω1,
(1) cα ⊂ α.
(2) If α is a limit ordinal, then otp(cα) = ω and sup(cα) = α.
(3) If β = α + 1, then cβ = {α}.
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Given a C-sequence 〈cα : α < ω1〉, it is sometimes useful to think of each cα as a
function. For a fixed 0 < β < ω1 and n ∈ ω, we adopt the following conventions. If
β = α + 1, then cβ(n) is the unique element of cβ , namely α. If β is a limit ordinal,
then cβ(n) is the nth element of cβ .

In the proof of Theorem 28, we will use the following notation for subtrees of ω<ω.
Given T ⊂ ω<ω which is a subtree, [T ] = {f ∈ ωω : ∀n ∈ ω [f � n ∈ T ]}. For σ ∈ T ,
succT (σ) denotes {n ∈ ω : σ�〈n〉 ∈ T}. Note that this departs from the definition of
succ(s) when s is a member of S. However, since it will be clear when we are talking
about members of S and when we are referring to elements of some subtree T of ω<ω,
we hope that this will not cause any confusion.

3. Partition relations after forcing with a coherent Suslin tree

In this section, we investigate partition relations for the pairs of comparable elements
of S. Partition relations for the pairs of comparable elements of a Suslin tree were
studied by Máté [11], and for more general partial orders by Todorčević [17]. We prove
a positive partition relation for S

[2] assuming PFA(S) (Theorem 14). This result in
an analog of Todorčević’s theorem from [15] that PFA implies that ω1 → (ω1, α)2, for
every α < ω1. However, it is not a perfect analog. This is explained by Theorem 28,
which establishes a negative partition relation for S

[2] in ZFC. This negative partition
relation may be seen as a ZFC analog of the relation ω1 �→ (ω1, ω+2)2 for the pairs of
comparable elements of S. It is somewhat surprising that such a result can be proved
not going beyond ZFC. A corollary of the positive partition relation proved in this
section is that ω1 → (ω1, α)2 for every α < ω1 after forcing with S over a model of
PFA(S).

In this section, all the trees we deal with will be subsets (though not subtrees)
of S. Of course, given T ∈ [S]ω1 , 〈T,≤〉 is an ω1 tree with no uncountable chains or
antichains. However to avoid some trivialities, we make the following definition:

Definition 10. T ⊂ S is called a Suslin tree if T is uncountable and
(1) ∃min(T ) ∈ T∀x ∈ T [min(T ) ≤ x].
(2) ∀x ∈ T [{y ∈ T : y ≥ x} is uncountable].

Note that we are not requiring T to be a normal tree. In general, T will not be a
subtree of S.

Obviously, ∀Y ∈ [S]ω1∃T ∈ [Y ]ω1 [T is a Suslin tree]. As this fact will be used
frequently, we state it as a lemma.

Lemma 11. ∀Y ∈ [S]ω1∃T ∈ [Y ]ω1 [T is a Suslin tree].

We will also use the following consequence of a well-known lemma of Todorcevic
called the pressing-down lemma for non-special trees. This more general lemma ap-
pears as Theorem 2.4 in [14]. The reader should also consult Theorems 13 and 14
of [17].

Lemma 12. Let R ⊂ S be a Suslin tree. Suppose f : R \ {min(R)} → R is a function
such that ∀x ∈ R \ {min(R)} [f(x) < x]. Then ∃U ∈ [R \ {min(R)}]ω1∃s ∈ R∀x ∈
U [f(x) = s].

Another useful fact about Suslin trees that is easy to verify is the following.
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Lemma 13. Let T ⊂ S be a Suslin tree. If X ∈ [T ]ω1 , then there exists x ∈ X such
that X is dense above x in T .

We come to the main result that will be established in this section. Our claim
that ω1 → (ω1, α)2 for all α < ω1 after forcing with S will follow from this result.
Theorem 14 gives a positive partition relation for S

[2] under PFA(S).

Theorem 14. Assume PFA(S). Let S ∈ [S]ω1 and c : S[2] → 2. Then either there
exist Y ∈ [S]ω1 and g : Y → S such that ∀y ∈ Y [g(y) ≥ y] and Y

[2]
g ⊂ K0 or for each

α < ω1, there exist s ∈ S and B ⊂ predS(s) such that otp(B) = α and B[2] ⊂ K1.

Corollary 15. PFA(S) implies that the coherent Suslin tree S forces ω1 → (ω1, α)2

to hold for every α < ω1.

Proof (assuming Theorem 14). Let f̊ ∈ VS be such that � f̊ : [ω1]
2 → 2. Fix s ∈

S. Suppose that s � ¬∃A ∈ [ω1]
ω1

[
f̊ ′′[A]2 = {0}

]
. We will show that s � ∀α <

ω1∃A ⊂ ω1

[
otp(A) = α ∧ f̊ ′′[A]2 = {1}

]
. Fix α < ω1 and t ≥ s. Let θ be a sufficiently

large regular cardinal and let 〈Mξ : ξ < ω1〉 be an increasing continuous ∈-chain of
countable elementary submodels of H(θ), with M0 containing all the relevant objects.
For each ξ < ω1, put δξ = Mξ ∩ ω1. It is clear that for any ξ < ω1, β < γ < δξ,
and x ∈ S, if ht(x) ≥ δξ, then there exists i ∈ 2 such that x � f̊({β, γ}) = i.
Put S = {x ∈ coneS(t) : ∃ξ < ω1 [ht(x) = δξ+1]}. For x ∈ S, let ξx < ω1 be such
that ht(x) = δξx+1. Define c : S[2] → 2 as follows. Given x, y ∈ S with x < y, let
c({x, y}) ∈ 2 be such that y � f̊({δξx , δξy}) = c({x, y}). First suppose that there are
Y ∈ [S]ω1 and g : Y → S with ∀y ∈ Y [g(y) ≥ y] and Y

[2]
g ⊂ K0. Choose x ∈ Y such

that Y is dense above x in S (by applying Lemma 13). If G is a (V, S)-generic filter
with x ∈ G, then in V [G], it is possible to find an uncountable Z ⊂ G ∩ Y such that
∀y, z ∈ Z [y < z =⇒ g(y) ≤ z]. Now, {δξy : y ∈ Z} is an uncountable 0-homogeneous
set for f̊ [G]. As s ∈ G, this contradicts the hypothesis on s. So by Theorem 14, there
is x ∈ S and B ⊂ predS(x) such that otp(B) = α and B[2] ⊂ K1. Then letting
A = {δξb

: b ∈ B}, otp(A) = α and x � f̊ ′′[A]2 = {1}. As x ≥ t, this completes the
proof. �

Definition 16. Let χ be a sufficiently large regular cardinal. Let S ∈ [S]ω1 and c :
S[2] → 2. Define a poset P(S, c) as follows. A condition in P(S, c) is a pair p = 〈Fp,Np〉
such that

(1) Fp ∈ [S]<ω such that Fp
[2] ⊂ K0.

(2) Np is a finite ∈-chain of countable elementary submodels of H(χ) that contain
all the relevant objects.

(3) ∀s, t ∈ Fp∃M ∈ Np [|M ∩ {s, t}| = 1].
(4) ∃M ∈ Np [M ∩ Fp = 0].

For p, q ∈ P(S, c), q ≤ p iff Fq ⊃ Fp and Nq ⊃ Np.

Lemma 17. Let S ∈ [S]ω1 and c : S[2] → 2. For each α < ω1, put Dα = {q ∈ P(S, c) :
∃t ∈ Fq [ht(t) > α]}. Dα is a dense subset of P(S, c).
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Proof. Fix α < ω1 and p ∈ P(S, c). Let {M0, . . . , Ml} enumerate Np in ∈-increasing
order. By (4) of Definition 16, M0 ∩ Fp = 0. Put δ = max{α, Ml ∩ ω1}. We will
find v ∈ S such that ht(v) > δ and ¬∃s ∈ Fp [s ≤ v]. Suppose that this is not
possible. Fix T ∈ M0 ∩ [S]ω1 such that ∀u ∈ T [{v ∈ T : v ≥ u} is uncountable], using
Lemma 11. Suppose u ∈ T ∩ M0. There is a v ∈ T so that ht(v) > δ and v ≥ u.
By the assumption, there exists s ∈ Fp such that s ≤ v. It follows that u ≤ s. Thus
∀u ∈ T ∩ M0∃s ∈ Fp [u ≤ s]. It follows that T is an uncountable subset of S with the
property that ∀A ∈ [T ]≤ω∃F ∈ [S]<ω∀u ∈ A∃s ∈ F [u ≤ s]. However, it is impossible
to have such an uncountable subset of a Suslin tree.

Now, fix v ∈ S such that ht(v) > δ and ¬∃s ∈ Fp [s ≤ v]. Put Fq = Fp ∪ {v}. Find
a countable Ml+1 ≺ H(χ) with v, p ∈ Ml+1. Put Nq = Np ∪ {Ml+1}. Then q ≤ p and
q ∈ Dα. �

Lemma 18. Let χ be the cardinal fixed in Definition 16. Fix M ≺ H(χ) countable
with S ∈ M . Let D ⊂ S with D ∈ M . Let L ⊂ S be such that {ht(x) : x ∈ L ∩ M}
is unbounded in M ∩ ω1. Suppose that ∀x ∈ L ∩ M∃y ∈ D [x ≤ y]. Then there exists
x ∈ L ∩ M such that D is dense above x in S. Moreover, if there exists s ∈ S such
that L = predS(s), then {ht(x) : x ∈ L ∩ M ∩ D} is unbounded in M ∩ ω1.

