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Abstract. It will be shown to be consistent that there are at least two non-
isomorphic selective ultrafilters, but no stable ordered-union ultrafilters. This

answers a question of Blass from his 1987 paper [6].

1. Introduction

Ramsey’s theorem [21] and Hindman’s theorem [14], together with their common
generalization, the Milliken–Taylor theorem of [18] and [28], are among the most
widely used facts of infinite combinatorics. The results of this paper clarify an
important aspect of their relationship to one another. Before stating these results,
it may be worthwhile to set the stage by reviewing some aspects of the history
of this subject. The classical theorem of Ramsey is often referred to as a higher
dimensional pigeonhole principle and this might lead one to think that there is not
much of interest to say about the one dimensional case. But any consideration of
van der Waerden’s theorem, to say nothing of Szemerédi’s Theorem, would reveal
the error of this view point. The interest, as well as the complexity of both of these
pigeonhole type results stems from the fact that their conclusions yield sets that
are not necessarily large in terms of cardinality, but large in terms of their algebraic
structure. For example, a consequence of van der Waerden’s Theorem is that for
any partition of N into two pieces, one of the pieces will contain arbitrarily large
arithmetic progressions, or, in other words, arbitrarily large sets that are closed
under addition by a fixed integer. This provides the motivation for a conjecture of
Graham and Rothschild [12] that for any partition of N into finitely many pieces,
one of the pieces contains a set that is closed under all sums of distinct members.
The truth of this conjecture was established by Hindman (Theorem 3.1 in [14]) and
is now known as Hindman’s Theorem.

The history leading to the proof is both interesting and relevant to the results
about to be presented. A natural approach to proving Hindman’s Theorem would
be to proceed inductively to construct k0, k1, . . . , kn and An such that all sums of
distinct integers from k0, k1, . . . , kn belong to one piece of the given partition and,
crucially, An is an infinite set from which it is possible to select the next integer
kn+1. And, indeed, this is how all proofs of Hindman’s Theorem proceed, but the
technical details in the original proof of [14] are daunting and a potential stumbling
block is correctly choosing the set An. An early realization was that it would help
if the An could be selected from an ultrafilter; but that ultrafilter would need to
enjoy some very specific properties.
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In the earlier paper [13], Hindman had made the following observation: The
Graham and Rothschild Conjecture holds if and only if there is an ultrafilter on N
every member of which contains all non-repeating sums from some infinite subset.
In the same paper, he shows that if the Continuum Hypothesis holds, then the
Graham and Rothschild Conjecture is equivalent to the existence of an ultrafilter
U that is an idempotent (namely U + U = U) in the semigroup (βN,+) where
ultrafilters are thought of as finitely additive measures and the + operation is the
convolution of measures. This paper will focus on a strengthening of the property
of an ultrafilter that all of its members contain the non-repeating sums of an infi-
nite subset. But before explaining the strengthening we need to return to the story
and mention that Hindman was able to eliminate the use of ultrafilters by fash-
ioning an elaborately technical, albeit elementary, argument in [14] that seemingly
did away with the use of the idempotent. Somewhat later, though, Baumgartner
produced a much simpler version of Hindman’s technical argument in [3]. A key
idea used by Baumgartner was the notion of a large set, somewhat reminiscent of
the construction of Haar measure.

As explained by Bergelson in [4], the notion of largeness in this context can be
traced back to Poincaré’s work on celestial mechanics and, when combined with an
idempotent ultrafilter, very quickly yields Hindman’s Theorem. This realization of
Galvin and Glazer that a much older and more general theorem of Ellis [11] about
idempotents in compact semigroups could vastly simplify the proof of Hindman’s
Theorem points to the important role of ultrafilters in this area of Ramsey Theory.
So even though Hindman’s construction using the Continuum Hypothesis was not,
ultimately, necessary, it played an important role in the development of the subject
and fostered future research.

For example, in [14] van Douwen is credited with realizing that, assuming the
Continuum Hypothesis, it is possible to construct an ultrafilter that satisfies a
stronger version of the property Hindman established under the same assumptions.
As documented in [15], it was noticed by van Douwen that, assuming the Contin-
uum Hypothesis, certain ultrafilters had a base consisting of all of the finite sums of
some infinite set of positive integers. The difference is worth highlighting: Hindman
had asked only that each member of his ultrafilter contain a set closed under finite
sums, but van Douwen is asking that this set actually belongs to the ultrafilter.
These ultrafilters identified by van Douwen are now known as strongly summable
ultrafilters and the question of whether the Continuum Hypothesis is needed to con-
struct them is also attributed to van Douwen. The strongly summable ultrafilters
play a significant role in the theory of the semigroup (βN,+) and the interested
reader can learn more about this, and much more, in [16].

Closely related to Hindman’s Theorem is Theorem 3.3 from [14], a result about
the union operation on the finite subsets of the positive integers. It will be worth-
while introducing some notation in order to state this result, since this notation
will be used in later sections as well.

Definition 1.1. As usual in set theory, ω denotes N. For a set X and a cardinal
κ, [X]

κ
= {A ⊆ X : |A| = κ} and [X]

<κ
= {A ⊆ X : |A| < κ}. FIN denotes

[ω]
<ℵ0 \ {∅}.
A ⊆ FIN is said to be closed under finite unions if s∪ t ∈ A, for all s, t ∈ A. Let

cl∪ (A) =
{⋃

X : X ∈ [A]
<ℵ0 \ {∅}

}
.

cl∪ (A) ⊆ FIN and cl∪ (A) is closed under finite unions. Indeed, cl∪ (A) is the
closure of A under finite non-empty unions.
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In analogy with the strongly summable ultrafilters, it is possible to formulate
the following definition.

Definition 1.2. An ultrafilter on FIN will be called a union ultrafilter if it has
a base consisting of sets of the form cl∪ (A), where A ⊆ FIN consists of pairwise
disjoint sets and is infinite.

However, it turns out that the connection between strongly summable ultrafilters
and union ultrafilters goes beyond analogy. In §5 of [6] it is shown that the mapping
from FIN to N sending a to

∑
n∈a 2

n sends union ultrafilters to strongly summable
ultrafilters and a converse is established in Theorem 1 of [8]. Indeed Baumgartner’s
simplified proof of Hindman’s Theorem actually states that if FIN is partitioned
into finitely many pieces then there is an infinite A ⊆ FIN consisting of pairwise
disjoint sets such that cl∪ (A) is contained in one of the pieces. It turns out that
many of the constructions of union ultrafilters actually produce a stronger property
than needed and this is the main property of ultrafilters to be examined in the
subsequent sections.

Definition 1.3. For s, t ∈ FIN, write s <b t to mean max(s) < min(t). Note that
<b is a transitive and irreflexive relation on FIN.
X ⊆ FIN is called a block sequence if X is non-empty and it is linearly ordered

by the relation <b. More formally, X ⊆ FIN is a block sequence if and only if
X ̸= ∅ and ∀s, t ∈ X [s = t ∨ s <b t ∨ t <b s]. Note that if X is a block sequence,
then ⟨X,<b⟩ is a well-order and the order type of ⟨X,<b⟩ is |X|. The notation
X(i) will be used to denote the ith member of ⟨X,<b⟩, for all i < |X|.

The following notation, which is based on Todorcevic [29], will be used. For
1 ≤ α ≤ ω and A ⊆ FIN,

A[α] = {X ⊆ A : X is a block sequence and |X| = α} ;

A[<α] = {X ⊆ A : X is a block sequence and 1 ≤ |X| < α} .

Thus A[α] denotes the collection of all block sequences of length α from A and A[<α]

is the collection of all block sequences of length < α from A (by definition block
sequences are non-empty). For A ⊆ FIN,

[A] =
{⋃

X : X ∈ A[<ω]
}

Thus [A] is the collection of all unions of finite length block sequences from A. Note
A ⊆ [A] ⊆ FIN.

Further, if X ⊆ FIN is a block sequence, then cl∪ (X) = [X].

Definition 1.4. An ultrafilter H on FIN is called an ordered-union ultrafilter if H
has a base consisting of sets of the form [X], where X is an infinite block sequence.
In other words, an ultrafilter H on FIN is an ordered-union ultrafilter if and only

if ∀A ∈ H∃X ∈ FIN[ω] [[X] ∈ H and [X] ⊆ A].

That union ultrafilters and ordered-union ultrafilters are consistently different
notions is proved in Theorem 4 of [8] assuming the Continuum Hypothesis. While
the ordered-union ultrafilters are defined to contain witnesses to Hindman’s the-
orem, it is not clear that they also contain witnesses to the higher dimensional
analogue of Hindman’s theorem, namely the Milliken-Taylor theorem of [18] and
[28]. Obtaining such properties requires introducing a further strengthening.

Definition 1.5. Let X,Y ∈ FIN[ω]. Y is said to refine X if ∀i ∈ ω [Y (i) ∈ [X]]. Y
is said to almost refine X if ∀∞i ∈ ω [Y (i) ∈ [X]].

Definition 1.6. An ordered-union ultrafilter H on FIN is said to be stable if for
every sequence ⟨Xn : n ∈ ω⟩ with the property that Xn ∈ FIN[ω] and [Xn] ∈ H,
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for all n ∈ ω, there exists Y ∈ FIN[ω] such that ∀n ∈ ω [Y almost refines Xn] and
[Y ] ∈ H.

While stability is deceptively similar to the definition of a P-point, it is shown
in [6] to be a weaker notion. However, it was also shown in [6] to capture a number
of important combinatorial properties. Indeed, within the realm of ordered-union
ultrafilters on FIN, stability is the analogue of selectivity for ultrafilters on N.

Definition 1.7. An ordered-union ultrafilter H on FIN has the canonical partition
property if for every function f : FIN → ω, there exists A ∈ H such that one of the
following statements hold:

(1) ∀s, t ∈ A [f(s) = f(t)];
(2) ∀s, t ∈ A [f(s) = f(t) ↔ min(s) = min(t)];
(3) ∀s, t ∈ A [f(s) = f(t) ↔ max(s) = max(t)];
(4) ∀s, t ∈ A [f(s) = f(t) ↔ (min(s) = min(t) ∧max(s) = max(t))];
(5) ∀s, t ∈ A [f(s) = f(t) ↔ s = t].

Blass [6] proved that ordered-union ultrafilters are stable if and only if they enjoy
strong Ramsey theoretic properties.

Theorem 1.8 (Theorem 4.2 of Blass [6]). For any ordered-union ultrafilter H on
FIN, the following are equivalent:

(1) H is stable;

(2) for each 1 ≤ n < ω and c : FIN[n] → 2, there is an A ∈ H such that c is
constant on A[n];

(3) for each c : FIN[2] → 2, there is an A ∈ H such that c is constant on A[2];
(4) H has the canonical partition property.

The theorem of [6] actually contains a number of other equivalences. One of
these will be touched upon below. It will be illuminating to note that Theorem 1.8
is the analogue of a well-known characterization of selective ultrafilters on N due
to Kunen. Recall the following definition.

Definition 1.9. An ultrafilter U on ω is called selective if for every f : ω → ω,
there is a set A ∈ U such that f is either constant or 1-1 on A.

Observe that Definition 1.9 is saying that every function on ω attains a canonical
form on some member of a selective ultrafilter. It is the analogue of Item (4) of
Theorem 1.8 for ultrafilters on N. An unpublished theorem of Kunen says that
selectivity is equivalent to the existence of witnesses for Ramsey’s theorem, which
provides the analogue of Theorem 1.8 for ultrafilters on N.

Theorem 1.10 (Kunen; see [2]). The following are equivalent for an ultrafilter U
on ω:

(1) U is selective;
(2) for each 1 ≤ n < ω and c : [ω]

n → 2, there is an A ∈ U such that c is
constant on [A]

n
;

(3) for each c : [ω]
2 → 2, there is an A ∈ U such that c is constant on [A]

2
;

The homogeneity properties given by Items (2) and (3) of Theorems 1.8 and 1.10

can be improved to cover all analytic partitions of FIN[ω] and [ω]
ω
respectively. In

the presence of large cardinals, they be strengthened even further to obtain homo-
geneous sets for any partition in the inner model L(R). This further strengthening
leads to the notion of a generic ultrafilter over a Ramsey space. Forcing with [ω]

ω

ordered by almost inclusion adds a selective ultrafilter and forcing with FIN[ω] or-
dered by almost refinement adds a stable ordered-union ultrafilter. Furthermore, it
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is a theorem of Todorcevic, appearing in [10], that in the presence of large cardinals,
the selective ultrafilters are precisely those ultrafilters on ω that are generic over
L(R) for [ω]

ω
partially ordered by almost inclusion. Similarly, in the presence of

large cardinals, the stable ordered-union ultrafilters are precisely those ultrafilters

on FIN that are generated from a generic filter over L(R) for FIN[ω] partially or-
dered by almost refinement. Blass [7] proved the same result in a version of the
Solovay model.

Todorcevic [29] has investigated the abstract concept of a topological Ramsey
space. In [29], the space corresponding to Ramsey’s theorem is called the Ellentuck
space and the one corresponding to Hindman’s theorem and the Milliken-Taylor
theorem is known as the Milliken-Taylor space. The results discussed above estab-
lish that, in the presence of large cardinals, the selective ultrafilters are the generic
ultrafilters corresponding to the Ellentuck space, while the stable ordered-union
ultrafilters are the generic ultrafilters corresponding to the Milliken-Taylor space.
An abstract notion of generic ultrafilter corresponding to an arbitrary topological
Ramsey space has been studied by Mijares [17].

The existence of canonical forms for functions has striking implications for which
ultrafilters may appear below a selective or a stable ordered-union ultrafilter in the
Rudin-Keisler or Tukey orders. Recall the following definitions.

Definition 1.11. Let F be a filter on X and G a filter on Y . F is Rudin-Keisler
below or RK below G, written as F ≤RK G, if there is a function f : Y → X such
that F = {A ⊆ X : f−1(A) ∈ G}.

F is RK-equivalent to G, written as F ≡RK G, if F ≤RK G and G ≤RK F .
A subset B ⊆ F is said to be cofinal in F if for each A ∈ F , there exists B ∈ B

with B ⊆ A. A map φ : G → F is a convergent map if the image under φ of
every cofinal subset of G is cofinal in F . F is said to be Tukey below G, written as
F ≤T G, if there is a convergent map φ : G → F . If F ≤T G and G ≤T F , then F
and G are said to be Tukey equivalent and this is denoted F ≡T G.

It is a well-known fact (see e.g. [24]) that when U and V are ultrafilters on ω,
U ≡RK V if and only if there is a permutation e : ω → ω so that U = {e [A] : A ∈ V}.
In this case, the equivalence U ≡RK V is often expressed by saying U and V are
RK-isomorphic.

An easy consequence of Item (3) of Theorem 1.10 is that selective ultrafilters
are RK-minimal among all non-principal ultrafilters on ω. Hence if U and V are
selective ultrafilters on ω, then either U and V are RK-incomparable or they are
RK-isomorphic. Using the existence of a more complicated canonical form for
convergent maps (see, for example, Lemma 28 of [19]), it is proved by Raghavan
and Todorcevic [20] that selective ultrafilters are also Tukey minimal among all
non-principal ultrafilters on ω.

Analogously, Item (4) of Theorem 1.8 implies that there are precisely two RK-
equivalence classes of selective ultrafilters that are RK-below a stable ordered-union
ultrafilter.

Definition 1.12. The function fmax : FIN → ω is defined by fmax(s) = max(s)
and the function fmin : FIN → ω is defined by fmin(s) = min(s), for all s ∈ FIN.

Definition 1.13. Let H be an ultrafilter on FIN. Then Hmin and Hmax are the
RK-projections of H induced by fmin and fmax respectively. More formally,

Hmin =
{
M ⊆ ω : f−1

min(M) ∈ H
}

Hmax =
{
M ⊆ ω : f−1

max(M) ∈ H
}
.
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Theorem 1.14 (Blass [6]). Let H be a stable ordered-union ultrafilter on FIN.
Then Hmin and Hmax are selective ultrafilters on ω. Furthermore, Hmin ̸≡RK Hmax,
and hence Hmin and Hmax are RK-incomparable.

It is also implicit in [6] that if H is a stable ordered-union ultrafilter and U is a
selective ultrafilter such that U ≤RK H, then either U ≡RK Hmin or U ≡RK Hmax.
A modification of the methods in [20] similarly shows that the only selective ultra-
filters that are Tukey below a stable ordered-union ultrafilter are the ones that are
RK-isomorphic to Hmin or to Hmax.

Thus the existence of a stable ordered-union ultrafilter guarantees the existence
of at least two distinct RK-classes of selective ultrafilters. Blass’ question, which will
be answered in this paper, asks if the converse is true. Blass had observed in [6] that
under the Continuum Hypothesis, any two RK-non-isomorphic selective ultrafilters
are realized at the Hmin and Hmax of some stable ordered-union ultrafilter H.

Theorem 1.15. (Theorem 2.4 of Blass [6]) Assume CH, and let U and V be selec-
tive ultrafilters such that U ̸≡RK V. Then there is a stable ordered-union ultrafilter
H such that Hmax = U and Hmin = V.

In the final sentence of [6], Blass asked whether the existence of at least two RK-
non-isomorphic selective ultrafilters guarantees the existence of a stable ordered-
union ultrafilter. The main result of this paper gives a negative answer to this
long-standing problem. It will be shown that there is a model of ZFC with 2ℵ0

distinct RK-classes of selective ultrafilters, but no stable ordered-union ultrafilters.
It will also be shown that for any κ ≤ ℵ2, it is possible to construct a model of ZFC
with precisely κ distinct RK-classes of selective ultrafilters, but no stable ordered-
union ultrafilters. These appear to be the first known models of ZFC containing
continuum many distinct generic ultrafilters corresponding to some Ramsey space,
but no generic ultrafilters at all corresponding to another Ramsey space.

The approach taken will be to iteratively destroy all stable ordered-union ul-
trafilters while preserving all selective ultrafilters from a suitably chosen ground
model. Many of the ideas to be used have their roots in Shelah’s proof (Theo-
rem 4.1 of §4 of Chapter XVIII of [26]) of the consistency of a single P-point, up to
RK equivalence, where a similar strategy is employed. However, it has to be kept
in mind that stable ordered-union ultrafilters are not P-points, so the arguments
used by Shelah, which rely heavily on the combinatorics of P-points, cannot be ap-
plied directly. The major advance in this paper is the introduction of a new partial
order that allows different arguments to be employed to circumvent these difficul-
ties. In fact, it may be of interest to restate the main result of this paper in the
language of forcing theory. In this language, the main result says that for any sta-
ble ordered-union ultrafilter H, there is a proper ωω-bounding forcing notion P(H)
which preserves all selective ultrafilters and strongly destroys H, which means that
H cannot be extended to a stable ordered-union ultrafilter in any forcing extension
by any ωω-bounding forcing that contains P(H) as a complete suborder.

New techniques for proving the preservation of selective ultrafilters are intro-
duced in establishing the main result. All previously known methods for destroying
an ultrafilter V while preserving a selective ultrafilter require that V be a P-point.
The new methods introduced in this paper allow the destruction of the non-P-point
H while Hmin and Hmax are both preserved. It is well known (see Corollary 3 of [5])
that a P-point cannot have two RK-non-isomorphic selective ultrafilters RK-below
it. Hence this paper is the first known instance where an ultrafilter V is destroyed
while two RK-non-isomorphic ultrafilters that are RK-below V are preserved.
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2. Some preliminaries

This section will establish several combinatorial results about two player games
on selective and stable ordered-union ultrafilters that will be essential to virtually
all of the results in later sections. The most important of these will be Lemma 2.14.
It also provides a good opportunity to establish notation and to gather together
some well-known results as well as some simple observations involving the concepts
defined in Section 1.

Definition 2.1. If F is a function and X ⊆ dom(F ), then F [X] denotes the image
of X under F . Formally, F [X] = {F (x) : x ∈ X}.

With regard to the notations of Definition 2.1 and Definition 1.3 from Section
1, the reader should bear in mind that if F is a function and X ⊆ FIN is such that
X ⊆ [X] ⊆ dom(F ), then F [X] is the image of X under F while F [[X]] is the
image of [X] under F . This is unlikely to cause confusion.

Definition 2.2. Let X be any set. T ⊆ X<ω is called a subtree if T is down-
wards closed. In other words, T ⊆ X<ω is a subtree if and only if ∀g ∈ T∀l′ ≤
dom(g) [g↾l′ ∈ T ]. For a subtree T ⊆ X<ω, the nth level of T , denoted Levn(T ), is
{f ∈ T : dom(f) = n}, for all n ∈ ω. For a subtree T ⊆ X<ω and f ∈ T , define

T ⟨f⟩ = {g ∈ T : f ⊆ g ∨ g ⊆ f} ;
succT (f) = {σ : f⌢⟨σ⟩ ∈ T} .

For a subtree T ⊆ X<ω, [T ] denotes the collection of all infinite branches through
T . In other words,

[T ] = {f ∈ Xω : ∀l ∈ ω [f↾l ∈ T ]} .

Note that if H is an ordered-union ultrafilter on FIN, then for any A ∈ H and
k ∈ ω, {s ∈ A : min(s) > k} ∈ H because {s ∈ A : min(s) ≤ k} does not contain

any set of the form [X] for X ∈ FIN[ω]. Although the next two results do not
explicitly appear in Blass [6], their proofs are standard and will be omitted.

Lemma 2.3. Suppose H is a stable ordered-union ultrafilter on FIN. Then for any
A ∈ H, 1 ≤ n, k < ω, and c : A[n] → k, there exists B ∈ H such that B ⊆ A and c
is constant on B[n].

Lemma 2.4. Suppose H is a stable ordered-union ultrafilter on FIN. Suppose

⟨An : n ∈ ω⟩ is a sequence with An ∈ H, for all n ∈ ω. Then there exists X ∈ FIN[ω]

such that [X] ∈ H, [X] ⊆ A0, and ∀i ∈ ω
[
[{X(j) : j > i}] ⊆ Amax(X(i))

]
.

Definition 2.5. Suppose s ∈ FIN. Define I(s) = {k ∈ ω : min(s) ≤ k ≤
max(s)}. Note that min(s),max(s) ∈ I(s). Suppose X ∈ FIN[ω]. Define N(X) =⋃
i∈ωI(X(i)) ⊆ ω.

The classes C0(H) and C1(H) to be defined below will play an important role in
Section 6, where it will be shown that the main forcing notion used in this paper
preserves all selective ultrafilters. To elaborate, Definition 2.6 introduces two new
classes of selective ultrafilters. These classes will be needed in Lemma 2.14, which
in turn will play a crucial role in the proof of Theorem 6.15.

Definition 2.6. For a stable ordered-union ultrafilter H on FIN, define C0(H) to
be the collection of all U such that:

(1) U is a selective ultrafilter on ω;

(2) for every X ∈ FIN[ω], if [X] ∈ H, then there exists Y ∈ FIN[ω] such that
[Y ] ∈ H, [Y ] ⊆ [X], and N(Y ) /∈ U .

Define C1(H) to be the collection of all U such that:
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(3) U is a selective ultrafilter on ω;
(4) ∀V [if V is a selective ultrafilter on ω and V /∈ C0(H), then U ̸≡RK V].

Observe that C1(H) ⊆ C0(H).

Lemma 2.7. If H is a stable ordered-union ultrafilter on FIN, then Hmin /∈ C0(H)
and Hmax /∈ C0(H).

Proof. Suppose Y ∈ FIN[ω] and that [Y ] ∈ H. Then fmin [[Y ]] ∈ Hmin and
fmax [[Y ]] ∈ Hmax. If k ∈ fmin [[Y ]], then k = min(s), for some s ∈ [Y ], which
means k = min (Y (j)), for some j ∈ ω. Thus k ∈ I (Y (j)) ⊆ N(Y ), and so
fmin [[Y ]] ⊆ N(Y ) ⊆ ω. Similarly, if k ∈ fmax [[Y ]], then k = max(s), s ∈ [Y ],
which means k = max (Y (j)), j ∈ ω. Thus k ∈ I (Y (j)) ⊆ N(Y ), and so
fmax [[Y ]] ⊆ N(Y ) ⊆ ω. Therefore, N(Y ) ∈ Hmin and N(Y ) ∈ Hmax. Hence
Hmin and Hmax fail Clause (2) of Definition 2.6. ⊣

Definition 2.8. For an ultrafilter H on FIN, T is called an H-tree if T ⊆ FIN<ω is
a downwards closed subtree of FIN<ω such that ∅ ∈ T and ∀σ ∈ T [succT (σ) ∈ H].

For ultrafilters U on ω andH on FIN, T is called a ⟨U ,H⟩-tree if T ⊆ (ω ∪ FIN)
<ω

is a downwards closed subtree of (ω ∪ FIN)
<ω

such that:

(1) ∅ ∈ T ;
(2) ∀σ ∈ T [|σ| is even =⇒ succT (σ) ∈ U ];
(3) ∀σ ∈ T [|σ| is odd =⇒ succT (σ) ∈ H].

Lemma 2.9. Suppose H is a stable ordered-union ultrafilter on FIN and T ⊆
FIN<ω is an H-tree. Then there exists f ∈ [T ] such that {f(i) : i ∈ ω} ∈ FIN[ω],
∀i < j < ω [f(i) <b f(j)], and [{f(i) : i ∈ ω}] ∈ H.

Proof. Define

Sn = {σ ∈ T : ∀i < j < dom(σ) [σ(i) <b σ(j)] and ∀i ∈ dom(σ) [max (σ(i)) ≤ n]} ,
for n ∈ ω. Note that each Sn is finite and downwards closed. Hence An =⋂
{succT (σ) : σ ∈ Sn} ∈ H (here

⋂
∅ is taken to be FIN). Applying Lemma 2.4, find

X ∈ FIN[ω] such that [X] ∈ H, [X] ⊆ A0, and for each i ∈ ω, [{X(j) : j > i}] ⊆
Amax(X(i)). Define f : ω → FIN by setting f(i) = X(i), for all i ∈ ω. Since

X ∈ FIN[ω], for all i < j < ω, f(i) = X(i) <b X(j) = f(j). To complete
the proof, it suffices to argue that f ∈ [T ], and for this, it suffices to verify that
∀i ∈ ω [f↾i ∈ T ]. This is done by induction on i. f↾0 = ∅ ∈ T by the defini-
tion of an H-tree. Since ∅ ∈ S0, A0 ⊆ succT (∅). Therefore, f(0) = X(0) ∈
X ⊆ [X] ⊆ A0 ⊆ succT (∅), whence ⟨f(0)⟩ ∈ T . Now assume i ∈ ω and that
σ = ⟨f(0), . . . , f(i)⟩ ∈ T . Let n = max(f(i)). Then σ ∈ Sn and so An ⊆
succT (σ). Since f(i + 1) = X(i + 1) ∈ Amax(X(i)) = Amax(f(i)) = An ⊆ succT (σ),
⟨f(0), . . . , f(i), f(i+ 1)⟩ = σ⌢⟨f(i+ 1)⟩ ∈ T . ⊣

Lemma 2.10. Suppose U is a selective ultrafilter on ω and H is a stable ordered-
union ultrafilter on FIN. Suppose T ⊆ (ω ∪ FIN)

<ω
is an ⟨U ,H⟩-tree. Suppose

that U ∈ C1(H). Then there exists G ∈ [T ] such that {G(2i) : i ∈ ω} ∈ U ,
{G(2i+ 1) : i ∈ ω} ∈ FIN[ω], ∀i < j < ω [G(2i+ 1) <b G(2j + 1)], and

[{G(2i+ 1) : i ∈ ω}] ∈ H.

Proof. Since Hmin and Hmax are both selective ultrafilters on ω, Hmin,Hmax /∈
C0(H), and U ∈ C1(H), then U ̸≡RK Hmin and U ̸≡RK Hmax. The following claim
will be established using this.

Claim 2.11. Suppose ⟨Bn : n ∈ ω⟩ and ⟨An : n ∈ ω⟩ are sequences such that ∀n ∈
ω [Bn ∈ U and An ∈ H]. Then there exist B ∈ U and X ∈ FIN[ω] such that:
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(1) [X] ∈ H;
(2) if ⟨ni : i ∈ ω⟩ is the strictly increasing enumeration of B, then for each

i ∈ ω, ni < min (X(i)) ≤ max (X(i)) < ni+1, ni+1 ∈ Bmax(X(i)), and
[{X(j) : j ≥ i}] ⊆ Ani ;

(3) B ⊆ B0 and [X] ⊆ A0.