Proof. Put δ = M ∩ ω1. Put E = {x ∈ S : coneD(x) = 0}. E ∈ M . So there exists
A ∈ M such that A ⊂ E, A is an antichain, and A is maximal with respect to these
two properties. As A is countable, find α < δ such that A ⊂ S<α. Let x ∈ L ∩ M
be such that ht(x) ≥ α. If D is not dense above x in S, then there is s ∈ S such
that s ≥ x and coneD(s) = 0. Thus s ∈ E and is comparable to some a ∈ A. It
follows that a ≤ x. However, by hypothesis, there is y ∈ D with x ≤ y. y ∈ coneD(a),
contradicting a ∈ E.

For the second statement assume that L = predS(s) for some s ∈ S, and fix
α < M ∩ ω1. By the first statement, fix x ∈ L ∩ M such that D is dense above x
in S. Note that coneD(x) ∈ M and that it is an uncountable set. Put B = {y ∈
coneD(x) : ht(y) > α} ∈ M . Choose A ∈ M such that A ⊂ B, A is an antichain, and
A is maximal with respect to these two properties. As A is countable, fix β < M ∩ω1

such that A ⊂ S<β . Fix t ∈ L∩M with ht(t) > max{β, ht(x)}. Thus t ≥ x and there
is y ∈ D with y ≥ t. Since y ∈ B, there is a ∈ A such that a ≤ y. It follows that
a ≤ t ≤ s. Therefore, a ∈ L ∩ D ∩ M and ht(a) > α. �

Lemma 19. Let T ⊂ S be a Suslin tree. Suppose c : T [2] → 2. Either there exists
X ∈ [T ]ω1 such that P

(
X, c � X [2]

)
is proper and preserves S or for each X ∈ [T ]ω1

there exist x0 ∈ X, Y ∈ [X]ω1 , a sequence 〈Fα : α < ω1〉, and a function g : Y → S

such that
(1) For each α < ω1, Fα is a non-empty finite subset of X such that ht (

∧
Fα) > α

(keep in mind that
∧

Fα may not be in T ).
(2) Y and {∧ Fα : α < ω1} are both dense above x0 in S.
(3) ∀x ∈ Y [g(x) ≥ x] and for each α < ω1 and s ∈ predY (

∧
Fα) ∩ S<α, if

g(s) ≤ ∧
Fα, then ∃t ∈ Fα [c({s, t}) = 1].

Proof. Fix a sufficiently large regular θ > χ. Suppose X ∈ [T ]ω1 . For ease of no-
tation, write PX for P(X, c � X [2]). If for any countable M ≺ H(θ) containing
all the relevant objects and any p0 ∈ M ∩ PX , there exists p ≤ p0 such that
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∀t0 ∈ SM∩ω1 [〈p, t0〉 is (M, PX × S) generic], then PX is proper and preserves S.
Assume that this fails and fix M ≺ H(θ) and p0 ∈ M ∩ PX witnessing this. Put
δ = M ∩ ω1. Put Fp = Fp0 and Np = Np0 ∪ {M ∩ H(χ)}. Then p = 〈Fp,Np〉 ∈ PX

and extends p0. Let t0 ∈ Sδ and let D ∈ M be a dense open subset of PX × S such
that D ∩ M is not predense below 〈p, t0〉. Fix 〈q, t〉 ≤ 〈p, t0〉 which is incompatible
with every element of D ∩ M . By extending it if necessary, we may assume that
〈q, t〉 ∈ D, that ∀N ∈ Nq [ht(t) > N ∩ ω1], and that ∃N ∈ M ∩Nq [M ∩ Fq ⊂ N ]. Put
Fq0 = Fq ∩ M and Nq0 = Nq ∩ M . It is clear that q0 = 〈Fq0 ,Nq0〉 ∈ PX and that
q0 ∈ M .

Let {N∗
0 , . . . , N∗

k} enumerate Nq \ Nq0 in ∈-increasing order. Let F = Fq \ Fq0 . If
F = 0, then consider D∗, collection of all t∗ ∈ S for which there exists {N0, . . . , Nk}
such that

(4) {N0, . . . , Nk} is an ∈-chain of countable elementary submodels of H(χ) con-
taining the relevant objects, and containing q0.

(5) 〈〈Fq0 ,Nq0 ∪ {N0, . . . , Nk}〉, t∗〉 ∈ D.
D∗ ∈ M and it follows from Lemma 18 (applied to M ∩ H(χ)) that there exists t∗ ∈
D∗∩M ∩predS(t). If {N0, . . . , Nk} ∈ M witnesses (4) and (5) for t∗, then 〈〈Fq0 ,Nq0 ∪
{N0, . . . , Nk}〉, t∗〉 ∈ D∩M and is compatible with 〈q, t〉. As this contradicts the choice
of 〈q, t〉, we may assume that F �= 0. Let {z0, . . . , zm} enumerate F in increasing order
of their heights. For each 0 ≤ i, j ≤ m, put Gi,j = {ξ ∈ dom(zi) ∩ dom(zj) : zi(ξ) �=
zj(ξ)} and Gi = {ξ ∈ dom(zi) ∩ dom(t) : t(ξ) �= zi(ξ)}. These sets are all finite.
Choose ζ < δ such that for each 0 ≤ i, j ≤ m, Gi,j ∩ M ⊂ ζ, Gi ∩ M ⊂ ζ, and for
each N ∈ Nq0 [N ∩ ω1 ∈ ζ]. For 0 ≤ i ≤ m, put yi = zi � ζ, and put t∗ = t � ζ.
For each 0 ≤ i ≤ m, choose an automorphism φi : S → S such that φi(t∗) = yi

and for all α ≥ ζ and all u ∈ Sα [φi(u) = φi(u � ζ) ∪ u � [ζ, α)]. We may assume that
φi ∈ M . It is easy to see that for any s ∈ M with t∗ ≤ s ≤ t and any 0 ≤ i ≤ m,
yi ≤ φi(s) ≤ zi. Also, for any ζ ≤ α < δ, 0 ≤ i, j ≤ m, and s ∈ Sα ∩ coneS(yi), if
s ≤ zj , then s = φi(t � α). There are two types of points in F that we must deal with.
Put I0 = {0 ≤ i ≤ m : Gi \M = 0} and I1 = {0 ≤ i ≤ m : Gi \M �= 0}. Observe that
if i ∈ I1, then φi(t � ht(zi)) �= zi. On the other hand if i ∈ I0, then φi(t � ht(zi)) = zi.
For any s ≥ t∗, define a two-player game G (s) as follows. The game lasts m+2 moves.
In the first move, I chooses s0 ≥ s and II responds with a pair 〈x0, u0〉 that satisfies
s0 ≤ x0 ≤ u0. In the next move, I chooses s1 with u0 ≤ s1. At the end of m+2 moves
the players have constructed a sequence

s0, 〈x0, u0〉, . . . , sm+1, 〈xm+1, um+1〉
such that s ≤ s0 ≤ x0 ≤ u0 ≤ s1 ≤ x1 ≤ u1 ≤ · · · ≤ sm+1 ≤ xm+1 ≤ um+1. We say
that II wins G (s) if there exist {N0, . . . , Nk} and {vi : i ∈ I1} such that

(6) {N0, . . . , Nk} is an ∈-chain of countable elementary submodels of H(χ) con-
taining the relevant objects, and containing q0.

(7) ∀i ∈ I1

[
vi ∈ Sht(xi) ∩ coneS(yi) and vi �= φi(xi)

]
.

(8) 〈〈Fq0 ∪ {vi : i ∈ I1} ∪ {φi(xi) : i ∈ I0},Nq0 ∪ {N0, . . . , Nk}〉, xm+1〉 ∈ D.
Let D∗ = {s ≥ t∗ : II has a winning strategy in G (s)}. Then D∗ ∈ M . Now we have
the following claim:

Claim 20. ∀s∗ ∈ M ∩ predS(t)∃s ∈ D∗ [s∗ ≤ s].
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Proof. Suppose not. Fix s∗ ∈ M ∩ predS(t) with s∗ ≥ t∗ such that for each s ≥ s∗, I
has a winning strategy in G (s). Fix Σ ∈ M such that

∀s ≥ s∗ [Σ(s) is a winning strategy for I in G (s)] .

Consider D0 = {s0 ∈ S : ∃s ≥ s∗ [s0 is the first move of I according to Σ(s)]}. D0 ∈
M and applying Lemma 18, fix s0 ∈ M ∩predS(t) and s∗ ≤ s ≤ s0 such that s0 is the
first move of I according to Σ(s). Observe that Σ(s) ∈ M and we can think of Σ(s) as
a subset of S

<ω × S. Hence Σ(s) ∈ M ∩ H(χ) and hence Σ(s) ∈ N∗
i for all 0 ≤ i ≤ k.