Proof. Define A′
n =

⋂
m≤nAm ∈ H and B′

n =
⋂
m≤nBm ∈ U , for all n ∈ ω. Since

U is selective, there is D ∈ U such that D ⊆ B′
0 and ∀i ∈ ω

[
li+1 ∈ B′

li

]
, where

⟨li : i ∈ ω⟩ is the strictly increasing enumeration of D. By Lemma 2.4, there exists

Z ∈ FIN[ω] such that [Z] ∈ H, [Z] ⊆ A′
0 and for each i ∈ ω, [{Z(j) : j > i}] ⊆

A′
max(Z(i)). Define φ : ω → ω and ψ : ω → ω as follows. For m ∈ ω, φ(m) =

min{li : i ∈ ω and li > m}, and

ψ(m) = min {min (Z(i)) : i ∈ ω and min (Z(i)) > m} .

As Hmin ̸≤RK U , there exists K ∈ U such that ψ [K] /∈ Hmin, and as U ̸≤RK Hmax,
there is N ∈ Hmax such that φ [N ] /∈ U . Thus E = D ∩K ∩ (ω \ φ [N ]) ∈ U and
L = [Z] ∩ {s ∈ FIN : min(s) ∈ ω \ ψ [K]} ∩ {s ∈ FIN : max(s) ∈ N} ∈ H.

Consider m ∈ E and s ∈ L with m < min(s). Let i ∈ ω be such that ψ(m) =
min (Z(i)) > m. As s ∈ [Z], m < min(s) = min (Z(j)), for some j ∈ ω. By
the minimality of ψ(m), min (Z(i)) ≤ min (Z(j)), whence i ≤ j. Since m ∈ K,
min (Z(i)) = ψ(m) ∈ ψ [K], while min (Z(j)) = min(s) ∈ ω \ ψ [K]. Therefore,
i < j and s ∈ [{Z(j∗) : j∗ > i}] ⊆ A′

max(Z(i)). Since m < min (Z(i)) ≤ max (Z(i)),

A′
max(Z(i)) ⊆ Am, and so s ∈ Am. Thus s ∈ Am, whenever m ∈ E and s ∈ L with

m < min(s).
Next, consider m ∈ E and s ∈ L with max(s) < m. As m ∈ D, m = lj ,

for some j ∈ ω. There exists i ∈ ω such that φ(max(s)) = li > max(s). Since
max(s) < lj , the minimality of φ(max(s)) implies that li ≤ lj , whence i ≤ j. As
s ∈ L, max(s) ∈ N , and so li = φ(max(s)) ∈ φ [N ], while lj = m ∈ ω \ φ [N ].
Therefore, i < j, and so m = lj ∈ B′

lj−1
. Since i ≤ j − 1, max(s) < li ≤ lj−1, and

so B′
lj−1

⊆ Bmax(s). Therefore, m ∈ Bmax(s). Thus m ∈ Bmax(s) whenever m ∈ E,

s ∈ L, and max(s) < m.
Define c : L[2] → 2 as follows. Given s, t ∈ L with s <b t, c({s, t}) = 0 if and only

if ∃m ∈ E [max(s) < m < min(t)]. Find R ∈ H such that R ⊆ L and c is constant
on R[2]. This constant value cannot be 1. To see this, argue by contradiction and
suppose it is 1. Fix some s ∈ R. Find m ∈ E with max(s) < m. Now find
t ∈ R with m < min(t). Then c({s, t}) = 0 contradicting the supposition that the
constant value is 1. Hence c is constantly 0 on R[2]. Pick n0 ∈ E and let R∗ = {s ∈
R : min(s) > n0} ∈ H. Let Y ∈ FIN[ω] be such that [Y ] ∈ H and [Y ] ⊆ R∗. Since

U ∈ C0(H), there exists X ∈ FIN[ω] such that [X] ∈ H, [X] ⊆ [Y ], and N(X) /∈ U .
For each i ∈ ω, define J(i) = {m ∈ ω : max (X(i)) < m < min (X(i+ 1))}, and let

J(X) =
⋃
i∈ωJ(i). As X ∈ FIN[ω], it is clear that ω = min(X(0)) ∪N(X) ∪ J(X),

and since N(X) ∪min(X(0)) /∈ U , J(X) ∈ U . Note that n0 < min (X(0)) because
X(0) ∈ R∗. Let P = E ∩ J(X) ∈ U . If i ∈ ω, then {X(i), X(i + 1)} ∈ R[2]

and so there exists m ∈ E with max (X(i)) < m < min (X(i+ 1)). By definition,
m ∈ J(i) ⊆ J(X), whence m ∈ P . Hence for every i ∈ ω, J(i) ∩ P ̸= ∅. Since
P ⊆ J(X), since U is a Q-point, and since ∀i < i∗ < ω [J(i) ∩ J(i∗) = ∅], there
exists Q ∈ U so that Q ⊆ P ⊆ J(X) and ∀i ∈ ω [|Q ∩ J(i)| = 1]. Let B =
Q ∪ {n0} ∈ U . Observe that B ∩ min (X(0)) = {n0}. It now follows that the
strictly increasing enumeration of B has the form ⟨ni : i ∈ ω⟩, where n0 is the value
chosen earlier and for each i ∈ ω, ni < min (X(i)) ≤ max (X(i)) < ni+1. Note
that for any i ∈ ω, ni+1 ∈ Q ⊆ P ⊆ E, X(i) ∈ [X] ⊆ [Y ] ⊆ R∗ ⊆ R ⊆ L,
and max (X(i)) < ni+1, whence ni+1 ∈ Bmax(X(i)). If s ∈ [{X(j) : j ≥ i}], then
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s ∈ [X] ⊆ L and min(s) ≥ min (X(i)) > ni. Further, ni ∈ E because n0 ∈ E
and Q ⊆ E. Hence s ∈ Ani . So [{X(j) : j ≥ i}] ⊆ Ani . This verifies (2). (1) is
satisfied by the choice of X. Finally, (3) holds because B ⊆ E ⊆ D ⊆ B′

0 ⊆ B0 and
[X] ⊆ L ⊆ [Z] ⊆ A′

0 ⊆ A0. ⊣

To prove the lemma, define Sn to be the collection of all σ such that:

(1) σ ∈ T , dom(σ) ≤ n+ 1;
(2) ∀i ∈ dom(σ) [i is even =⇒ σ(i) ≤ n];
(3) ∀i ∈ dom(σ) [i is odd =⇒ max(σ(i)) ≤ n],

for all n ∈ ω. Then Sn is finite, and so

Bn =
⋂

{succT (σ) : σ ∈ Sn and |σ| is even} ∈ U

(with
⋂
∅ interpreted as ω) and An =

⋂
{succT (σ) : σ ∈ Sn and |σ| is odd} ∈ H

(with
⋂
∅ interpreted as FIN). Find B and X as in Claim 2.11, and let ⟨ni : i ∈ ω⟩

be the strictly increasing enumeration of B. Define G : ω → ω ∪ FIN by setting
G(2i) = ni and G(2i+1) = X(i), for all i ∈ ω. Observe that by the properties of B
andX, for any i ∈ ω, if i is even, then i ≤ G(i), while if i is odd, then i ≤ max (G(i)).

Since X ∈ FIN[ω], for all i < j < ω, G(2i + 1) = X(i) <b X(j) = G(2j + 1).
To complete the proof it suffices to show that G ∈ [T ], and for this it suffices
to show that G↾l ∈ T , for all l ∈ ω. Now G↾0 = ∅ ∈ T by the definition of
a ⟨U ,H⟩-tree. ∅ ∈ S0 and so B ⊆ B0 ⊆ succT (∅), whence n0 ∈ succT (∅). So
∅⌢⟨n0⟩ = ⟨n0⟩ = ⟨G(0)⟩ ∈ T . Letting σ = ⟨n0⟩, dom(σ) = 1 ≤ n0 + 1, and so
σ ∈ Sn0 . Therefore, X(0) ∈ An0 ⊆ succT (σ), and so σ⌢⟨X(0)⟩ = ⟨n0, X(0)⟩ =
⟨G(0), G(1)⟩ ∈ T . Now suppose i ∈ ω and that σ = ⟨n0, X(0), . . . , ni, X(i)⟩ =
⟨G(0), G(1), . . . , G(2i), G(2i + 1)⟩ ∈ T . Then dom(σ) = 2i + 2 = (2i + 1) + 1 ≤
max (G(2i+ 1)) + 1 = max (X(i)) + 1, and so σ ∈ Smax(X(i)). Therefore, ni+1 ∈
Bmax(X(i)) ⊆ succT (σ), and so ⟨n0, X(0), . . . , ni, X(i), ni+1⟩ = σ⌢⟨ni+1⟩ ∈ T . Now
letting σ = ⟨n0, X(0), . . . , ni, X(i), ni+1⟩ = ⟨G(0), G(1), . . . , G(2i), G(2i+1), G(2i+
2)⟩, dom(σ) = 2i + 3 = (2i + 2) + 1 ≤ G(2i + 2) + 1 = ni+1 + 1, and so
σ ∈ Sni+1 . Therefore, X(i + 1) ∈ Ani+1 ⊆ succT (σ), and so σ⌢⟨X(i+ 1)⟩ =
⟨n0, X(0), . . . , ni, X(i), ni+1, X(i + 1)⟩ = ⟨G(0), G(1), . . . , G(2i), G(2i + 1), G(2i +
2), G(2i+ 3)⟩ ∈ T . Thus by induction, G↾l ∈ T , for all l ∈ ω. ⊣

Definition 2.12. Define the following two player games.

(1) Let H be an ordered-union ultrafilter on FIN. The stability game on H,
denoted ⅁Stab(H), is a two player perfect information game in which Players
I and II alternatively choose sets Ai and si respectively, where Ai ∈ H and
si ∈ Ai. Together they construct the sequence

A0, s0, A1, s1, . . . ,

where each Ai ∈ H has been played by Player I and si ∈ Ai has been chosen
by Player II in response. Player II wins if and only if ∀i < j < ω [si <b sj ]
and [{si : i < ω}] ∈ H.

(2) Let U be an ultrafilter on ω and let H be an ordered-union ultrafilter on
FIN. The selectivity-stability game on ⟨U ,H⟩, denoted ⅁SelStab (U ,H), is a
two player perfect information game in which Players I and II alternatively
choose objects as follows: when i is even, Player I chooses Bi ∈ U and
Player II responds with ni ∈ Bi; when i is odd, Player I chooses Ai ∈ H
and Player II responds with si ∈ Ai. Together they construct the sequence

B0, n0, A1, s1, . . . ,

where each B2j ∈ U has been played by Player I and n2j ∈ B2j has been
played by Player II, and each A2j+1 ∈ H has been played by Player I and
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s2j+1 ∈ A2j+1 has been played by Player II. Player II wins if and only if
{n2j : j ∈ ω} ∈ U , ∀i < j < ω [s2i+1 <b s2j+1], and [{s2j+1 : j < ω}] ∈ H.

(3) Let U and V be ultrafilters on ω. The selectivity-selectivity game on ⟨U ,V⟩,
denoted ⅁SelSel (U ,V), is a two player perfect information game in which
Players I and II alternatively choose objects as follows: when i is even,
Player I chooses Bi ∈ U and Player II responds with ni ∈ Bi; when i is
odd, Player I chooses Ai ∈ V and Player II responds with ni ∈ Ai. Together
they construct the sequence

B0, n0, A1, n1, . . . ,

where each B2j ∈ U has been played by Player I and n2j ∈ B2j has been
played by Player II, and each A2j+1 ∈ V has been played by Player I and
n2j+1 ∈ A2j+1 has been played by Player II. Player II wins if and only if
{n2j : j ∈ ω} ∈ U and {n2j+1 : j ∈ ω} ∈ V.

(4) Let U be an ultrafilter on ω. The selectivity game on U , denoted ⅁Sel (U), is
a two player perfect information game in which Players I and II alternatively
choose Ai and ni respectively, where Ai ∈ U and ni ∈ Ai. Together they
construct the sequence

A0, n0, A1, n1, . . . ,

where each Ai ∈ U has been played by Player I and ni ∈ Ai has been chosen
by Player II in response. Player II wins if and only if {ni : i < ω} ∈ U .

Lemma 2.13. Suppose H is a stable ordered-union ultrafilter on FIN. Then Player
I does not have a winning strategy in ⅁Stab(H).

Proof. Suppose for a contradiction that Σ is a winning strategy for Player I in
⅁Stab(H). Let T be the collection of all σ ∈ FIN<ω for which there exists a function
τ such that dom(τ) = dom(σ) and ⟨⟨τ(i), σ(i)⟩ : i ∈ dom(σ)⟩ is a partial run of
⅁Stab(H) in which Player I has followed Σ. Observe that if σ ∈ T , then there is
precisely one function τ which witnesses this. It is also easily seen that T is an
H-tree. By Lemma 2.9, find f ∈ [T ] such that the conclusions of that lemma are
satisfied. Then ∀n ∈ ω [f↾n ∈ T ]. It follows from the argument for the uniqueness of
the witness to f↾n ∈ T for each n ∈ ω that there is a sequence ⟨Ai : i ∈ ω⟩ such that
⟨⟨Ai, f(i)⟩ : i ∈ ω⟩ is a run of ⅁Stab(H) in which Player I has followed Σ. However
Player II wins this run because ∀i < j < ω [f(i) <b f(j)] and [{f(i) : i ∈ ω}] ∈ H.
This contradicts the supposition that Σ is a winning strategy for Player I and
concludes the proof. ⊣

Lemma 2.14. Suppose U is a selective ultrafilter on ω and H is a stable ordered-
union ultrafilter on FIN. Suppose that U ∈ C1(H). Then Player I does not have a
winning strategy in ⅁SelStab (U ,H).

Proof. This is similar to the proof of Lemma 2.13. Suppose for a contradiction that
Σ is a winning strategy for Player I in ⅁SelStab (U ,H). Let T be the collection of all

σ ∈ (ω ∪ FIN)
<ω

for which there exists a function τ such that dom(τ) = dom(σ)
and ⟨⟨τ(i), σ(i)⟩ : i ∈ dom(σ)⟩ is a partial run of ⅁SelStab (U ,H) in which Player I
has followed Σ. Observe that if σ ∈ T , then there is a unique function τ witnessing
this. It is also easy to see that T is an ⟨U ,H⟩-tree. By Lemma 2.10, there exists
G ∈ [T ] satisfying the conclusions of that lemma. Then ∀n ∈ ω [G↾n ∈ T ]. It follows
from the argument for the uniqueness of the witness to G↾n ∈ T for each n ∈ ω
that there is a sequence ⟨Ci : i ∈ ω⟩ ∈ (U ∪H)

ω
such that ⟨⟨Ci, G(i)⟩ : i ∈ ω⟩ is a

run of ⅁SelStab (U ,H) in which Player I has followed Σ. However Player II wins this
run of the game because {G(2i) : i ∈ ω} ∈ U , ∀i < j < ω [G(2i+ 1) <b G(2j + 1)],



12 RAGHAVAN AND STEPRĀNS

and [{G(2i+ 1) : i ∈ ω}] ∈ H. This contradicts the hypothesis that Σ is a winning
strategy for Player I and concludes the proof. ⊣

It is worth noting here that the hypothesis that U ∈ C1(H) is necessary for
Lemma 2.14. Under CH, weaker hypotheses such as U ̸≡RK Hmin and U ̸≡RK Hmax

are provably not sufficient for the conclusion. The following two results are well-
known from the literature.

Lemma 2.15 (Shelah [26]). Let U and V be selective ultrafilters on ω. If U ̸≡RK V,
then Player I does not have a winning strategy in ⅁SelSel (U ,V).

Lemma 2.16 (Galvin; McKenzie). Suppose U is a selective ultrafilter on ω. Then
Player I does not have a winning strategy in ⅁Sel (U).

3. The partial order

This section introduces the main forcing notion used in this paper. For a fixed
stable ordered-union ultrafilter H, a partial order P(H) is defined. A key idea in
the definition of P(H) is the combinatorial notion of a ⟨k, s⟩-big set introduced
in Definition 3.2. Basic properties of P(H) will be established in this section. In
subsequent sections, it will be shown that P(H) is proper, ωω-bounding, destroys
H and preserves all selective ultrafilters.

Definition 3.1. For s ∈ FIN, define s− = s \ {max(s)}. Note that s− ⊆ max(s).

Definition 3.2. Let k ≤ l < ω and s ∈ FIN with l = max(s). A ⊆ 2P(l) is ⟨k, s⟩-big
if for every σ : P(k) → 2, there exists τ ∈ A such that ∀u ∈ P(k) [σ(u) = τ(u ∪ s−)].

Remark 3.3. When min(s) < k, ⟨k, s⟩-big sets generally do not exist. So even
though the definition of a ⟨k, s⟩-big set makes sense when min(s) < k, it will
generally not be used in this situation. Note also that ⟨k, s⟩-big sets are non-empty.

Lemma 3.4. Suppose k ≤ k′ ≤ l < ω and s ∈ FIN with l = max(s). If A ⊆ 2P(l)

is ⟨k′, s⟩-big, then A is also ⟨k, s⟩-big.

Proof. Let σ : P(k) → 2 be given. Define σ′ : P(k′) → 2 by σ′(u) = σ(u ∩ k),
for all u ∈ P(k′). Note that if u ∈ P(k), then σ′(u) = σ(u ∩ k) = σ(u). Since A
is ⟨k′, s⟩-big, there exists τ ∈ A such that ∀u ∈ P(k′) [σ′(u) = τ(u ∪ s−)]. Then
∀u ∈ P(k) [σ(u) = σ′(u) = τ(u ∪ s−)]. ⊣

Definition 3.5. Define T =
⋃
l∈ω

∏
k∈l2

P(k). Then ⟨T,⊊⟩ is a tree and recall from
Definition 2.2 that for any subtree T ⊆ T,

[T ] =

{
F ∈

∏
k∈ω

2P(k) : ∀l ∈ ω [F ↾l ∈ T ]

}
.

Note that [T ] for a subtree T ⊆ T and [A] for a subset A ⊆ FIN are entirely
different objects. This should not be a source of confusion.

Definition 3.6. Let H be a stable ordered-union ultrafilter on FIN. p is called an
H-condition if p = Tp ⊆ T is a subtree such that the following hold:

(1) ∅ ∈ Tp;
(2) ∀f ∈ Tp∀dom(f) ≤ n < ω∃g ∈ Tp [f ⊆ g ∧ n ≤ dom(g)];
(3) for each k ∈ ω, Hp,k ∈ H, where Hp,k ={

s ∈ FIN : k ≤ max(s) ∧ ∀f ∈ Levmax(s)(Tp)
[
succTp(f) is ⟨k, s⟩ -big

]}
.

Let P(H) = {p : p is an H-condition}. Define q ≤ p if and only if Tq ⊆ Tp, for all
p, q ∈ P(H).



STABLE ORDERED-UNION VS. SELECTIVE 13

From now until the end of Section 6, H will be a fixed stable ordered-union
ultrafilter on FIN.

Lemma 3.7. Suppose p = Tp ⊆ T is a subtree satisfying (1) and (2) of Definition
3.6. Suppose there are infinitely many k ∈ ω for which Hp,k ∈ H. Then p is an
H-condition.

Proof. Let k ∈ ω be given. Choose k ≤ k′ < ω for which Hp,k′ ∈ H. Then
∀s ∈ Hp,k′ [k ≤ max(s)]. Consider s ∈ Hp,k′ and f ∈ Levmax(s)(Tp). Then k ≤ k′ ≤
max(s) < ω, s ∈ FIN, and succTp(f) ⊆ 2P(max(s)) is ⟨k′, s⟩-big. By Lemma 3.4,
succTp(f) is also ⟨k, s⟩-big. Thus

∀s ∈ Hp,k′∀f ∈ Levmax(s)(Tp)
[
succTp(f) is ⟨k, s⟩ -big

]
.

Thus Hp,k ⊇ Hp,k′ and so Hp,k ∈ H. ⊣

Lemma 3.8. Suppose p ∈ P(H). For each H ⊆ FIN and m ≤ k < ω, define
H [m, k] to be {

s− : s ∈ H and max(s) = k and min(s) ≥ m
}
.

There exists H ∈ H such that for each l ∈ ω, for all but finitely many k ∈ fmax [H],
l ≤ k and

∀f ∈ Levk(Tp)∀g ∈
(
2P(l)

)H[l,k]

(∗l,k)

∃τ ∈ succTp(f)∀x ⊆ l∀u ∈ H [l, k] [τ(x ∪ u) = g(u)(x)] .

Proof. For n ∈ ω, let An = Hp,n+1 ∈ H. Applying Lemma 2.4, find X ∈ FIN[ω]

such that [X] ∈ H, [X] ⊆ A0, and ∀i ∈ ω
[
[{X(j) : j > i}] ⊆ Amax(X(i))

]
. Let H =

[X] and fix l ∈ ω. Let i0 ∈ ω be such that min (X(i0)) > l, and consider any k ∈
fmax [H] with k > max (X(i0)). Note l < min (X(i0)) ≤ max (X(i0)) < k. Since
k ∈ fmax [H] and max (X(i0)) < k, there is a unique i ∈ ω with max (X(i+ 1)) = k.
It follows that if s ∈ H with max(s) = k, and l ≤ min(s), then

s = (s \X(i+ 1)) ∪X(i+ 1),

(s \X(i+ 1)) ⊆ max (X(i)) + 1, and ∀x ∈ (s \X(i+ 1)) [l ≤ x]. By the choice of
X, X(i + 1) ∈ Amax(X(i)) = Hp,max(X(i))+1. Consider any f ∈ Levk(Tp). Then

succTp(f) is ⟨max (X(i)) + 1, X(i+ 1)⟩-big. Suppose g : H [l, k] → 2P(l) is given.
Define σ : P (max (X(i)) + 1) → 2 as follows. Given w ∈ P (max (X(i)) + 1), let
sw = (w \ l) ∪X(i+ 1)

σ(w) =

{
g (s−w) (w ∩ l) if sw ∈ H and max(sw) = k and l ≤ min(sw),

0 otherwise.

Find τ ∈ succTp(f) such that

∀w ∈ P (max (X(i)) + 1)
[
σ(w) = τ

(
w ∪ (X(i+ 1))

−
)]
.

Fix x ⊆ l and u ∈ H [l, k]. Then u = s−, where s ∈ H, max(s) = k, and
l ≤ min(s). Further, (s \X(i+ 1)) ⊆ max (X(i)) + 1, and since max (X(i0)) <
max (X(i+ 1)), i0 ≤ i, whence x ⊆ l < min (X(i0)) ≤ max (X(i0)) ≤ max (X(i)) <
max (X(i)) + 1. Therefore, w = x ∪ (s \X(i+ 1)) ∈ P (max (X(i)) + 1). Fur-
ther, if z ∈ (s \X(i+ 1)), then l ≤ z, whence z ∈ w \ l. Therefore, w \ l =
(s \X(i+ 1)) and w ∩ l = x. Therefore, sw = (s \X(i+ 1)) ∪ X(i + 1) =

s, and u = s− = s−w = (s \X(i+ 1)) ∪ (X(i+ 1))
−
. Therefore, τ(x ∪ u) =

τ
(
x ∪ (s \X(i+ 1)) ∪ (X(i+ 1))

−
)

= τ
(
w ∪ (X(i+ 1))

−
)

= σ(w) = g (u) (x),

precisely as needed. ⊣
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Lemma 3.9. T ∈ P(H).

Proof. All of the requirements with the possible exception of (3) of Definition 3.6
are clear. To verify this, given k ∈ ω, define H = {s ∈ FIN : min(s) > k}, and
note that H ∈ H. Clearly, ∀s ∈ H [k < min(s) ≤ max(s)]. Consider s ∈ H. Let
l = max(s) and consider f ∈ Levl(T). Then A = succT(f) = 2P(l). To see that A
is ⟨k, s⟩-big, consider σ : P(k) → 2. Define τ : P(l) → 2 by τ(t) = σ(t ∩ k), for all
t ∈ P(l) Then τ ∈ A. Note that for any u ∈ P(k), (u ∪ s−) ∩ k = u. So for every
u ∈ P(k), by definition, τ (u ∪ s−) = σ ((u ∪ s−) ∩ k) = σ(u). Thus H ⊆ HT,k, and
so HT,k ∈ H. ⊣

Lemma 3.10. Suppose p ∈ P(H). Then for any f ∈ Tp, q = Tp⟨f⟩ ∈ P(H) and
q ≤ p.

Proof. Clearly, Tp⟨f⟩ ⊆ Tp ⊆ T and Tp⟨f⟩ is a subtree of T. ∅ ∈ Tp⟨f⟩ because
∅ ∈ Tp and ∅ ⊆ f . Next, suppose e ∈ Tp⟨f⟩ and dom(e) ≤ n < ω. Let h =
e ∪ f . Then h ∈ {e, f} and dom(h) = max{dom(e),dom(f)}. As h ∈ Tp and
dom(h) ≤ m = max{dom(h), n} < ω, there exists g ∈ Tp with h ⊆ g and m ≤
dom(g). f ⊆ h ⊆ g, so g ∈ Tp⟨f⟩. And e ⊆ h ⊆ g and n ≤ m ≤ dom(g), as
required. Finally, fix k ∈ ω. Let H = {s ∈ Hp,k : min(s) > dom(f)} ∈ H. Then
∀s ∈ H [k ≤ max(s)]. Suppose s ∈ H and e ∈ Levmax(s)(Tp⟨f⟩). Then s ∈ Hp,k,
e ∈ Levmax(s)(Tp), and dom(e) = max(s) ≥ min(s) > dom(f), whence f ⊆ e. Thus
succTp⟨f⟩(e) = succTp(e) is ⟨k, s⟩-big. Thus H ⊆ Hq,k, and so Hq,k ∈ H. Thus
q ∈ P(H) and q ≤ p. ⊣

Lemma 3.11. Let p ∈ P(H). Let l ∈ ω, 1 ≤ m < ω, and e1, . . . , em ∈ Levl(Tp).
If p1, . . . , pm ∈ P(H) are such that ∀1 ≤ i ≤ m [pi ≤ Tp⟨ei⟩], then q = Tq =⋃

1≤i≤mTpi ∈ P(H), for each 1 ≤ i ≤ m, pi ≤ q, and q ≤ p.

Proof. For each 1 ≤ i ≤ m, Tpi ⊆ Tp⟨ei⟩ ⊆ Tp. So Tq ⊆ Tp ⊆ T and clearly Tq is a
subtree of T. ∅ ∈ Tq because ∅ ∈ Tp1 . Next, suppose f ∈ Tq and dom(f) ≤ n < ω.
Then f ∈ Tpi for some 1 ≤ i ≤ m, and so there exists g ∈ Tpi such that f ⊆ g and
n ≤ dom(g), whence g ∈ Tq as well. Next, for each k ∈ ω, define H = Hp1,k ∩ · · · ∩
Hpm,k ∈ H. For every s ∈ H, s ∈ FIN and k ≤ max(s) < ω because s ∈ Hp1,k.
Consider f ∈ Levmax(s)(Tq). Then for some 1 ≤ i ≤ m, f ∈ Levmax(s)(Tpi). Since

succTpi (f) is ⟨k, s⟩-big and succTpi (f) ⊆ succTq (f) ⊆ 2P(max(s)), succTq (f) is also

⟨k, s⟩-big. Thus H ⊆ Hq,k, and so Hq,k ∈ H. Therefore q ∈ P(H). Finally, since
Tq ⊆ Tp, q ≤ p, and for all 1 ≤ i ≤ m, since Tpi ⊆ Tq, pi ≤ q. ⊣

Lemma 3.12. Suppose ⟨pi : i ∈ ω⟩ and X satisfy:

(1) ∀i ∈ ω [pi ∈ P(H)] and ∀i ∈ ω [pi+1 ≤ pi];

(2) X ∈ FIN[ω] with [X] ∈ H;
(3) for each i ∈ ω, X(i+ 1) ∈ Hpi+1,max(X(i))+1;

(4) for each i ≤ j < ω and for each e ∈ Levmax(X(i))

(
Tpj

)
, succTpi (e) ⊆

succTpj (e).

Then q = Tq =
⋂
i∈ωTpi ∈ P(H).