Now define a run of G (s) according to Σ(s) as follows. Fix 0 ≤ i ≤ m and suppose
that for all j < i, sj and 〈xj , uj〉 have already been specified in such a way that sj is
according to Σ(s), xj = t � ht(zj), and if si is the continuation of this play according
to Σ(s), then si ∈ predS(t) and ht(si) < ht(zi) (when i = 0 this is satisfied because
s0 ∈ M ∩ predS(t), and since z0 /∈ M , ht(z0) ≥ δ > ht(s0)). Let 0 ≤ l ≤ k be minimal
such that zi ∈ N∗

l . Note that 〈s0, 〈x0, u0〉, . . . , si〉 ∈ N∗
l , that t � ht(zi) ∈ N∗

l , and
that si ≤ t � ht(zi). Put xi = t � ht(zi) and define Di+1 as

{si+1 ∈ S : ∃ui ≥ xi [si+1 is according to Σ(s) at s0, 〈x0, u0〉, . . . , si, 〈xi, ui〉]}.
Di+1 ∈ N∗

l . Applying Lemma 18 choose si+1 ∈ N∗
l ∩predS(t) and xi ≤ ui ≤ si+1 such

that si+1 is according to Σ(s) at s0, 〈x0, u0〉, . . . , si, 〈xi, ui〉. Note that if i + 1 ≤ m,
then since zi+1 /∈ N∗

l , ht(zi+1) ≥ N∗
l ∩ ω1 > ht(si+1), so that the construction can

be continued, while if i + 1 = m + 1, then si+1 ≤ t, so that xm+1 = um+1 = t is a
permissible last move for II. Now, it is clear that s0, 〈x0, u0〉, . . . , sm+1, 〈xm+1, um+1〉
is a run of G (s) according to Σ(s). However, if we let Nl = N∗

l , for each 0 ≤ l ≤ k
and vi = zi for all i ∈ I1, then it is clear that (6)–(8) are satisfied. So II wins this run
of G (s), contradicting that Σ(s) is a winning strategy for I. �

Using Lemma 18 and Claim 20, fix s ∈ M ∩ predS(t) such that s ≥ t∗ and II wins
G (s). Let Σ(s) ∈ M be a winning strategy for II. For a fixed i ∈ I0 consider the
following statement:

if for each j < i, sj , xj , uj ∈ M ∩ predS(t) are given such that they form

a partial run of G (s) according to Σ(s), then there exists a continuation(∗i)

si, xi, ui ∈ M ∩ predS(t) according to Σ(s) of this partial run such that

there is no 0 ≤ l ≤ m so that c({φi(xi), zl}) is defined and is equal to 1.

Assume for a moment that (∗i) holds for all i ∈ I0. Then using Lemma 18, it is
possible to choose a run s0, 〈x0, u0〉, . . . , sm+1, 〈xm+1, um+1〉 of G (s) according to
Σ(s) such that for each 0 ≤ i ≤ m + 1, si, xi, ui ∈ M ∩ predS(t) and for each
i ∈ I0 and 0 ≤ l ≤ m, if c({φi(xi), zl}) is defined, then it is equal to 0. As this
run lies in M , choose {N0, . . . , Nk} ∈ M and {vi : i ∈ I1} ∈ M such that (6)–(8)
are satisfied. Put Fr = Fq0 ∪ {vi : i ∈ I1} ∪ {φi(xi) : i ∈ I0} and Nr = Nq0 ∪
{N0, . . . , Nk}. Then r = 〈Fr,Nr〉 ∈ M and 〈r, xm+1〉 ∈ M ∩ D. Moreover, note that
∀i ∈ I1∀0 ≤ l ≤ m [vi �≤ zl], and that for any i ∈ I0 and 0 ≤ l ≤ m, if φi(xi) ≤ zl,
then c({φi(xi), zl}) = 0. Therefore, 〈〈Fr ∪ {z0, . . . , zm},Nr ∪ {N∗

0 , . . . , N∗
k}〉, t〉 is a

common extension of 〈r, xm+1〉 and 〈q, t〉. Since this contradicts the hypothesis that
no member of D ∩ M is compatible with 〈q, t〉, there must exist some i ∈ I0 for
which (∗i) fails. Fix i ∈ I0 and sj , xj , uj ∈ M ∩ predS(t) for j < i witnessing this.
Define u as follows. If i = 0, then u = s, else u = ui−1. In either case, u ∈ M ∩
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predS(t) and t∗ ≤ u. Write v = φi(u) and note that yi ≤ v ≤ zi. Let E = {xi :
∃si∃ui [s0, 〈x0, u0〉, . . . , si, 〈xi, ui〉 is a partial run of G (s) according to Σ(s)]}. Define
Y to be {φi(xi) : xi ∈ E}. Note that E, Y ∈ M . Since Σ(s) is winning for II,
Y ⊂ X. It is easy to see that Y is dense above v in S. Indeed, let w ∈ S with
w ≥ v. Then φ−1

i (w) ≥ u, and so is a legitimate ith move for I. Hence there exist
xi, ui such that s0, 〈x0, u0〉, . . . , φ−1

i (w), 〈xi, ui〉 is a partial run of G(s) according
to Σ(s). Hence xi ∈ E and xi ≥ φ−1

i (w), whence φi(xi) ∈ Y and φi(xi) ≥ w.
There is a function g : Y → S in M such that for all x ∈ Y , there exists si such
that s0, 〈x0, u0〉, . . . , si, 〈φ−1

i (x), φ−1
i (g(x))〉 is a partial run of G (s) according to Σ(s).

Clearly, g(x) ≥ x. Now we have:

Claim 21. For each α < ω1, there exists Fα satisfying (1) and (3) such that
∧

Fα ≥ v.

Proof. If not, then there is α ∈ M witnessing this. Fix such α ∈ M . Let Fα =
{zj ∈ F : yi ≤ zj}. It is easy to see that

∧
Fα /∈ M , and hence ht(

∧
Fα) ≥ α.

It is also easy to see that
∧

Fα ≥ v. Now suppose that x ∈ predY (
∧

Fα) ∩ S<α,
and assume that g(x) ≤ ∧

Fα. As every element of Y is above yi, this implies that
φ−1

i (g(x)), φ−1
i (x) ∈ M ∩ predS(t) and that there is si ∈ M ∩ predS(t) such that

s0, 〈x0, u0〉, . . . , si, 〈φ−1
i (x), φ−1

i (g(x))〉 is a partial run of G (s) according to Σ(s). By
the hypothesis that (∗i) fails, there is zl ∈ F such that c({x, zl}) = 1. In particular,
yi ≤ x ≤ zl. So zl ∈ Fα, and (3) is satisfied. �

To complete the proof of the lemma, choose Fα for each α < ω1 as in the claim.
Then Z = {∧ Fα : α < ω1} is an uncountable subset of S. Find z ∈ Z such that Z is
dense above z in S. Since z ≥ v and Y is dense above v in S, it is possible to choose
x0 ∈ Y ⊂ X with x0 ≥ z. Now both Z and Y are dense above x0 in S. �

Definition 22. Let R be a Suslin tree and fix c : R[2] → 2. Fix a C-sequence
〈cα : α < ω1〉 such that if β > 1, then ∀n ∈ ω [cβ(n) > 0]. For 0 < β < ω1, t ∈ R, and
n ∈ ω define L(β, t, n) to be the set of all A such that

(1) ∃s ∈ R [s < t and A ⊂ predR(s)].
(2) otp(A) = ωcβ(n).
(3) A[2] ⊂ K1.
(4) {u ∈ coneR(t) : A ⊗ {u} ⊂ K1} is uncountable.

Note that no member of L(β, t, n) is empty. Next, if B ∈ L(β, t, n + 1) and A ⊂ B
with otp(A) = ωcβ(n), then A ∈ L(β, t, n). Moreover, if t ≤ u, A ∈ L(β, u, n), and
∃s ∈ R [s < t and A ⊂ predR(s)], then A ∈ L(β, t, n). Also if t ≤ u, A ∈ L(β, t, n),
and {v ∈ coneR(u) : A ⊗ {v} ⊂ K1} is uncountable, then A ∈ L(β, u, n).

Definition 23. Fix a well ordering of P(R), say �. For A, B ⊂ R and t ∈ R, we
say that B follows A with respect to t if ∀a ∈ A∀b ∈ B [a < b], A ⊗ B ⊂ K1, and
{u ∈ coneR(t) : (A ∪ B) ⊗ {u} ⊂ K1} is uncountable. It is clear that if B follows
A with respect to t and C ⊂ B, then C follows A with respect to t. Also, if t ≤ u
and B follows A with respect to u, then B follows A with respect to t. If t ≤ u, B
follows A with respect to t, and {v ∈ coneR(u) : (A ∪ B)⊗{v} ⊂ K1} is uncountable,
then B follows A with respect to u. For t ∈ R and 0 < β < ω1, define a function
σβ,t : ω → P(R) as follows. Fix n ∈ ω and suppose that for all m < n, σβ,t(m) has
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been defined. Put Aβ,t,n =
⋃

m<nσβ,t(m) ⊂ R. Consider

{B ∈ L(β, t, n) : B follows Aβ,t,n with respect to t} .