Proof. For ease of notation in this proof, the symbols Ti will replace Tpi , li will
denote max (X(i)), and Hi,k will be used for Hpi,k, for all i ∈ ω and k ∈ ω.
Clearly, Tq ⊆ T0 ⊆ T and Tq is a subtree of T. Since ∅ ∈ Ti for every i ∈ ω,
∅ ∈ Tq. Next, suppose f ∈ Tq and that dom(f) ≤ n < ω. Let F = {e ∈ T0 :
dom(e) = n ∧ f ⊆ e}. Then F is a finite set. For each i ∈ ω, f ∈ Ti, and so
there exists g ∈ Ti with f ⊆ g and n ≤ dom(g). Then g↾n ∈ Ti, dom(g↾n) = n,
and f ⊆ g↾n, whence g↾n ∈ F ∩ Ti. Thus ∀i ∈ ω∃ei ∈ F [ei ∈ Ti]. As F is finite,
there exists e ∈ F such that ∃∞i ∈ ω [e ∈ Ti]. Since ∀i ≤ j < ω [Tj ⊆ Ti], it
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follows that e ∈ Tq. Therefore Tq satisfies (2) of Definition 3.6. To see that Tq
satisfies (3) of Definition 3.6, fix k ∈ ω. Choose i0 ∈ ω such that k < min (X(i0)).
Let H = {s ∈ [X] : min(s) > max (X(i0))} ∈ H. Suppose s ∈ H. Then s ∈ FIN
and k < min (X(i0)) ≤ max (X(i0)) < min(s) ≤ max(s). Let l = max(s). Then
l = max (X(i1)), for some i1 ∈ ω. Since max (X(i0)) < max (X(i1)), i1 = i + 1,
where i0 ≤ i < ω. Note that s \X(i+ 1) ⊆ max (X(i)) + 1, (s \X(i+ 1)) ∩ k = ∅,
s = s \ X(i + 1) ∪ X(i + 1), and s− = (s \X(i+ 1)) ∪ (X(i+ 1))

−
. Further, if

u ⊆ k, then for any x ∈ u, x < k < max (X(i0)) ≤ max (X(i)) < max (X(i)) +
1, and so u ⊆ max (X(i)) + 1. Therefore u ∪ (s \X(i+ 1)) ⊆ max (X(i)) + 1
and (u ∪ (s \X(i+ 1))) ∩ k = u. By hypothesis, X(i + 1) ∈ Hi+1,max(X(i))+1.
Now, fix f ∈ Levl(Tq). It needs to be seen that succTq (f) is ⟨k, s⟩-big. To this
end, let σ : P(k) → 2 be fixed. Since f ∈ Levmax(X(i+1))(Ti+1), succTi+1

(f) is
⟨max (X(i)) + 1, X(i+ 1)⟩-big. Now define σ∗ : P (max (X(i)) + 1) → 2 by setting
σ∗(w) = σ(w ∩ k), for all w ⊆ max (X(i)) + 1. Find τ ∈ succTi+1

(f) such that for

each w ⊆ max (X(i))+1, σ∗(w) = τ
(
w ∪ (X(i+ 1))

−
)
. Consider any i+1 ≤ j < ω.

Then f ∈ Levmax(X(i+1))(Tj), and the hypothesis is that succTi+1
(f) ⊆ succTj (f).

Thus τ ∈ succTj (f), and so f⌢⟨τ⟩ ∈ Tj . Hence ∀i+1 ≤ j < ω [f⌢⟨τ⟩ ∈ Tj ], whence
f⌢⟨τ⟩ ∈ Tq. Therefore τ ∈ succTq (f). Take u ⊆ k. Then u ∪ (s \X(i+ 1)) = w ⊆
max (X(i))+1 and w∩k = u. So σ(u) = σ(w∩k) = σ∗(w) = τ

(
w ∪ (X(i+ 1))

−
)
=

τ
(
u ∪ (s \X(i+ 1)) ∪ (X(i+ 1))

−
)

= τ (u ∪ s−). This proves that succTq (f) is

⟨k, s⟩-big. Thus H ⊆ Hq,k, and so Hq,k ∈ H. This concludes the proof that
q ∈ P(H). ⊣

Definition 3.13. Define the following two player game called the H-condition
game and denoted ⅁Cond (H). Players I and II alternatively choose ⟨pi, Ai⟩ and si
respectively, where

(1) pi ∈ P(H) and Ai ∈ H;
(2) si ∈ Ai;
(3) there exists

〈
pi,e : e ∈ Levmax(si)+1(Tpi)

〉
such that

∀e ∈ Levmax(si)+1(Tpi) [pi,e ≤ Tpi⟨e⟩]

and pi+1 = Tpi+1 =
⋃{

Tpi,e : e ∈ Levmax(si)+1(Tpi)
}
.

Together they construct the sequence

⟨p0, A0⟩ , s0, ⟨p1, A1⟩ , s1, . . . ,

where each ⟨pi, Ai⟩ has been played by Player I and si has been chosen by Player
II in response subject to Conditions (1)–(3). Player II wins if and only if ∀i < j <
ω [si <b sj ], [{si : i < ω}] ∈ H, and q = Tq =

⋂
i∈ωTpi ∈ P(H).

Lemma 3.14. Player I does not have a winning strategy in ⅁Cond (H).

Proof. Suppose for a contradiction that Σ is a winning strategy for Player I in
⅁Cond (H). Define Π and Φ such that:

(1) Π is a strategy for Player I in ⅁Stab (H);
(2) for each n ∈ ω, if ⟨⟨Bi, si⟩ : i ≤ n⟩ is a partial run of ⅁Stab (H) in which

Player I has followed Π, then Φ (⟨⟨Bi, si⟩ : i ≤ n⟩) = ⟨⟨pi, Ai⟩ : i ≤ n⟩ and

⟨⟨⟨pi, Ai⟩ , si⟩ : i ≤ n⟩

is a partial play of ⅁Cond (H) in which Player I has followed Σ and it has
the property that ∀i < n

[
Bi+1 = Ai+1 ∩Hpi+1,max(si)+1

]
;
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(3) for each n ∈ ω, if ⟨⟨Bi, si⟩ : i ≤ n+ 1⟩ is a partial run of ⅁Stab (H) in which
Player I has followed Π, then

Φ (⟨⟨Bi, si⟩ : i ≤ n⟩) = Φ (⟨⟨Bi, si⟩ : i ≤ n+ 1⟩) ↾n+ 1.

Π and Φ will be defined inductively. Let Σ(∅) = ⟨p0, A0⟩ define Π(∅) = B0 = A0.
As B0 ∈ H, this is a valid move for Player I in ⅁Stab (H). Note that every partial run
of ⅁Stab (H) of length 1 in which Player I has followed Π will have the form ⟨B0, s0⟩,
where s0 ∈ B0 = A0. For any such ⟨B0, s0⟩, define Φ(⟨B0, s0⟩) = ⟨⟨p0, A0⟩⟩, and
note that ⟨⟨p0, A0⟩ , s0⟩ is a partial run of ⅁Cond (H) in which Player I has followed
Σ. Now suppose n ∈ ω, ⟨⟨Bi, si⟩ : i ≤ n⟩ is a partial run of ⅁Stab (H) in which
Player I has followed Π, Φ (⟨⟨Bi, si⟩ : i ≤ n⟩) = ⟨⟨pi, Ai⟩ : i ≤ n⟩,

⟨⟨⟨pi, Ai⟩ , si⟩ : i ≤ n⟩

is a partial run of ⅁Cond (H) in which Player I has followed Σ, and

∀i < n
[
Bi+1 = Ai+1 ∩Hpi+1,max(si)+1

]
.

Let Σ (⟨⟨⟨pi, Ai⟩ , si⟩ : i ≤ n⟩) = ⟨pn+1, An+1⟩. Then pn+1 ∈ P(H) and An+1 ∈
H. Hence Bn+1 = An+1 ∩ Hpn+1,max(sn)+1 ∈ H. Note that Bn+1 is therefore

a legitimate move for Player I in ⅁Stab (H). Define Π (⟨⟨Bi, si⟩ : i ≤ n⟩) = Bn+1.
Note that any continuation of ⟨⟨Bi, si⟩ : i ≤ n⟩ to length n + 2 in which Player I
follows Π must have the form ⟨⟨Bi, si⟩ : i ≤ n+ 1⟩, where sn+1 ∈ Bn+1. Given any
such ⟨⟨Bi, si⟩ : i ≤ n+ 1⟩, define Φ (⟨⟨Bi, si⟩ : i ≤ n+ 1⟩) = ⟨⟨pi, Ai⟩ : i ≤ n+ 1⟩.
Note that ⟨⟨⟨pi, Ai⟩ , si⟩ : i ≤ n+ 1⟩ is a partial run of ⅁Cond (H) in which Player I
has followed Σ because of the definition of ⟨pn+1, An+1⟩ and sn+1 ∈ Bn+1 ⊆ An+1.
Further, by definition and by the induction hypothesis,

∀i ≤ n
[
Bi+1 = Ai+1 ∩Hpi+1,max(si)+1

]
.

Thus the inductive definition satisfies (1)–(3). This concludes the definition of Π
and Φ.

Since Π is not a winning strategy for Player I in ⅁Stab (H), there is a play
⟨⟨Bi, si⟩ : i < ω⟩ of ⅁Stab (H) in which Player I follows Π and loses. There exists
⟨⟨pi, Ai⟩ : i < ω⟩ such that for each n ∈ ω, Φ (⟨⟨Bi, si⟩ : i ≤ n⟩) = ⟨⟨pi, Ai⟩ : i ≤ n⟩.
Therefore, ⟨⟨⟨pi, Ai⟩ , si⟩ : i < ω⟩ is a play of ⅁Cond (H) in which Player I has fol-
lowed Σ, and ∀i < ω

[
Bi+1 = Ai+1 ∩Hpi+1,max(si)+1

]
. Since Player II wins the play

⟨⟨Bi, si⟩ : i < ω⟩, ∀i < j < ω [si <b sj ] and [{si : i < ω}] ∈ H. Lemma 3.12 will be
used to verify that q = Tq =

⋂
i∈ωTpi ∈ P(H). To this end, let X = {si : i < ω},

and note that X(i) = si, for all i ∈ ω. Note also that by (3) of Definition 3.13
and by Lemma 3.11, pi+1 ≤ pi, for all i ∈ ω. For each i ∈ ω, si+1 ∈ Bi+1,
and so X(i + 1) ∈ Hpi+1,max(X(i))+1. Next, fix some i < ω. It will be proved

by induction on j that for each i ≤ j < ω and for each e ∈ Levmax(X(i))

(
Tpj

)
,

succTpi (e) ⊆ succTpj (e). This is clear when i = j. Assume this is true for some

i ≤ j. Fix e ∈ Levmax(X(i))

(
Tpj+1

)
and consider σ ∈ succTpi (e). Since Tpj+1

⊆ Tpj ,

e ∈ Levmax(X(i))

(
Tpj

)
. So by the induction hypothesis, σ ∈ succTpj (e). There-

fore e⌢⟨σ⟩ ∈ Tpj and dom (e⌢⟨σ⟩) = max (si) + 1 ≤ max (sj) + 1. Choose e∗

such that e⌢⟨σ⟩ ⊆ e∗ and e∗ ∈ Levmax(sj)+1

(
Tpj

)
. By (3) of Definition 3.13,

there exists pj,e∗ ≤ Tpj ⟨e∗⟩ such that Tpj,e∗ ⊆ Tpj+1
. Since e⌢⟨σ⟩ ⊆ e∗, e⌢⟨σ⟩ ∈

Tpj,e∗ . Therefore e⌢⟨σ⟩ ∈ Tpj+1 , whence σ ∈ succTpj+1
(e), as required. This con-

cludes the induction. Thus the hypotheses of Lemma 3.12 are all satisfied, and
so q = Tq =

⋂
i∈ωTpi ∈ P(H). However, this means that Player II wins the play

⟨⟨⟨pi, Ai⟩ , si⟩ : i < ω⟩ of ⅁Cond (H) even though Player I has followed Σ during this
play, contradicting the hypothesis that Σ is a winning strategy for Player I in
⅁Cond (H). ⊣
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Lemma 3.15. Suppose ⟨⟨⟨pi, Ai⟩ , si⟩ : i ∈ ω⟩ is a run of ⅁Cond (H) which is won by
Player II. If q = Tq =

⋂
i∈ωTpi , then for each i ∈ ω,

∀f ∈ Tpi [dom(f) ≤ max(si) + 1 =⇒ f ∈ Tq] .

Proof. Recall that by Clause (3) of Definition 3.13 and by Lemma 3.11, pi+1 ≤ pi,
for all i ∈ ω. Fix i ∈ ω and f ∈ Tpi with dom(f) ≤ max(si) + 1. It will be
proved by induction on j that ∀i ≤ j < ω

[
f ∈ Tpj

]
. When j = i, there is nothing

to prove. Suppose the statement holds for some i ≤ j < ω. So f ∈ Tpj and
dom(f) ≤ max(si) + 1 ≤ max(sj) + 1. Choose e ∈ Tpj such that f ⊆ e and
dom(e) = max(sj) + 1. By Clause (3) of Definition 3.13, there exists pj,e ≤ Tpj ⟨e⟩
so that Tpj,e ⊆ Tpj+1

. As f ⊆ e, f ∈ Tpj,e , and so f ∈ Tpj+1
. This concludes the

induction. Thus, ∀i ≤ j < ω
[
f ∈ Tpj

]
, whence f ∈

⋂
l∈ωTpl = Tq. ⊣

Lemma 3.16. Suppose ⟨⟨⟨pi, Ai⟩ , si⟩ : i ∈ ω⟩ is a run of ⅁Cond (H) which is won
by Player II. Let i ∈ ω and q = Tq =

⋂
j∈ωTpj . If si+1 ∈ Hpi+1,max(si)+1, then

si+1 ∈ Hq,max(si)+1.

Proof. Assume si+1 ∈ Hpi+1,max(si)+1. Then si+1 ∈ FIN and max(si) + 1 ≤
max(si+1). Consider e ∈ Levmax(si+1)(Tq). Then e ∈ Levmax(si+1)

(
Tpi+1

)
and

so succTpi+1
(e) is ⟨max(si) + 1, si+1⟩-big. If σ ∈ succTpi+1

(e), then e⌢⟨σ⟩ ∈ Tpi+1

and dom (e⌢⟨σ⟩) = max(si+1)+1. Therefore, by Lemma 3.15, e⌢⟨σ⟩ ∈ Tq, whence

σ ∈ succTq (e). Thus succTpi+1
(e) ⊆ succTq (e) ⊆ 2P(max(si+1)), and so succTq (e) is

⟨max(si) + 1, si+1⟩-big. This shows si+1 ∈ Hq,max(si)+1. ⊣

4. Properness and reading of names

This section establishes that P(H) is proper, ωω-bounding, and satisfies a version
of the continuous reading of names property (see [22]).

Lemma 4.1. Let θ be a sufficiently large regular cardinal. Assume M ≺ H(θ) is
countable and that M contains all relevant parameters. Suppose f : ω →M is such
that ∀n ∈ ω

[
f(n) ∈ VP(H) and ⊩P(H) f(n) ∈ V

]
. Let p ∈ P(H) ∩M . Then there

exist q,X, and F such that:

(1) q ≤ p, X ∈ FIN[ω], F is a function, dom(F ) ={
⟨i, e⟩ : i ∈ ω ∧ e ∈ Levmax(X(i))+1(Tq)

}
;

(2) [X] ∈ H, ∀i ∈ ω
[
X(i+ 1) ∈ Hq,max(X(i))+1

]
;

(3) for each i ≤ j < ω and each e ∈ Levmax(X(j))+1(Tq),

Tq⟨e⟩ ⊩P(H) f(i) = F (⟨i, e↾max (X(i)) + 1⟩);

(4) for any ⟨i, e⟩ ∈ dom(F ), F (⟨i, e⟩) ∈M .

Proof. Define a strategy Σ for Player I in ⅁Cond (H) as follows. p0 = p ∈ P(H)
and A0 = FIN ∈ H. Note that p0 ∈ M . Define Σ(∅) = ⟨p0, A0⟩. Now suppose
that i ∈ ω and that ⟨⟨⟨pj , Aj⟩ , sj⟩ : j ≤ i⟩ is a partial run of ⅁Cond (H) in which
Player I has followed Σ and that pi ∈ M . Let l = max(si) + 1, for ease of nota-
tion. For any e ∈ Levl(Tpi), Tpi⟨e⟩ ∈ P(H) and by hypothesis, ⊩P(H) f(i) ∈ V.
Since pi ∈ M and f(i) ∈ M , there exist sequences ⟨pi,e : e ∈ Levl(Tpi)⟩ ∈ M and
⟨xi,e : e ∈ Levl(Tpi)⟩ ∈M such that

∀e ∈ Levl(Tpi)
[
pi,e ≤ Tpi⟨e⟩ and pi,e ⊩P(H) f(i) = xi,e

]
.

Define pi+1 = Tpi+1 =
⋃{

Tpi,e : e ∈ Levl(Tpi)
}
. Note that pi+1 ∈ M and that

pi+1 ∈ P(H) by Lemma 3.11. Hence Ai+1 = Hpi+1,l ∈ H. Define

Σ (⟨⟨⟨pj , Aj⟩ , sj⟩ : j ≤ i⟩) = ⟨pi+1, Ai+1⟩ .
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The completes the definition of Σ. Note that by definition, if ⟨⟨⟨pi, Ai⟩ , si⟩ : i < ω⟩
is a run of ⅁Cond (H) in which Player I has followed Σ, then pi ∈M , for all i < ω.

Since Σ is not a winning strategy for Player I, there is a run ⟨⟨⟨pi, Ai⟩ , si⟩ : i < ω⟩
of ⅁Cond (H) in which Player I has followed Σ and lost. Then X = {si : i < ω} ∈
FIN[ω] and [X] ∈ H. Furthermore, X(i) = si, for all i ∈ ω. Again, for ease of
notation, denote max(si) + 1 by li. Let q = Tq =

⋂
i∈ωTpi . Then q ∈ P(H) and

q ≤ p0 = p. Moreover, for any i ∈ ω, si+1 ∈ Ai+1 = Hpi+1,li , and so by Lemma 3.16,
si+1 ∈ Hq,li , as required for (2). Next, by the definition of Σ, for each i ∈ ω, pi ∈M
and there exist sequences ⟨pi,e : e ∈ Levli(Tpi)⟩ ∈M and ⟨xi,e : e ∈ Levli(Tpi)⟩ ∈M
as described in the previous paragraph. Given i ∈ ω and e ∈ Levli(Tq), then
e ∈ Levli(Tpi), and since e ∈ M , so xi,e ∈ M . Define F (⟨i, e⟩) = xi,e. To see that
(3) is satisfied, fix i ≤ j < ω and e∗ ∈ Levlj (Tq), and let e = e∗↾li ∈ Levli(Tq).

Thus e ∈ Levli(Tpi). Since Tq ⊆ Tpi+1 =
⋃{

Tpi,e′ : e
′ ∈ Levli(Tpi)

}
, it follows that

Tq⟨e∗⟩ ≤ pi,e. Therefore, Tq⟨e∗⟩ ⊩P(H) f(i) = xi,e = F (⟨i, e⟩), as required. ⊣

Corollary 4.2. P(H) is proper and ωω-bounding.

Proof. To see that P(H) is proper, let θ be a sufficiently large regular cardinal, and
fix a countable M ≺ H(θ) containing the relevant parameters. Let ⟨α̊i : i ∈ ω⟩ be
an enumeration of all P(H) names α̊ ∈M such that ⊩P(H) “α̊ is an ordinal”. Let f :
ω →M be defined by f(i) = α̊i, for all i ∈ ω. Fix p ∈ P(H)∩M . Applying Lemma
4.1, fix q ≤ p, X, and F satisfying (1)–(4) of that lemma. Write li for max (X(i))+1,
for all i ∈ ω. It needs to be seen that q is (M,P(H))-generic. For this, it suffices to
see that whenever α̊ ∈ M is a P(H) name such that ⊩P(H) “α̊ is an ordinal”, then
q ⊩P(H) α̊ ∈M . Indeed, if such an α̊ is given, then α̊ = α̊i, for some i ∈ ω. Suppose
r ≤ q. Choose e ∈ Levli(Tr). Then e ∈ Levli(Tq), Tr⟨e⟩ ≤ r, and Tr⟨e⟩ ≤ Tq⟨e⟩.
Therefore, Tr⟨e⟩ ⊩P(H) α̊ = α̊i = f(i) = F (⟨i, e⟩) ∈M , as required.

To see that P(H) is ωω-bounding, fix a P(H)-name f̊ such that

⊩P(H) f̊ : ω → ω

as well as p ∈ P(H). Let θ be sufficiently large and regular, and fix a countable

M ≺ H(θ) with f̊ , p ∈M and containing all the other relevant parameters. Define
a function f : ω → M as follows. For i ∈ ω, f(i) ∈ M is a P(H)-name such that

⊩P(H) f(i) ∈ ω, and ⊩P(H) f̊(i) = f(i). Using Lemma 4.1, find q ≤ p, X, and F
satisfying (1)–(4) of that lemma. Again, write li for max (X(i)) + 1, for all i ∈ ω.
Define g : ω → ω as follows. For any i ∈ ω, Levli(Tq) is a finite set. So there exists
g(i) ∈ ω such that for any e ∈ Levli(Tq), if F (⟨i, e⟩) ∈ ω, then F (⟨i, e⟩) ≤ g(i). Now,

it is easy to verify that q ⊩P(H) ∀i ∈ ω
[
f̊(i) ≤ g(i)

]
. Indeed if not, then there are

r ≤ q and i ∈ ω so that r ⊩P(H) f̊(i) > g(i). Find e ∈ Levli(Tr). Then e ∈ Levli(Tq),

Tr⟨e⟩ ≤ r, and Tr⟨e⟩ ≤ Tq⟨e⟩. So Tr⟨e⟩ ⊩P(H) f̊(i) = f(i) = F (⟨i, e⟩) ≤ g(i), a
contradiction. ⊣

Lemma 4.3. Suppose x̊ is a P(H)-name such that ⊩P(H) x̊ : ω → 2. Let p ∈ P(H).

Then there exist q,X, and
〈
ηi,e : i ∈ ω ∧ e ∈ Levmax(X(i))+1(Tq)

〉
such that:

(1) q ≤ p, X ∈ FIN[ω], and

∀i ∈ ω∀e ∈ Levmax(X(i))+1(Tq) [ηi,e : max (X(i)) + 1 → 2] ;

(2) [X] ∈ H, ∀i ∈ ω
[
X(i+ 1) ∈ Hq,max(X(i))+1

]
;

(3) for each i ∈ ω and e ∈ Levmax(X(i))+1(Tq),

Tq⟨e⟩ ⊩P(H) x̊↾ (max (X(i)) + 1) = ηi,e;
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(4) for any i ≤ j < ω, e ∈ Levmax(X(i))+1(Tq), and e
∗ ∈ Levmax(X(j))+1(Tq), if

e ⊆ e∗, then ηi,e ⊆ ηj,e∗ .

Proof. This is very similar to the proof of Lemma 4.1, expect that M plays no role
here. Details are provided for completeness. Define a strategy Σ for Player I in
⅁Cond (H) as follows. p0 = p ∈ P(H) and A0 = FIN ∈ H. Define Σ(∅) = ⟨p0, A0⟩.
Now suppose that i ∈ ω and that ⟨⟨⟨pj , Aj⟩ , sj⟩ : j ≤ i⟩ is a partial run of ⅁Cond (H)
in which Player I has followed Σ. Let l = max(si) + 1, for ease of notation. There
exist sequences ⟨pi,e : e ∈ Levl(Tpi)⟩ and ⟨ηi,e : e ∈ Levl(Tpi)⟩ such that

∀e ∈ Levl(Tpi)
[
pi,e ≤ Tpi⟨e⟩ and pi,e ⊩P(H) x̊↾l = ηi,e

]
.

Since ⊩P(H) x̊ : ω → 2, it follows that ηi,e : l → 2. Define pi+1 = Tpi+1
=⋃{

Tpi,e : e ∈ Levl(Tpi)
}
. Note that pi+1 ∈ P(H) by Lemma 3.11. Hence Ai+1 =

Hpi+1,l ∈ H. Define Σ (⟨⟨⟨pj , Aj⟩ , sj⟩ : j ≤ i⟩) = ⟨pi+1, Ai+1⟩. This completes the
definition of Σ.

Since Σ is not a winning strategy for Player I, there is a run ⟨⟨⟨pi, Ai⟩ , si⟩ : i < ω⟩
of ⅁Cond (H) in which Player I has followed Σ and lost. Then X = {si : i < ω} ∈
FIN[ω] and [X] ∈ H. Furthermore, X(i) = si, for all i ∈ ω. Again, for ease of
notation, denote max(si) + 1 by li. Let q = Tq =

⋂
i∈ωTpi . Then q ∈ P(H) and

q ≤ p0 = p. Moreover, for any i ∈ ω, si+1 ∈ Ai+1 = Hpi+1,li , and so by Lemma
3.16, si+1 ∈ Hq,li , as required for (2). Next, by the definition of Σ, for each i ∈ ω,
there exist sequences ⟨pi,e : e ∈ Levli(Tpi)⟩ and ⟨ηi,e : e ∈ Levli(Tpi)⟩ as described
in the previous paragraph. To see that (3) is satisfied, fix i ∈ ω and e ∈ Levli(Tq).

Then e ∈ Levli(Tpi). Since Tq ⊆ Tpi+1 =
⋃{

Tpi,e′ : e
′ ∈ Levli(Tpi)

}
, it follows

that Tq⟨e⟩ ≤ pi,e. Therefore, Tq⟨e⟩ ⊩P(H) x̊↾li = ηi,e, as required. Finally for (4), if
i ≤ j < ω, e ∈ Levli(Tq), e

∗ ∈ Levlj (Tq), and e ⊆ e∗, then Tq⟨e∗⟩ ≤ Tq⟨e⟩, whence
Tq⟨e∗⟩ ⊩P(H) x̊↾li = ηi,e, whence ηi,e = ηj,e∗↾li. ⊣

5. Destroying witnesses to Hindman’s theorem

This section continues the analysis of P(H). It will be shown that there is no
stable ordered-union ultrafilter extending H after forcing with P(H). Furthermore,
this is true after forcing with any ωω-bounding partial order which contains P(H)
as a complete suborder.

Lemma 5.1. Suppose G ⊆ P(FIN) and that P is a forcing notion. Suppose c̊ is a

P-name such that ⊩P c̊ : FIN → 2. Assume that for each t ∈ 2 and each P-name Å,
if ⊩P Å ⊆ FIN, then for every p ∈ P, there are q ≤ p and B ∈ G such that either:

(1) there exists k ∈ ω such that q ⊩P ∀s ∈ Å ∩B [min(s) < k], or

(2) ∀s ∈ B∀r ≤ q∃u∃r′ ≤ r
[
r′ ⊩P u ∈ Å and r′ ⊩P c̊(s ∪ u) ̸= t

]
.

Then ⊩P “there is no stable ordered-union ultrafilter H on FIN with G ⊆ H”.

Proof. For each t ∈ 2 and each P-name Å such that ⊩P Å ⊆ FIN, let

Dt,Å =
{
q ∈ P : there is B ∈ G so that either (1) or (2) holds with t, Å, q, B

}
.

The hypothesis of the lemma is that Dt,Å is dense. Let G be (V,P)-generic. Assume

for a contradiction that in V[G], there exists a stable ordered-union ultrafilter H
on FIN such that G ⊆ H. As c̊ [G] : FIN → 2, there exists H ∈ H such that c̊ [G]

is constantly t on H, for some t ∈ 2. Fix Y ∈ FIN[ω] with [Y ] ∈ H and [Y ] ⊆ H.

Let Å be a P-name in V such that ⊩P Å ⊆ FIN and Å [G] = [Y ]. Fix q ∈ Dt,Å ∩G
and B ∈ G so that either (1) or (2) holds for t, Å, q, and B. Suppose first that (1)

holds. Then since q ∈ G, there exists k ∈ ω such that ∀s ∈ Å [G] ∩B [min(s) < k].
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However, Å [G] ∩ B ∈ H, and so {s ∈ Å [G] ∩ B : min(s) > k} ∈ H. In particular,

there is some s ∈ Å [G] ∩B with min(s) > k, a contradiction.
Next suppose that (2) holds. Fix s ∈ B ∩ [Y ]. In V, define

Eq,s,Å,̊c,t =
{
r′ ≤ q : ∃u

[
r′ ⊩P u ∈ Å and r′ ⊩P c̊(s ∪ u) ̸= t

]}
.