If this set is empty, then set σβ,t(n) = 0. Otherwise, set σβ,t(n) to be the �-least
element of this set. Define Aβ,t =

⋃
n∈ωσβ,t(n).

It is clear that for each n ∈ ω, either σβ,t(n) = 0 or σβ,t(n) ∈ L(β, t, n), but
not both. In either case, observe that σβ,t(n) ⊂ predR(t), that ∀a ∈ Aβ,t,n∀b ∈
σβ,t(n) [a < b], and that (Aβ,t,n ⊗ σβ,t(n)) ∪ (σβ,t(n))[2] ⊂ K1. Therefore, if ∀n ∈
ω [σβ,t(n) ∈ L(β, t, n)], then Aβ,t is a subset of predR(t) of order type ωβ such that
A

[2]
β,t ⊂ K1. Furthermore, for all t ∈ R \ {min(R)} and all n ∈ ω, there is s ∈ R with

s < t such that Aβ,t,n ⊂ predR(s).

Lemma 24. For any t ∈ R and 0 < β < ω1, if there exists m ∈ ω such that
σβ,t(m) = 0, then ∀n ≥ m [σβ,t(n) = 0].

Proof. Prove by induction on n ≥ m that σβ,t(n) = 0. When n = m, this is the
hypothesis. Suppose this is true for n ≥ m. Then Aβ,t,n+1 = Aβ,t,n∪σβ,t(n) = Aβ,t,n.
If σβ,t(n+1) �= 0, then σβ,t(n+1) ∈ L(β, t, n+1), and σβ,t(n+1) follows Aβ,t,n with
respect to t. In particular, otp(σβ,t(n + 1)) = ωcβ(n+1). Choose B ⊂ σβ,t(n + 1) with
otp(B) = ωcβ(n). Then B ∈ L(β, t, n) and B follows Aβ,t,n with respect to t. This
contradicts the fact that σβ,t(n) = 0. �

Definition 25. For t ∈ R and 0 < β < ω1, if there is n ∈ ω such that σβ,t(n) = 0,
then let nβ,t be the least such n. Otherwise, put nβ,t = ω. Define Xβ,t = {u ∈
coneR(t) : Aβ,t ⊗ {u} ⊂ K1}.

Note that Aβ,t =
⋃

n<nβ,t
σβ,t(n). Observe also that if nβ,t < ω, then Xβ,t is

uncountable.

Lemma 26. Fix t, u ∈ R with t ≤ u, and 0 < β < ω1. Suppose that Xβ,t∩ coneR(u) is
uncountable. Moreover assume that ∃s ∈ R [s < t and Aβ,u ⊂ predR(s)]. Then σβ,t =
σβ,u.

Proof. First a preliminary observation: it follows from the hypotheses that for each
n ∈ ω, {v ∈ coneR(u) : σβ,t(n) ⊗ {v} ⊂ K1} and {v ∈ coneR(u) : Aβ,t,n ⊗ {v} ⊂ K1}
are both uncountable. Now suppose for a contradiction that there exists n ∈ ω such
that σβ,t(n) �= σβ,u(n), and choose the minimal n ∈ ω with this property. Then
Aβ,t,n = Aβ,u,n. Assume that σβ,t(n) �= 0. Thus σβ,t(n) ∈ L(β, t, n) and σβ,t(n)
follows Aβ,t,n with respect to t. Since {v ∈ coneR(u) : σβ,t(n) ⊗ {v} ⊂ K1} is un-
countable, σβ,t(n) ∈ L(β, u, n). Also, since {v ∈ coneR(u) : (Aβ,t,n ∪ σβ,t(n))⊗ {v} ⊂
K1} = {v ∈ coneR(u) : Aβ,t,n+1 ⊗ {v} ⊂ K1} is uncountable, σβ,t(n) follows Aβ,u,n

with respect to u. It follows that σβ,u(n) �= 0 and σβ,u(n) � σβ,t(n).
Next suppose that σβ,u(n) �= 0. Then σβ,u(n) ∈ L(β, u, n) and σβ,u(n) follows

Aβ,u,n with respect to u. Note that there is s ∈ R such that s < t and σβ,u(n) ⊂
Aβ,u ⊂ predR(s). Therefore, σβ,u(n) ∈ L(β, t, n). Also, σβ,u(n) follows Aβ,t,n with
respect to t. Thus σβ,t(n) �= 0 and σβ,t(n) � σβ,u(n). However, these two implica-
tion that we have established imply that both σβ,t(n) and σβ,u(n) are equal to 0, a
contradiction. �
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Next is a lemma that is of independent interest and can be considered as a part of
set theory folklore. It asserts the existence of certain types of ultrafilters on countable
indecomposable ordinals under the hypothesis p > ω1. This lemma also plays a similar
role in Todorcevic’s proof that PID + p > ω1 implies ω1 → (ω1, α)2.

Lemma 27. Assume p > ω1. For each 0 < β < ω1 and a well ordered set X =
〈X, <X〉 of order type ωβ, there is an ultrafilter Uβ(X) on X such that

(1) For each A ∈ Uβ(X), otp(A) = ωβ.
(2) For any F ⊂ Uβ(X) of size at most ω1, there is Y ⊂ X such that otp(Y ) = ωβ

and ∀Z ∈ F [Y \ Z is a bounded subset of X]. Moreover if |F| = ω1, then
there exists G ∈ [F ]ω1 such that otp (

⋂G) = ωβ.

Proof. The proof is by induction on β. If β = 1, then X has order type ω, and we can
let Uβ(X) be any ultrafilter on X. It is clear that (1) is satisfied. For (2), fix F ⊂ Uβ(X)
with |F| ≤ ω1. As p > ω1, there is Y ∈ [X]ω such that ∀Z ∈ F [Y \ Z is finite]. It
is clear that otp(Y ) = ω and ∀Z ∈ F [Y \ Z is bounded in X]. Next, if |F| = ω1

and Y ⊂ X is as above, then there is a finite F ∈ [Y ]<ω and G ∈ [F ]ω1 such that
∀Z ∈ G [Y \ F ⊂ Z]. As otp(Y \ F ) = ω, it is clear that otp(

⋂G) = ω.
Next suppose β > 1. Fix 〈Xn : n ∈ ω〉 such that X =

⋃
n∈ωXn and ∀n ∈

ω
[
otp(Xn) = ωcβ(n) ∧ Xn <X Xn+1

]
. Here Xn <X Xn+1 means ∀x ∈ Xn∀y ∈

Xn+1 [x <X y]. Assume that Ucβ(n)(Xn) has been constructed for all n ∈ ω. Put
Uβ(X) = {A ⊂ X : {n ∈ ω : A ∩ Xn ∈ Ucβ(n)(Xn)} ∈ U1(ω)}. This is clearly an
ultrafilter on X. It is also clear that (1) is satisfied by Uβ(X). For (2), fix F ⊂ Uβ(X)
of size at most ω1. For each n ∈ ω, put

Fn = {Z ∩ Xn : Z ∈ F ∧ Z ∩ Xn ∈ Ucβ(n)(Xn)}.
Fn ⊂ Ucβ(n)(Xn) and |Fn| ≤ ω1. So choose Yn ⊂ Xn such that otp(Yn) = ωcβ(n)

and ∀A ∈ Fn [Yn \ A is a bounded subset of Xn]. For each Z ∈ F define a func-
tion SZ with domain ω as follows. Given n ∈ ω, if Z ∩ Xn ∈ Ucβ(n)(Xn), then
SZ(n) = Yn \ (Z ∩ Xn). Otherwise SZ(n) = 0. In either case, SZ(n) is a bounded
subset of Xn. Use the fact that b < ω1 to choose 〈Bn : n ∈ ω〉 such that for each
∀n ∈ ω [Bn is a bounded subset of Xn] and ∀Z ∈ F∀∞n ∈ ω [SZ(n) ⊂ Bn]. Note
that otp(Yn \ Bn) = ωcβ(n), for all n ∈ ω. For each Z ∈ F , put dom(Z) = {n ∈ ω :
Z ∩ Xn ∈ Ucβ(n)(Xn)}. {dom(Z) : Z ∈ F} is a subset of U1(ω) of size at most ω1.
Choose D ∈ [ω]ω such that ∀Z ∈ F [D \ dom(Z) is finite]. Put Y =

⋃
n∈D(Yn \ Bn).