By (2), Eq,s,Å,̊c,t is dense below q. Since q ∈ G, there is some r′ ∈ G ∩ Eq,s,Å,̊c,t.
Thus in V[G], there exists u ∈ [Y ] such that c̊ [G] (s∪u) ̸= t. However, since s ∈ [Y ]
and u ∈ [Y ], so s∪ u ∈ [Y ] ⊆ H, contradicting the fact that c̊ [G] is constantly t on
H. This contradiction concludes the proof. ⊣

Lemma 5.2. Suppose k ≤ k′ ≤ l < ω and s ∈ FIN with l = max(s). Suppose
A ⊆ 2P(l) is ⟨k′, s⟩-big. Suppose t ∈ 2. Then B = {τ ∈ A : ∀u ∈ P(k)∀v ∈
FIN [k ≤ min(v) ≤ max(v) < k′ =⇒ τ(u ∪ v ∪ s−) = 1− t]} ⊆ A ⊆ 2P(l) is ⟨k, s⟩-
big.

Proof. Let σ : P(k) → 2 be given. Define σ′ : P(k′) → 2 by stipulating that for
any w ∈ P(k′),

σ′(w) =

{
σ(w) if w ⊆ k

1− t if w ̸⊆ k.

As A is ⟨k′, s⟩-big, there exists τ ∈ A such that ∀w ∈ P(k′) [σ′(w) = τ(w ∪ s−)].
To see τ ∈ B, suppose u ∈ P(k) and v ∈ FIN with k ≤ min(v) ≤ max(v) < k′.
Note that v, u ⊆ k′, whence w = u ∪ v ∈ P(k′). Further, min(v) ∈ w \ k, showing
that w ̸⊆ k. Therefore, 1− t = σ′(w) = τ(u∪ v ∪ s−), showing that τ ∈ B. Finally,
if u ∈ P(k), then u ∈ P(k′) and σ(u) = σ′(u) = τ(u ∪ s−). As σ was arbitrary, B
is ⟨k, s⟩-big. ⊣

Lemma 5.3. Suppose G is (V,P(H))-generic. In V[G], there exists a function
F ∈

∏
k∈ω2

P(k) such that {F} =
⋂

{[Tp] : p ∈ G}.

Proof. This is a standard density argument. ⊣

Definition 5.4. Suppose G is (V,P(H))-generic. In V[G], let FG ∈
∏
k∈ω2

P(k)

denote the unique function such that {FG} =
⋂

{[Tp] : p ∈ G}. Define cG : FIN → 2
as follows. For s ∈ FIN, FG(max(s)) : P(max(s)) → 2. Recalling that s− ∈
P(max(s)), define cG(s) = FG(max(s))(s−) ∈ 2. In V, let F̊G and c̊G be P(H)-
names that are forced by every condition to denote FG and cG respectively.

Lemma 5.5. Suppose k ≤ k′ ≤ l < ω and s ∈ FIN with l = max(s). Suppose
p ∈ P(H) and t ∈ 2. Assume that s ∈ Hp,k′ . Then there exists q ≤ p such that:

(1) ∀i < l∀e ∈ Levi(Tq)
[
succTq (e) = succTp(e)

]
;

(2) ∀i > l∀e ∈ Levi(Tq)
[
succTq (e) = succTp(e)

]
;

(3) s ∈ Hq,k;
(4) for each u ∈ P(k) and each v ∈ FIN, if k ≤ min(v) ≤ max(v) < k′, then

q ⊩P(H) c̊G(u ∪ v ∪ s) = 1− t.

Proof. Since s ∈ Hp,k′ , for each f ∈ Levl(Tp), Af = succTp(f) ⊆ 2P(l) is ⟨k′, s⟩-big.
Thus, by applying Lemma 5.2, it is seen that for each f ∈ Levl(Tp), Bf = {τ ∈
Af : ∀u ∈ P(k)∀v ∈ FIN [k ≤ min(v) ≤ max(v) < k′ =⇒ τ(u ∪ v ∪ s−) = 1− t]}
is ⟨k, s⟩-big. In particular, each Bf is non-empty. Since Levl(Tp) is non-empty,

B = {f⌢⟨τ⟩ : f ∈ Levl(Tp) ∧ τ ∈ Bf}

is a non-empty subset of Levl+1(Tp). Therefore by defining

q =
⋃

{Tp⟨f⌢⟨τ⟩⟩ : f ∈ Levl(Tp) ∧ τ ∈ Bf} ,
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Lemma 3.11 insures that q ∈ P(H) and q ≤ p.
To see that (1) holds, suppose i < l and that e ∈ Levi(Tq). Then e ∈ Levi(Tp),

and if σ ∈ succTp(e), then e
⌢⟨σ⟩ ∈ Tp and dom (e⌢⟨σ⟩) ≤ l. Choose f ∈ Levl(Tp)

so that e⌢⟨σ⟩ ⊆ f and choose τ ∈ Bf . Thus e⌢⟨σ⟩ ∈ Tp⟨f⌢⟨τ⟩⟩ ⊆ Tq, whence
σ ∈ succTq (e). So succTp(e) ⊆ succTq (e) ⊆ succTp(e), as needed.

Similarly for (2), suppose i > l and that e ∈ Levi(Tq). Then e ∈ Tp and
f⌢⟨τ⟩ ⊆ e, for some f ∈ Levl(Tp) and τ ∈ Bf . If σ ∈ succTp(e), then e⌢⟨σ⟩ ∈
Tp⟨f⌢⟨τ⟩⟩ ⊆ Tq, whence σ ∈ succTq (e). So succTp(e) ⊆ succTq (e) ⊆ succTp(e), as
needed.

For (3), consider f ∈ Levl(Tq). It needs to be seen that succTq (f) ⊆ 2P(l) is ⟨k, s⟩-
big. Indeed f ∈ Levl(Tp) and for any τ ∈ Bf , f

⌢⟨τ⟩ ∈ Tq, whence τ ∈ succTq (f).
So Bf ⊆ succTq (f), and so succTq (f) is ⟨k, s⟩-big.

Finally for (4), fix u ∈ P(k) and v ∈ FIN such that k ≤ min(v) ≤ max(v) < k′.
Let w = u ∪ v ∪ s. Note that w ∈ FIN, l = max(w), and w− = u ∪ v ∪ s−. Now
let G be (V,P(H))-generic with q ∈ G. Since FG ∈ [Tq], FG↾l + 1 ∈ Tq, and so
FG↾l + 1 = f⌢⟨τ⟩, for some f ∈ Levl(Tp) and τ ∈ Bf . Therefore, cG(u ∪ v ∪ s) =
cG(w) = FG(max(w))(w−) = FG(l)(w

−) = τ(w−) = τ(u ∪ v ∪ s−) = 1 − t, by the
definition of Bf . ⊣

Lemma 5.6. Suppose p ∈ P(H) and ψ ∈ ωω is such that for all k ∈ ω, k ≤ ψ(k).

Let t ∈ 2. Then there exist q ≤ p and X ∈ FIN[ω] such that [X] ∈ H and for each i ∈
ω, for each u ∈ P (max (X(i)) + 1) and each v ∈ FIN, if max (X(i))+1 ≤ min(v) ≤
max(v) < ψ (max (X(i)) + 1), then q ⊩P(H) c̊G (u ∪ v ∪X(i+ 1)) = 1− t.

Proof. For each n ∈ ω, let An = Hp,ψ(n+1) ∈ H. By Lemma 2.4, there exists

X ∈ FIN[ω] such that [X] ∈ H and for each i ∈ ω, X(i + 1) ∈ Amax(X(i)). For
ease of notation, let si = X(i), li = max (X(i)), ki = max (X(i)) + 1, and k′i =
ψ (max (X(i)) + 1). Thus si+1 ∈ Hp,k′i

, and ki ≤ k′i ≤ li+1 < ω.

Lemma 3.12 will be used to obtain q. To this end, construct a sequence ⟨pi : i ∈ ω⟩
satisfying the following:

(1) ∀i ∈ ω [pi ∈ P(H)], ∀i ∈ ω [pi+1 ≤ pi], p0 = p;
(2) for each i ∈ ω, si+1 ∈ Hpi+1,ki ;

(3) for each i ≤ j < ω and for each e ∈ Levli
(
Tpj

)
, succTpi (e) ⊆ succTpj (e);

(4) for each j ≤ j∗ < ω, sj∗+1 ∈ Hpj ,k′j∗
;

(5) for each i ∈ ω, for each u ∈ P (ki) and each v ∈ FIN, if ki ≤ min(v) ≤
max(v) < k′i, then pi+1 ⊩P(H) c̊G (u ∪ v ∪ si+1) = 1− t.

Suppose for a moment that such a sequence has been constructed. Then by Lemma
3.12, q = Tq =

⋂
i∈ωTpi ∈ P(H), q ≤ p0 = p, and for each i ∈ ω, since q ≤ pi+1, q

is as desired because of (5).
The sequence ⟨pi : i ∈ ω⟩ is constructed by induction. Here are some details.

Define p0 = p and notice that (4) is satisfied because for each j∗ < ω, sj∗+1 ∈
Hp,k′

j∗
. Fix j ∈ ω and suppose that ⟨pi : i ≤ j⟩ satisfying (1)–(5) is given. Applying

(4) with j = j∗ yields sj+1 ∈ Hpj ,k′j
. Hence by Lemma 5.5, there exists pj+1 ≤ pj

satisfying (1)–(4) of Lemma 5.5. It is clear that (1), (2), and (5) are satisfied. Now
for each i ≤ j and for each e ∈ Levli

(
Tpj+1

)
, e ∈ Levli

(
Tpj

)
, and since li < lj+1,

so succTpi (e) ⊆ succTpj (e) = succTpj+1
(e) by the induction hypothesis and by (1)

of Lemma 5.5. This verifies (3). Next, suppose j + 1 ≤ j∗ < ω. It needs to be seen
that sj∗+1 ∈ Hpj+1,k′j∗

. By the induction hypothesis, sj∗+1 ∈ Hpj ,k′j∗
. Suppose

that f ∈ Levlj∗+1

(
Tpj+1

)
. It needs to be seen that succTpj+1

(f) is
〈
k′j∗ , sj∗+1

〉
-big.

As f ∈ Levlj∗+1

(
Tpj

)
, it is known that succTpj (f) is

〈
k′j∗ , sj∗+1

〉
-big. By (2) of
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Lemma 5.5, since lj∗+1 > lj+1, succTpj+1
(f) = succTpj (f). Hence succTpj+1

(f) is〈
k′j∗ , sj∗+1

〉
-big, as required for (4). This concludes the induction and the proof. ⊣

Theorem 5.7. Suppose Q is an ωω-bounding forcing. If P(H) completely embeds
into Q, then

⊩Q “there is no stable ordered-union ultrafilter on FIN extending H′′.

Proof. Let π : P(H) → Q be a complete embedding, and let π∗ denote the associated
map from P(H)-names to Q-names. Let c̊ denote π∗ (̊cG). Then ⊩Q c̊ : FIN → 2.
Lemma 5.1 will be used to obtain the desired conclusion. To this end, suppose t ∈ 2
and that Å is a Q-name such that ⊩Q Å ⊆ FIN. Let p∗ ∈ Q be given. Assume that
there are no q∗ ≤ p∗ and B ∈ H such that (1) of Lemma 5.1 holds.

Let G be any (V,Q)-generic filter with p∗ ∈ G. Then Å [G] ⊆ FIN. In V[G],

it must be the case that for every k ∈ ω, there exists s ∈ Å [G] with k ≤ min(s),
for otherwise there would be a q∗ ∈ G such that q∗ ≤ p∗ and q∗ witnesses (1) of
Lemma 5.1 with B = FIN ∈ H. Therefore there is a function φ : ω → ω such that
for every k ∈ ω, there exists v ∈ Å [G] with k ≤ min(v) ≤ max(v) < φ(k). As this
holds for every (V,Q)-generic G with p∗ ∈ G, there is a Q-name φ̊ in V such that

⊩Q φ̊ : ω → ω and p∗ ⊩Q ∀k ∈ ω∃v ∈ Å [k ≤ min(v) ≤ max(v) < φ̊(k)].
Since Q is ωω-bounding, there exist p∗1 ≤ p∗ and ψ : ω → ω in V such that

p∗1 ⊩Q ∀k ∈ ω [φ̊(k) < ψ(k)]. Let p ∈ P(H) be a reduction of p∗1 with respect to the

complete embedding π. Applying Lemma 5.6 inV, find q ≤ p and X ∈ FIN[ω] satis-
fying the conclusions of Lemma 5.6. LetB = {s ∈ [X] : min(s) > max (X(0))} ∈ H.
By the choice of p, π(q) is compatible with p∗1 in Q. Choose any q∗ ≤ π(q), p∗1. To
see that q∗ ≤ p∗ and B ∈ H satisfy (2) of Lemma 5.1, fix some s ∈ B and r∗ ≤ q∗.
Then max(s) = max (X(i+ 1)), for some i ∈ ω. Let u = s ∩ (max (X(i)) + 1) ∈
P (max (X(i)) + 1) and note s = u ∪ X(i + 1). Since r∗ ≤ p∗1 ≤ p∗, there ex-

ist r∗1 ≤ r∗ and v such that max (X(i)) + 1 ≤ min(v), r∗1 ⊩Q v ∈ Å ⊆ FIN,
and r∗1 ⊩Q max(v) < φ̊ (max (X(i)) + 1) < ψ (max (X(i)) + 1). By the choice of
q, q ⊩P(H) c̊G(s ∪ v) = c̊G(u ∪ v ∪X(i+ 1)) = 1− t, and so

π(q) ⊩Q c̊(s ∪ v) = π∗ (̊cG) (s ∪ v) = 1− t.