It is clear that Y ⊂ X and otp(Y ) = ωβ . Fix Z ∈ F and fix nZ ∈ ω such that
D \ nZ ⊂ dom(Z) and ∀n ≥ nZ [SZ(n) ⊂ Bn]. We claim that Y \ Z is bounded by
min(XnZ

). Indeed fix y ∈ Y \ Z. Then y ∈ Yn \ Bn for some n ∈ D. If n ≥ nZ , then
n ∈ dom(Z) and SZ(n) ⊂ Bn. So Z∩Xn ∈ Ucβ(n)(Xn), and so SZ(n) = Yn\(Z ∩ Xn).
As y ∈ Yn and y /∈ Z, we have that y ∈ SZ(n). However, since y /∈ Bn, this con-
tradicts SZ(n) ⊂ Bn. Therefore, n < nz and since y ∈ Yn ⊂ Xn, we conclude that
y <X min(XnZ

).
Now, if |F| = ω1, then there exist n ∈ ω and G ∈ [F ]ω1 such that ∀Z ∈

G [nZ = n]. Note that otp ({y ∈ Y : y <X min(Xn)}) < ωβ . Therefore, Y ∗ = Y \
{y ∈ Y : y <X min(Xn)} has order type ωβ . By what has been proved above, Y ∗ ⊂⋂G, whence otp (

⋂G) = ωβ . �
We can now finish the proof of Theorem 14.
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Proof of Theorem 14. We show by induction on β < ω1 that for any Suslin tree T ⊂ S

and any c : T [2] → 2, either there exists Y ∈ [T ]ω1 and g : Y → S such that ∀y ∈
Y [g(y) ≥ y] and Y

[2]
g ⊂ K0,c, or for each X ∈ [T ]ω1 there exist x ∈ X, B ⊂ predX(x),

and Z ∈ [coneX(x)]ω1 such that otp(B) = ωβ and B[2] ∪ (B ⊗ Z) ⊂ K1,c. This is
sufficient to imply Theorem 14, for given S ∈ [S]ω1 and c : S[2] → 2, let T ∈ [S]ω1 be
a Suslin tree (we are using Lemma 11). Suppose the first alternative of Theorem 14
fails and let α < ω1 be given. Choose β < ω1 such that α ≤ ωβ . Applying the above
statement to β, T , and c � T [2] with X = T , we can get x ∈ T and B ⊂ predS(x)
such that otp(B) = ωβ and B[2] ⊂ K1,c. Taking B∗ ⊂ B with otp(B∗) = α, we get
what we want.

To prove the above statement, fix β < ω1 and assume that the statement holds for
all smaller ordinals. Let T and c be given and suppose that the first alternative of
the statement fails. In particular, this implies that there is no X ∈ [T ]ω1 , such that
P(X, c � X [2]) is proper and preserves S. For if not, let

Dα = {q ∈ P(X, c � X [2]) : ∃t ∈ Fq [ht(t) > α]}.
By Lemma 17, Dα is dense in P(X, c � X [2]). Applying PFA(S), let G be a filter on
P(X, c � X [2]) such that ∀α < ω1 [G ∩ Dα �= 0]. Let Y =

⋃
q∈GFq. Then Y ∈ [T ]ω1 .

If we let g : Y → S be defined by g(y) = y, for all y ∈ Y , then Y
[2]
g = Y [2] ⊂ K0,c,

contradicting the hypothesis that the first alternative of the statement fails.
Now, fix any X ∈ [T ]ω1 . By Lemma 19 there exist x0 ∈ X, Y ∈ [X]ω1 , a sequence

〈Fα : α < ω1〉, and a function g : Y → S satisfying (1)–(3) of Lemma 19. If β = 0,
then fix y ∈ Y with y ≥ x0, and put x = y and B = {y}. Then for each α < ω1, if
ht(y) < α and

∧
Fα ≥ g(y), then there is tα ∈ Fα such that c({y, tα}) = 1. Letting

Z = {tα : α > ht(y) and
∧

Fα ≥ g(y)}, we get what we want.
Assume now that 0 < β < ω1. Let Ȳ = g′′Y . By Lemma 11, fix R ⊂ coneȲ (x0), a

Suslin tree. For each s ∈ R choose ys ∈ Y such that g(ys) = s. Observe that if s < t,
then ys and yt are comparable and different. Define d : R[2] → 2 by d({s, t}) = 1 iff
ys < yt and c({ys, yt}) = 1, for any s, t ∈ R with s < t. We claim that it is enough
to find u ∈ R and B̄ ⊂ predR(u) with otp(B̄) = ωβ such that B̄[2] ⊂ K1,d. Indeed,
suppose this can be done. Choose any x ∈ Y with x ≥ u. Let B∗ = {ys : s ∈ B̄}.
For any s, t ∈ B̄ with s < t, ys < yt because d({s, t}) = 1. So otp(B∗) = ωβ . Also
it is clear that B∗ ⊂ predX(x). If α < ω1 is such that α > ht(x) and

∧
Fα ≥ x,

then for any y ∈ B∗, g(y) ≤ ∧
Fα, and so there is t ∈ Fα such that c({y, t}) = 1.

Therefore, letting Uβ(B∗) be as in Lemma 27 (note that PFA(S) implies p > ω1; so
Lemma 27 may be applied) and letting I = {α < ω1 : α > ht(x) and

∧
Fα ≥ x},

for each α ∈ I, there is Yα ∈ Uβ(B∗) and tα ∈ Fα such that ∀y ∈ Yα [c({y, tα}) = 1].
There exists J ∈ [I]ω1 such that otp

(⋂
α∈JYα

)
= ωβ . It is clear that B =

⋂
α∈JYα,

Z = {tα : α ∈ J}, and x are as needed.
Thus we may concentrate on finding u ∈ R and B̄ ⊂ predR(u) as above. We will

apply the notation of Definitions 22, 23, and 25, and Lemmas 26 and 24 to R, d,
and β. If there exists u ∈ R such that nβ,u = ω, then letting B̄ = Aβ,u works. Thus
assume that for each u ∈ R, nβ,u < ω. Then for each u ∈ R \ {min(R)}, there is
f(u) ∈ R such that f(u) < u and Aβ,u ⊂ predR(f(u)). So by Lemma 12 and the
pigeonhole principle there exist U ∈ [R \ {min(R)}]ω1 , s ∈ R, and n ∈ ω such that
∀u ∈ U [f(u) = s and nβ,u = n]. Fix x ∈ U such that U is dense above x in S. Since
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nβ,x < ω, Xβ,x is uncountable. Choose u ∈ Xβ,x such that Xβ,x is dense above
u in S. Apply the inductive hypothesis to cβ(n), R, and d. Suppose that the first
alternative holds. Let F ∈ [R]ω1 and g∗ : F → S be such that ∀t ∈ F [g∗(t) ≥ t] and
F

[2]
g∗ ⊂ K0,d. Let Y ∗ = {yt : t ∈ F} and define h : Y ∗ → S by h(y) = g∗(g(y)),

for each y ∈ Y ∗. Then Y ∗ ∈ [T ]ω1 , ∀y ∈ Y ∗ [h(y) ≥ y], and Y ∗[2]
h ⊂ K0,c. This

contradicts the hypothesis that the first alternative fails for β, T , and c. So the
second alternative must hold for cβ(n), R, and d. Since V = coneXβ,x

(u) ∈ [R]ω1 , we
can find v ∈ V , B ⊂ predV (v), and W ∈ [coneV (v)]ω1 such that otp(B) = ωcβ(n),
and B[2] ∪ (B ⊗ W ) ⊂ K1,d. Fix w ∈ W such that W is dense above w in S. Choose
y ∈ U with y > w. Note that Xβ,x ∩ coneR(y) is uncountable. Furthermore, as y ∈ U
f(y) = s < x and Aβ,y ⊂ predR(s). Therefore, Lemma 26 applies and implies that
σβ,x = σβ,y. In particular, Aβ,x = Aβ,y. Also, since y ∈ U , nβ,y = n. So Aβ,y = Aβ,y,n

and σβ,y(n) = 0. However, coneW (y) is uncountable and coneW (y) ⊂ {z ∈ coneR(y) :
(Aβ,y,n ∪ B) ⊗ {z} ⊂ K1,d} ⊂ {z ∈ coneR(y) : B ⊗ {z} ⊂ K1,d}. So it is easy to
check that B ∈ L(β, y, n) and that B follows Aβ,y,n with respect to y. However, this
contradicts σβ,y(n) = 0, finishing the proof. �

The reader may conjecture that the stronger form of Theorem 14 in which g is
always equal to the identity function holds. However, our next counterexample shows
that this is provably false in ZFC. This same negative partition relation for non-special
trees of cardinality c with no uncountable chains and with the property that every
subset of size < c is special was proved under the hypothesis that p = c by Todorčević
in [17]. However, our result below is the first such negative partition relation known
to be provable in ZFC.

Theorem 28. There is c : S
[2] → 2 such that

(1) There is no X ∈ [S]ω1 such that X [2] ⊂ K0.
(2) There is no s ∈ S and B ⊂ predS(s) such that otp(B) = ω +2 and B[2] ⊂ K1.

Proof. Let ω↑ω denote {f ∈ ωω : ∀n ∈ ω [f(n) < f(n + 1)]}. For f, g ∈ ωω, if f �= g, let
Δ(f, g) denote the least n ∈ ω such that f(n) �= g(n). Choose a collection {fs : s ∈ S}
of ℵ1-many pairwise distinct elements of ω↑ω. For each s ∈ S, let {s+

n : n ∈ ω} be a 1-1
enumeration of succS(s). Recall that for each s ∈ S, ∃∞n ∈ ω [s�〈n〉 ∈ S]. Now, define
c : S

[2] → 2 as follows. For any pair s, t ∈ S, if s < t, then there is a unique n ∈ ω
such that s+

n ≤ t. If ft(Δ(fs, ft)) = n, then set c({s, t}) = 1. Otherwise c({s, t}) = 0.
The first claim will establish (1).

Claim 29. There is no X ∈ [S]ω1 such that X [2] ⊂ K0.

Proof. It is possible to deduce this claim from Lemma 5.3 of [18]. However, we will
give a self-contained proof below.

Suppose not. Fix a counterexample X. Let χ be a sufficiently large regular cardinal
(χ could be the cardinal fixed in Definition 16). Let M ≺ H(χ) be countable with
S, 〈fs : s ∈ S〉, 〈〈s+

n : n ∈ ω〉 : s ∈ S〉, c, X ∈ M . Applying Lemma 13, let x ∈ X ∩ M
be such that X is dense above x in S. Fix t ∈ X \ M with x < t, and fix u ∈ X with
u > t. We will get a contradiction if we can show that ft = fu. To this end, fix m ∈ ω
and assume that ft(i) = fu(i), for all i < m. Let σ = ft � m = fu � m. Consider any
s ∈ predX(t) ∩ M . Let n(s) denote the unique n ∈ ω such that s+

n ≤ t. If σ = fs � m
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and if n(s) = ft(m), then since c({s, t}) = 0, it follows that fs(m) = ft(m). Put
n = ft(m) and n∗ = fu(m). Let

D =
{
v ∈ S : ∃s ∈ X

[
fs � m = σ and fs(m) = n∗ and s+

n = v
]}

.

It is easy to see that D ∈ M . Let L = predS(t). Note that u+
n ∈ D. Therefore,

∀y ∈ L ∩ M∃v ∈ D [y ≤ v]. So by Lemma 18, we can find v ∈ L ∩ M ∩ D. Let s ∈ X
be such that fs � m = σ, fs(m) = n∗ and s+

n = v. Then s < t and s ∈ M ∩ predX(t).
Since s+

n = v ≤ t, n(s) = n = ft(m). Thus fu(m) = n∗ = fs(m) = ft(m). So by
induction on m ∈ ω, ∀m ∈ ω [fu(m) = ft(m)], which is a contradiction. �

We next work toward showing that (2) holds. We need a few preliminary claims.
Aiming for a contradiction, fix s ∈ S and B ⊂ predS(s) such that otp(B) = ω + 2
and B[2] ⊂ K1. For each i < ω + 2, let s(i) denote the ith element of B, and for each
i < ω + 1, let n(i) be the unique n ∈ ω such that (s(i))+n ∈ predS(s).

Claim 30. There are no infinite A ⊂ ω and n ∈ ω such that ∀i ∈ A [n(i) = n].

Proof. Suppose not. Fix i, j ∈ A such that s(i) < s(j). Then since c({s(i), s(j)}) = 1,
fs(j)

(
Δ

(
fs(i), fs(j)

))
= n(i) = n. As fs(j) is strictly increasing, Δ

(
fs(i), fs(j)

) ≤ n.
So it is possible to find i, j, k ∈ A and m ≤ n such that s(i) < s(j) < s(k) and

Δ
(
fs(i), fs(j)

)
= Δ

(
fs(i), fs(k)

)
= Δ

(
fs(j), fs(k)

)
= m.

However, we now have fs(i) � m = fs(j) � m = fs(k) � m, and also that fs(j)(m) =
fs(k)(m) = n, which is impossible. �

Let cl(B) denote the closure (with respect to the usual topology on ωω) of the set{
fs(i) : i ∈ ω

}
. As cl(B) is a non-empty closed subset of ωω, fix a non-empty pruned

subtree T ⊂ ω<ω such that [T ] = cl(B) (refer to Section 2 for our notation for subtrees
of ω<ω). Let σ ∈ T . Suppose for a moment that ∃∞n ∈ ω [σ�〈n〉 ∈ T ]. Let succT (σ)
denote {n ∈ ω : σ�〈n〉 ∈ T} and let l denote |σ|. For each n ∈ succT (σ), choose
in ∈ ω such that σ�〈n〉 ⊂ fs(in). As B is well ordered, by Ramsey’s theorem there is
N ∈ [succT (σ)]ω such that ∀m, n ∈ N [m < n =⇒ s(im) < s(in)]. Fix m, n ∈ N such
that max {m, n(im)} < n. However, Δ

(
fs(im), fs(in)

)
= l and fs(in)(l) = n > n(im),

contradicting c({s(im), s(in)}) = 1. So we conclude that T is finitely branching, and
that cl(B) is a compact subset of ωω.

Now,
{
fs(i) : i ∈ ω

}
is an infinite subset of cl(B). Let f ∈ cl(B) be a complete

accumulation point of
{
fs(i) : i ∈ ω

}
. By applying Claim 30 and Ramsey’s theorem,

it is possible to choose A ∈ [ω]ω such that for each i ∈ A, f �= fs(i), and for each
i, j ∈ A, if i < j, then Δ

(
f, fs(i)

)
< Δ

(
f, fs(j)

)
and n(i) < n(j).

Now, since fs(ω+1) �= fs(ω), there must be k ∈ {ω, ω + 1} such that fs(k) �= f .
Fix such a k ∈ {ω, ω + 1}. Let l = fs(k)

(
Δ

(
fs(k), f

))
. Choose i ∈ A such that

Δ
(
f, fs(i)

)
> Δ

(
fs(k), f

)
and n(i) > l. Then Δ

(
fs(k), fs(i)

)
= Δ

(
fs(k), f

)
. However,

fs(k)

(
Δ

(
fs(k), fs(i)

))
= l < n(i), contradicting c({s(i), s(k)}) = 1. This contradiction

finishes the proof. �

Observe that properties of S such as coherence are not used in the proof of Theo-
rem 28; we only need that every element of S has infinitely many immediate successors
in S.
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It is also worth pointing out the following corollary of the proof of Theorem 28 as
it shows that while in the model of PFA(S) the partition relation ω1 → (ω1, ω + 2)2

fails, forcing with the coherent Suslin tree S recuperates it.

Theorem 31. If there is a Suslin tree then ω1 �→ (ω1, ω + 2)2.

Although Theorem 14 shows that the statement that ω1 → (ω1, α)2 for all α < ω1

is not equivalent to p > ω1 over ZFC+PID, it does not give much further information.

Problem 32. Find a cardinal invariant x so that the statement that ω1 → (ω1, α)2

for all α < ω1 is equivalent to x > ω1 over PID.

The following result that comes from Theorem 6 and the proof of Theorem 5 above
gives a partial answer to this problem.

Theorem 33 (Todorcevic). Assume PID. The following are equivalent:

(1) b > ω1.
(2) ω1 → (ω1, ω + 2)2.

This leads us to the following version of Problem 32.

Problem 34. Is the statement that ω1 → (ω1, α)2 for all α < ω1 equivalent to b > ω1

over PID?

Note that if, under PID, the cardinal invariant inequality b > ω1 does not correspond
to ω1 → (ω1, α)2, there must be a minimal α < ω1 with this property. The proof of
Theorem 5 actually shows that such α is quite large.

4. PID and five cofinal types

Recall that by Theorem 4 above, under PID + p > ω1, 1, ω, ω1, ω × ω1, and [ω1]
<ω

are the only cofinal types of directed sets of size at most ℵ1. In this section, we find
a cardinal invariant which captures, in the sense described in the introduction, this
statement. This cardinal invariant is not one of the naturally occurring ones. Rather
it is the minimum of two cardinal invariants, the well-known bounding number b
and another cardinal (see Definition 37 below) which has not been investigated as
throughly.

Definition 35. Let 〈D,≤〉 be a directed set and suppose X ⊂ D. We say that
X is pseudobounded if ∀A ∈ [X]ω∃B ∈ [A]ω [B is bounded in D]. D is said to be
σ-pseudobounded if D =

⋃
n∈ωXn, where for each n ∈ ω, Xn is pseudobounded in D.

If I is an ideal on a set X, then 〈I,⊂〉 is a directed poset. Throughout this section,
we view ideals on ω (or on any countable set) as directed posets ordered by inclusion.
Recall that an ideal I on a countable set X is said to be tall if I is a proper ideal on
X (which means X /∈ I) and ∀Y ∈ [X]ω∃Z ∈ [Y ]ω [Z ∈ I]. As always, an ideal on X

is required to contain [X]<ω.

Lemma 36. Let I be a tall ideal on ω such that 〈I,⊂〉 is σ-pseudobounded. Then
[ω1]

<ω �≤T 〈I,⊂〉 and 〈I,⊂〉 �≤T ω × ω1.
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Proof. It is clear that [ω1]
<ω �≤T 〈I,⊂〉 because I is σ-pseudobounded. Suppose for a

contradiction that 〈I,⊂〉 ≤T ω×ω1. Then there exists {X(n, α) : n < ω∧α < ω1} ⊂ I
such that for any A ∈ [ω]ω and {Xn : n ∈ A} ⊂ [ω1]

ω1 , {X(n, α) : n ∈ A∧α ∈ Xn} is
cofinal in I. First of all since I is proper, for each n ∈ ω, there must be kn ∈ ω and
Xn ∈ [ω1]

ω1 such that ∀α ∈ Xn [kn /∈ X(n, α)]. Since I is tall there is A ∈ [ω]ω such
that {kn : n ∈ A} ∈ I (either {kn : n ∈ ω} is finite, in which case A = ω works, or
else use tallness). Now {X(n, α) : n ∈ A ∧ α ∈ Xn} is cofinal in I. So there is n ∈ A
and α ∈ Xn such that {km : m ∈ A} ⊂ X(n, α). However, kn /∈ X(n, α). �

For any directed set D, and X a directed cofinal subset of D, D ≡T X. Therefore,
if I is a tall σ-pseudobounded ideal on ω and X ⊂ I is cofinal, directed, and has size
at most ω1, then 〈X,⊂〉 is not Tukey equivalent to any of 1, ω, ω1, ω×ω1, and [ω1]

<ω.

Definition 37. cof(Fσ) is the least κ such that there exists a tall, σ-pseudobounded
Fσ ideal I on ω and a directed cofinal X ⊂ I such that |X| = κ.

It is clear that ω1 ≤ cof(Fσ) ≤ c. It is also easy to see that cov(M) ≤ cof(Fσ). Later
in this section, we will prove that b and cof(Fσ) are independent, even assuming PID.
We do not know whether the same cardinal invariant is obtained if the requirement
that I be σ-pseudobounded is dropped from the definition of cof(Fσ). This is closely
related to the well-known question of whether every tall Fσ ideal on ω is either σ-
pseudobounded or Tukey equivalent to [c]<ω.

Conjecture 38. Let cof∗(Fσ) be the least κ such that there exists a tall Fσ ideal I
on ω and a directed cofinal X ⊂ I such that |X| = κ. Then cof(Fσ) = cof∗(Fσ).

There is another way to think about the cardinals cof(Fσ) and cof∗(Fσ). For any
ideal I on ω, let cof(I) denote

min{|X| : X ⊂ I ∧ X is directed and cofinal in 〈I,⊂〉}.
Then cof∗(Fσ) is the minimal value taken by cof(I) as I runs over all the tall Fσ

ideals, and cof(Fσ) is the minimal value as I runs over all the tall, σ-pseudobounded
Fσ ideals.

The possible values of cof(I) for various definable ideals I on ω have been investi-
gated by several people. For instance, Louveau and Velickovic [10] proved that if I is
any tall Borel non-Fσ ideal, then cof(I) ≥ d. Other notable results include the obser-
vations that cof(Z) = cof(N ) and cof(ED) = c, where Z is the ideal of subsets of ω of
asymptotic density 0 and ED is the ideal on ω × ω generated by the vertical columns
and graphs of functions. The cardinal cof∗(Fσ) was investigated in a recent paper by
Hrušák et al. [7]. They proved that cof∗(Fσ) < b is consistent with ZFC. One part
of the proof of Theorem 46 is based on their work. We refer the reader to [7] and the
references there for more on the possible values of cof(I) for definable ideals I. An
argument similar to the proof in Case II of Theorem 39 was independently given by
Borodulin-Nadzieja and Chodounský in a recent paper [2] to prove that under PID
every ω1-tower is Hausdorff iff b > ω1.

Theorem 39. Assume PID. The following are equivalent:
(1) min{b, cof(Fσ)} > ω1.
(2) 1, ω, ω1, ω × ω1, and [ω1]

<ω are the only cofinal types of directed sets of size
at most ℵ1.
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Proof. By the results of Todorčević in [18] it follows that if b = ω1, then there is a
directed set of size ω1 whose cofinal type is different from any of 1, ω, ω1, ω × ω1,
and [ω1]

<ω.
Next, suppose that cof(Fσ) = ω1. Let I and X ⊂ I witness this. Then |X| = ω1,

and by Lemma 36, the cofinal type of 〈X,⊂〉 is not one of 1, ω, ω1, ω×ω1, and [ω1]
<ω.

This proves ¬(1) =⇒ ¬(2).
For the other direction, we assume (1) and prove (2). It is easy to see (for example,

see [8]) that if D is a directed set of size at most ℵ1 and D �≥T ω1 × ω, then D ≡T 1,
or D ≡T ω, or D ≡T ω1. Therefore, fixing a directed set D with |D| ≤ ℵ1, it is
sufficient to show that either D contains an uncountable set X all of whose infinite
subsets are unbounded (in which case [ω1]

<ω ≡T D) or else that D =
⋃

n∈ωXn where
for each n ∈ ω and each A ∈ [Xn]ω, A is bounded in D (in which case D ≤T ω1 ×ω).
The proof of this proceeds in two cases. We first make some preliminary remarks. For
x ∈ D, pred(x) denotes {y ∈ D : y ≤ x}. Let A ⊂ D. Define the trace of D on A,
tr(D, A) = {B ⊂ A : ∃x ∈ D [B ⊂ pred(x)]}. Note that since D is directed, tr(D, A)
is an ideal on A.

Case I : For each A ∈ [D]≤ω, tr(D, A) is not tall. Let I = {A ∈ [D]≤ω : ∀x ∈
D [|A ∩ pred(x)| < ω]}. It is easy to see that I is an ideal. To see that it is a P-ideal,
fix {An : n ∈ ω} ⊂ I. Without loss of generality, the An are pairwise disjoint and
infinite. For each x ∈ D and n ∈ ω, put pred(x, n) = pred(x) ∩ An; this is a finite
subset of An. As |D| ≤ ω1 < b, it is possible to find finite sets Fn ⊂ An such that

∀x ∈ D∀∞n ∈ ω [pred(x, n) ⊂ Fn] .

Putting A =
⋃

n∈ω(An \ Fn), it is clear that A ∈ I and that ∀n ∈ ω [An ⊂∗ A].
Now, if there is an uncountable X ⊂ D such that [X]≤ω ⊂ I, then it is clear that
every infinite subset of X is unbounded in D, and therefore D ≡T [ω1]

<ω. So suppose
that there exist {Xn : n ∈ ω} which are pairwise disjoint such that D =

⋃
n∈ωXn,

and ∀n ∈ ω [[Xn]ω ∩ I = 0]. We claim that for each n ∈ ω, and each A ∈ [Xn]ω,
A is bounded in D. This is sufficient to show that D ≤T ω1 × ω. Fix n ∈ ω and
A ∈ [Xn]ω. The hypothesis of Case I implies that either tr(D, A) is not a proper
ideal on A or that there exists C ∈ [A]ω such that ∀B ∈ tr(D, A) [|C ∩ B| < ω].
Suppose for a moment that ∃C ∈ [A]ω∀B ∈ tr(D, A) [|C ∩ B| < ω]. Then for any
x ∈ D, pred(x)∩C is finite, whence C ∈ I. However, this means that C ∈ I ∩ [Xn]ω,
contradicting I ∩ [Xn]ω = 0. Therefore, it must be the case that tr(D, A) is not a
proper ideal on A. So A ∈ tr(D, A), whence A is bounded. This completes Case I.

Case II : There exists A ∈ [D]ω for which J = tr(D, A) is a tall ideal on A. In
particular, J is a proper ideal on A. Identifying A with a copy of ω, it makes sense to
talk about the descriptive complexity of J . Put X = {pred(x)∩A : x ∈ D} ⊂ J , and
note that X is a cofinal subset of 〈J ,⊂〉 of size at most ω1. Moreover, X is directed.
To see this if x, y ∈ D, then choosing z ∈ D such that x, y ≤ z, it is clear that
pred(z)∩A ∈ X, and that pred(x)∩A ⊂ pred(z)∩A and pred(y)∩A ⊂ pred(z)∩A.
Define I = {F ∈ [J ]≤ω : ∀B ∈ J [|F ∩ P(B)| < ω]}. Using the fact that J has a
cofinal subset of size at most ω1 and the hypothesis that b > ω1, it is easy to check
that I is a P-ideal. First suppose there is an uncountable G ⊂ J such that [G]≤ω ⊂ I.
For each B ∈ G choose xB ∈ D such that B ⊂ pred(xB). Let H ⊂ G be infinite (not
necessarily countable). We claim that {xB : B ∈ H} is unbounded in D. For if not,
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then fix x ∈ D such that x ≥ xB , for all B ∈ H, and note that pred(x) ∩ A ∈ J .
Now for any B ∈ H, B ⊂ pred(xB) ⊂ pred(x), and so B ∈ P(pred(x) ∩ A). Thus if
L ∈ [H]ω, then L∩P(pred(x)∩A) is infinite, whence L /∈ I, contradicting [G]≤ω ⊂ I.
It follows that {xB : B ∈ G} is an uncountable subset of D, and that no infinite subset
of it is bounded in D.

Next, suppose that there exist {Gn : n ∈ ω} which are pairwise disjoint such
that J =

⋃
n∈ωGn and ∀n ∈ ω [[Gn]ω ∩ I = 0]. We first claim that each Gn is pseu-

dobounded in J , so that J is σ-pseudobounded. Fix n ∈ ω and let F ∈ [Gn]ω. Since
F /∈ I and F ∈ [J ]≤ω, there exists B ∈ J such that F ∩ P(B) is infinite. It is clear
that L = F ∩ P(B) ∈ [F ]ω and that for all C ∈ L, C ⊂ B, whence L is bounded
in J . It now follows from the assumption that cof(Fσ) > ω1 that J is not an Fσ

ideal (with respect to the natural topology on P(A)). For each n ∈ ω, let Hn be the
closure of Gn with respect to the usual topology on P(A). So there is n ∈ ω such that
Hn �⊂ J . Fix such n and fix C ∈ Hn \ J . Let {ai : i ∈ ω} enumerate A. Choose
{Bm : m ∈ ω} ⊂ Gn such that for each m ∈ ω, Bm ∩ {ai : i < m} = C ∩ {ai : i < m}
and moreover ∀i < m [Bi �= Bm]. Thus {Bm : m ∈ ω} ∈ [Gn]ω, and so there exists
B ∈ J for which ∃∞m ∈ ω [Bm ⊂ B]. We claim that this implies that C ⊂ B. Indeed
if ai ∈ C for some i ∈ ω, then choose m > i such that Bm ⊂ B. Then it is clear
that ai ∈ Bm ⊂ B. Thus it follows that C ∈ J , a contradiction. Since we have a
contradiction from the second alternative of PID, it must be that in Case II the first
alternative always occurs. This finishes the proof. �

A noteworthy feature of this result is that the cardinal cof(Fσ) speaks about the
cofinal structure of definable ideals of size continuum while (2) of Theorem 39 is part
of the general theory of cofinal types.

Corollary 40. PFA(S) implies that the coherent Suslin tree S forces that 1, ω, ω1,
ω × ω1, and [ω1]

<ω are the only cofinal types of directed sets of size at most ℵ1.

Proof. It is a theorem of Todorčević [22] that if V satisfies PFA(S) and if G is (V, S)-
generic, then in V [G], both PID and b > ω1 hold. So in view of Theorem 39, it
suffices to check that in V [G], cof(J ) > ω1 for any tall Fσ ideal J . As S does not
add any reals, all Fσ ideals in V [G] are coded in V. So fix J ∈ V a code for an Fσ

ideal, and suppose � “J is tall.” Let {x̊α : α < ω1} ⊂ VS with � “x̊α ∈ J ,” for
each α < ω1. We claim that � {x̊α : α < ω1} is not cofinal in J . Fix p ∈ S. For each
q ≤ p and α < ω1 find x(α, q) ∈ J and r(α, q) ≤ q such that r(α, q) � x̊α = x(α, q).
Since p > ω1 holds in V and since J is a proper ideal, find x ∈ [ω]ω such that
∀α < ω1∀q ≤ p [x ⊂∗ (ω \ x(α, q))]. Since � “J is tall,” there is y ∈ J ∩ [x]ω. Now it
is clear that for each α < ω1 p � y �⊂ x̊α. �

Corollary 41. PID + add(M) > ω1 implies that 1, ω, ω1, ω × ω1, and [ω1]
<ω are

the only cofinal types of directed sets of size at most ℵ1.

Next, we work toward showing that b and cof(Fσ) are mutually independent even
in the presence of PID

Definition 42. A sequence of natural numbers I = 〈kn : n ∈ ω〉 is called an interval
partition if k0 = 0 and ∀n ∈ ω [kn < kn+1]. For an interval partition I and n ∈ ω,
let In = [kn, kn+1). Let I be an interval partition such that ∀n ∈ ω [|In| ≥ 2n]. In the
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rest of this section, polynomial means a polynomial with integer co-efficients. Define
Ipoly(I) to be

{A ⊂ ω : there is a polynomial p(n) such that ∀n ∈ ω [|In ∩ A| ≤ p(n)]}.
It is clear that this is an Fσ ideal on ω.

Definition 43. A poset P is said to have the Laver property if for each sequence
of finite sets 〈H(n) : n ∈ ω〉 in the ground model V, for each (V, P)-generic G,
and for each f ∈ V[G] ∩ ∏

n∈ωH(n), there is a K ∈ V ∩ ∏
n∈ωP(H(n)) such that

∀n ∈ ω [|K(n)| ≤ n + 1 ∧ f(n) ∈ K(n)].

The following is a special case of a result of Hrušák et al. [7].

Lemma 44 (Hrušák, Rojas-Rebolledo, and Zapletal). Fix I ∈ V. Let P be any poset
with the Laver property. Then �“V ∩ Ipoly(I) is a cofinal subset of Ipoly(I).”

Proof. In the ground model V, define for each polynomial p and n ∈ ω, the set
H(p, n) = {s ⊂ In : |s| ≤ p(n)}. Let G be (V, P) generic and let A ∈ V [G]∩Ipoly(I).
Let p be a polynomial witnessing this. Define FA ∈ ∏

n∈ωH(p, n) by FA(n) =
A ∩ In. By the Laver property, find K ∈ V ∩ ∏

n∈ωP(H(p, n)) such that ∀n ∈
ω [|K(n)| ≤ n + 1 ∧ FA(n) ∈ K(n)]. Working in V define sn =

⋃
K(n), for each

n ∈ ω. Clearly, sn ⊂ In and |sn| ≤ (n+1)p(n). Therefore, B =
⋃

n∈ωsn ∈ V∩Ipoly(I)
and A ⊂ B. �

Lemma 45. For any I there exist {Xn : n ∈ ω} such that Ipoly(I) =
⋃

n∈ωXn and
for each n ∈ ω, every infinite subset of Xn has a further infinite subset that is bounded
in Ipoly(I). In other words, Ipoly(I) is σ-pseudobounded.

Proof. Let {pn : n ∈ ω} enumerate all polynomials. Define Xn = {A ∈ Ipoly(I) :
∀m ∈ ω [|Im ∩ A| ≤ pn(m)]}. It is clear that Ipoly(I) =

⋃
n∈ωXn and that each Xn is

a closed subset of P(ω). Now fix n and an infinite Y ⊂ Xn. Let A ∈ Xn be a complete
accumulation point of Y . For each m ∈ ω choose Bm ∈ Y such that Bm∩

(⋃
i≤mIi

)
=

A∩
(⋃

i≤mIi

)
and moreover ∀i < m [Bm �= Bi]. Thus {Bm : m ∈ ω} ∈ [Y ]ω. For each

i ∈ ω, put si =
⋃

m∈ω(Bm ∩ Ii). It is clear that si =
(⋃

m<i(Bm ∩ Ii)
) ∪ (A ∩ Ii).

Therefore |si| ≤ (i + 1)pn(i) and
⋃

m∈ωBm ∈ Ipoly(I), as needed. �

Theorem 46. Assume that there is a supercompact cardinal κ. Then PID + b > ω1

does not imply cof(Fσ) > ω1. Also there is a model of PID + cof(Fσ) > ω1, where
d = ω1 (a fortiori b = ω1).

Proof. By results of [1,19], if I is any P-ideal, then there is a proper poset not adding
reals, call it PI , that forces PID with respect to I. Using a Laver diamond in a
ground model satisfying CH, do a Countable Support (CS) iteration 〈Pα, Q̊α : α ≤ κ〉
as follows. Given Pα, if the Laver diamond picks a Pα name for a P-ideal I̊, then let
Q̊α be a full Pα name such that �αQ̊α = PI̊ . Else let Q̊α be a full Pα name such that
�αQ̊α is Laver forcing. Note that cofinally often we will have �αQ̊α is Laver forcing.
Also, note that each iterand is forced to have the Laver property, which is preserved in
CS iterations. So if G is (V, Pκ) generic, then in V [G], PID+b > ω1 holds. Moreover,
if I ∈ V, then by Lemma 44 V∩Ipoly(I) is cofinal in V[G]∩Ipoly(I). By Lemma 45,
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in V[G], Ipoly(I) is a tall, σ-pseudobounded, Fσ ideal, and V ∩ Ipoly(I) is a directed
cofinal subset of V[G]∩Ipoly(I) of size ω1. So it witnesses cof(Fσ) = ω1. This finishes
the proof of the first statement.

For the second statement, we use the well-known result of Laflamme [9] that for
any ground model V and any Fσ ideal I on ω belonging to V, there is a proper
ωω-bounding poset QI ∈ V such that QI adds an infinite subset of ω that is almost
disjoint from every member of V ∩ I. Once again, fix a ground model satisfying CH
and a Laver diamond in that ground model. Do a CS iteration 〈Pα, Q̊α : α ≤ κ〉 as
follows. Given Pα, if the Laver diamond picks a Pα name for a P-ideal I̊, then let Q̊α

be a full Pα name such that �α Q̊α = PI̊ . If the Laver diamond picks a pair of Pα

names 〈I̊, X̊〉 such that �α“I̊ is a tall Fσ ideal” and �α“X̊ ⊂ I̊ and
∣
∣
∣X̊

∣
∣
∣ < κ,” then

let Q̊α be a full Pα name for QI̊ . If neither of these happens, then Q̊α is a full Pα

name for the trivial poset. Note that since each iterand is proper and ωω-bounding,
Pκ is ωω-bounding. Therefore, if G is (V, Pκ) generic, then PID + d = ω1 holds in
V[G]. Also in V[G], if I is a tall Fσ ideal and X ⊂ I is of size at most ω1, then there
exists a ∈ [ω]ω such that ∀x ∈ X [|x ∩ a| < ω]. This implies that X is not cofinal in
I. Therefore, cof(Fσ) > ω1 holds in V[G]. �
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[6] P. Hájek, M.S.V.J. Vanderwerff and V. Zizler, Biorthogonal systems in Banach spaces, CMS
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