Therefore, r∗1 ⊩Q c̊(s ∪ v) = 1− t, as needed. ⊣

6. Preservation of all selective ultrafilters

It will be proved that P(H) preserves all selective ultrafilters from the ground
model. This is arguably the most intricate section of the paper. Given a selec-
tive ultrafilter U , the proof breaks down into three cases depending on whether
U ≡RK Hmax, or U ≡RK V, for some V /∈ C0(H) and V ̸≡RK Hmax, or U ∈ C1(H).
A bit of thought shows (and it will be shown) that these cases are exhaustive.

Definition 6.1. Suppose U is an ultrafilter on ω and that P is a forcing notion.
P is said to preserve U if ⊩P “{A ⊆ ω : ∃B ∈ U [B ⊆ A]} is an ultrafilter on ω.′′

Unraveling the definitions, P preserves U if and only if for every p ∈ P and every
P-name Å such that ⊩P Å ⊆ ω, there exist q ≤ p and B ∈ U such that q ⊩P B ⊆ Å
or q ⊩P B ⊆ ω \ Å.

Lemma 6.2. Suppose x̊ is a P(H)-name such that ⊩P(H) x̊ : ω → 2. For any
p ∈ P(H), there exists q ≤ p such that there are t ∈ 2, A ∈ H, M ∈ Hmax,
⟨Al : l ∈M⟩, and

〈〈
ek, S

0
k, S

1
k

〉
: k ∈ fmax [A]

〉
such that:

(1) ek ∈ Levk(Tq), S
0
k, S

1
k ⊆ succTq (ek);

(2) for any l ∈ M , Al ∈ H, Al ⊆ A, and for any s ∈ Al with max(s) = k, Stk
is ⟨l, s⟩-big;
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(3) for any l ∈M , for any k ∈ fmax [Al], for any σ ∈ Stk,

Tq⟨ek⌢⟨σ⟩⟩ ⊩P(H) x̊(k) = t.

Proof. Apply Lemma 4.3 to find q, X, and
〈
ηi,e : i ∈ ω ∧ e ∈ Levmax(X(i))+1(Tq)

〉
satisfying (1)–(4) of that lemma. For any k ∈ fmax [[X]], there exists a unique
jk ∈ ω with k = max (X(jk)). Choose ek ∈ Levk(Tq). For t ∈ 2, let Stk ={
σ ∈ succTq (ek) : ηjk,ek⌢⟨σ⟩(k) = t

}
. Observe S0

k ∪ S1
k = succTq (ek).

Fix l ∈ ω. Define cl : [X] → 3 as follows. Given s ∈ [X], let k = max(s) ∈
fmax [[X]]. If S0

k is ⟨l, s⟩-big, then set cl(s) = 0. If S0
k is not ⟨l, s⟩-big, but S1

k is
⟨l, s⟩-big, then set cl(s) = 1. If neither S0

k nor S1
k is ⟨l, s⟩-big, then set cl(s) = 2.

Find Al ∈ H such that Al ⊆ [X] and cl is constant on Al.

Claim 6.3. cl is not constantly 2 on Al.

Proof. Suppose for a contradiction that it is constantly 2. Applying Lemma 3.8
to q, fix H ∈ H satisfying the conclusion of that lemma. Fix k0 ∈ ω such
that l < k0 and for all k ∈ fmax [H] with k ≥ k0, (∗l,k) of Lemma 3.8 holds.

Write l∗ =
(
22
l
)2

. Choose Y ∈ FIN[l∗+2] such that k0 ≤ min (Y (0)) and [Y ] ⊆
Al ∩ H. Let k = max (Y (l∗ + 1)) ∈ fmax [Al] ∩ fmax [H] ⊆ fmax [[X]]. Note
l < k0 ≤ k. For each i < l∗ + 1, define si = Y (i) ∪ Y (l∗ + 1) ∈ Al ∩ H.
Observe that l < k0 ≤ min(si) and max(si) = k, and so s−i ∈ H [l, k]. Since

cl(si) = 2, there exists ⟨σi,0, σi,1⟩ ∈ 2P(l) × 2P(l) such that ∀t ∈ 2∀τ ∈ Stk∃u ∈
P(l)

[
σi,t(u) ̸= τ(u ∪ s−i )

]
. There must exist i < i′ < l∗ + 1 with ⟨σi,0, σi,1⟩ =

⟨σi′,0, σi′,1⟩ = ⟨σ0, σ1⟩. Let g : H [l, k] → 2P(l) be any function so that g(s−i ) = σ0
and g(s−i′ ) = σ1. Applying (∗l,k) to ek ∈ Levk(Tq) and g, find τ ∈ succTq (ek)

so that ∀u ∈ P(l)
[
τ(u ∪ s−i ) = g(s−i )(u) = σ0(u) ∧ τ(u ∪ s−i′ ) = g(s−i′ )(u) = σ1(u)

]
.

Either τ ∈ S0
k or τ ∈ S1

k. If τ ∈ S0
k, then this contradicts the choice of σi,0 because

∃u ∈ P(l)
[
σ0(u) ̸= τ(u ∪ s−i )

]
. If τ ∈ S1

k, then this contradicts the choice of σi′,1
because ∃u ∈ P(l)

[
σ1(u) ̸= τ(u ∪ s−i′ )

]
. The contradiction proves the claim. ⊣

Therefore, there exists tl ∈ 2 such that cl is constantly tl on Al. As this was for
every l ∈ ω, there exists t ∈ 2 such that M = {l ∈ ω : tl = t} ∈ Hmax. Define A =
[X] ∈ H. For each l ∈ M , Al ∈ H, Al ⊆ A, and for any s ∈ Al with k = max(s),
Stk is ⟨l, s⟩-big because cl(s) = t. For any l ∈ M , any k ∈ fmax [Al] ⊆ fmax [[X]],
and any σ ∈ Stk, Tq⟨ek⌢⟨σ⟩⟩ ⊩P(H) x̊(k) = ηjk,ek⌢⟨σ⟩(k) = t. Thus (1)–(3) are
satisfied. ⊣

The next lemma is true for any partial order. It has a simple proof, which is left
to the reader.

Lemma 6.4. Suppose D ⊆ P(H) is dense and D = D0 ∪ D1. Then for any
p∗ ∈ P(H), there exist p ≤ p∗ and t ∈ 2 such that Dt is dense below p.

Lemma 6.5. Suppose x̊ is a P(H)-name such that ⊩P(H) x̊ : ω → 2. Then for any

p∗ ∈ P(H), there exists q ≤ p∗ such that there are t ∈ 2 and X ∈ FIN[ω] such
that [X] ∈ H and for every i ∈ ω and every e ∈ Levmax(X(i))+1(Tq), there exists
e∗ ∈ Levmax(X(i+1))(Tq) so that e ⊆ e∗, there exists S ⊆ succTq (e

∗) such that S is
⟨max (X(i)) + 1, X(i+ 1)⟩-big, and for each σ ∈ S,

Tq⟨e∗⌢⟨σ⟩⟩ ⊩P(H) x̊(max (X(i+ 1))) = t.

Proof. For t ∈ 2, let Dt be the collection of all q ∈ P(H) for which there exist
A ∈ H, M ∈ Hmax, ⟨Al : l ∈M⟩, and

〈〈
ek, S

0
k, S

1
k

〉
: k ∈ fmax [A]

〉
such that (1)–

(3) of Lemma 6.2 are satisfied w.r.t. t. By Lemma 6.2, D0 ∪D1 is dense. Hence by
Lemma 6.4, there exist p ≤ p∗ and t ∈ 2 such that Dt is dense below p.
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Now define a strategy Σ for Player I in ⅁Cond (H) as follows. p0 = p ∈ P(H)
and A0 = FIN ∈ H. Define Σ(∅) = ⟨p0, A0⟩. Suppose that i ∈ ω and that
⟨⟨⟨pj , Aj⟩ , sj⟩ : j ≤ i⟩ is a partial run of ⅁Cond (H) in which Player I has followed Σ.
Let k = max(si)+1, for ease of notation. For any e ∈ Levk(Tpi), Tpi⟨e⟩ ≤ pi ≤ p0 =
p. Since Dt is dense below p, there exists pi,e ≤ Tpi⟨e⟩ such that there are Ae ∈ H,

Me ∈ Hmax, ⟨Ae,l : l ∈Me⟩, and
〈〈
he,l, S

0
e,l, S

1
e,l

〉
: l ∈ fmax [Ae]

〉
satisfying (1)–

(3) of Lemma 6.2. Choose k′ ∈
⋂
{Me : e ∈ Levk(Tpi)} ∈ Hmax with k ≤ k′. Let

A∗ =
⋂
{Ae,k′ : e ∈ Levk(Tpi)} ∈ H and let Ai+1 = {s ∈ A∗ : min(s) > k′} ∈ H.

Define pi+1 = Tpi+1 =
⋃{

Tpi,e : e ∈ Levk(Tpi)
}
. Note that pi+1 ∈ P(H) by Lemma

3.11. Define Σ (⟨⟨⟨pj , Aj⟩ , sj⟩ : j ≤ i⟩) = ⟨pi+1, Ai+1⟩. Observe that if s ∈ Ai+1,
then for any e ∈ Levk(Tpi), s ∈ Ae,k′ ⊆ Ae. Letting l = max(s) ∈ fmax [Ae,k′ ] ⊆
fmax [Ae], he,l ∈ Levl

(
Tpi,e

)
, and since dom(e) = k ≤ k′ < min(s) ≤ max(s) =

l = dom(he,l), e ⊆ he,l. Further, Stl ⊆ succTpi,e (he,l) and Stl is ⟨k′, s⟩-big. For

any σ ∈ Stl , Tpi,e⟨he,l
⌢⟨σ⟩⟩ ⊩P(H) x̊(l) = t. Note that he,l ∈ Levl

(
Tpi+1

)
and that

succTpi+1
(he,l) = succTpi,e (he,l). Therefore, Stl ⊆ succTpi+1

(he,l) and Stl is ⟨k′, s⟩-
big. By Lemma 3.4, Stl is ⟨k, s⟩-big. Also since for every σ ∈ Stl , Tpi+1

⟨he,l⌢⟨σ⟩⟩ ≤
Tpi,e⟨he,l

⌢⟨σ⟩⟩, Tpi+1
⟨he,l⌢⟨σ⟩⟩ ⊩P(H) x̊(l) = t. The completes the definition of Σ.

Since Σ is not a winning strategy for Player I, there is a run ⟨⟨⟨pi, Ai⟩ , si⟩ : i < ω⟩
of ⅁Cond (H) in which Player I has followed Σ and lost. Then X = {si : i < ω} ∈
FIN[ω] and [X] ∈ H. Furthermore, X(i) = si, for all i ∈ ω. Again, for ease of
notation, denote max(si) + 1 by ki. Let q = Tq =

⋂
i∈ωTpi . Then q ∈ P(H)

and q ≤ p0 = p. Consider i ∈ ω and e ∈ Levki(Tq). Then e ∈ Levki(Tpi). Since
si+1 ∈ Ai+1, then as noted above, letting l = max(si+1) = max (X(i+ 1)), there ex-
ists e∗ ∈ Levl

(
Tpi+1

)
such that e ⊆ e∗, there exists S ⊆ succTpi+1

(e∗) such that S is

⟨ki, si+1⟩-big, and for every σ ∈ S, Tpi+1⟨e∗
⌢⟨σ⟩⟩ ⊩P(H) x̊(l) = t. As e∗ ∈ Tpi+1 and

dom(e∗) = l ≤ max(si+1)+1, e∗ ∈ Levmax(X(i+1))(Tq) by Lemma 3.15. Similarly, if
σ ∈ succTpi+1

(e∗), then e∗⌢⟨σ⟩ ∈ Tpi+1 and dom (e∗⌢⟨σ⟩) = l+1 = max(si+1)+1,

e∗⌢⟨σ⟩ ∈ Tq, whence σ ∈ succTq (e
∗). Therefore, S ⊆ succTpi+1

(e∗) ⊆ succTq (e
∗)

and S is ⟨max (X(i)) + 1, X(i+ 1)⟩-big. Finally, for any σ ∈ S, Tq⟨e∗⌢⟨σ⟩⟩ ≤
Tpi+1

⟨e∗⌢⟨σ⟩⟩, and so Tq⟨e∗⌢⟨σ⟩⟩ ⊩P(H) x̊ (max (X(i+ 1))) = t. This is as re-
quired. ⊣

Lemma 6.6. Suppose x̊ is a P(H)-name such that ⊩P(H) x̊ : ω → 2. Suppose there
are p, t,X, and N such that:

(1) p ∈ P(H), t ∈ 2, X ∈ FIN[ω] with [X] ∈ H, and N ∈ [ω]
ω
;

(2) letting ⟨ni : i ∈ ω⟩ be the strictly increasing enumeration of N , for each
i ∈ ω, for each e ∈ Levmax(X(i))+1(Tp), there exists e∗ ∈ Levmax(X(i+1))(Tp)
so that e ⊆ e∗, there exists S ⊆ succTp(e

∗) such that

S is ⟨max (X(i)) + 1, X(i+ 1)⟩ -big,

and for each σ ∈ S, Tp⟨e∗⌢⟨σ⟩⟩ ⊩P(H) x̊(ni+1) = t.

Then there exists q ≤ p such that ∀1 ≤ i < ω
[
q ⊩P(H) x̊(ni) = t

]
.

Proof. Lemma 3.12 will be used to get q. To this end, a sequence ⟨pi : i ∈ ω⟩ having
the following properties will be constructed:

(3) for each i ∈ ω, pi ∈ P(H) and pi+1 ≤ pi;
(4) for each i ∈ ω, X(i+ 1) ∈ Hpi+1,max(X(i))+1;
(5) for each j ∈ ω, for each e ∈ Tpj , if dom(e) ≥ max (X(j))+1, then Tpj ⟨e⟩ =

Tp0⟨e⟩;
(6) for each i ≤ j < ω and for each e ∈ Levmax(X(i))

(
Tpj

)
, succTpi (e) ⊆

succTpj (e);
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(7) p0 = p and for each 1 ≤ i < ω, pi ⊩P(H) x̊(ni) = t.

Assume for a moment that such a sequence has been constructed. By Lemma 3.12,
q = Tq =

⋂
i∈ωTpi ∈ P(H). And q ≤ Tp0 = p0 = p. For any 1 ≤ i < ω, q ≤ pi,

whence by (7), q ⊩P(H) x̊(ni) = t, as required.
To construct ⟨pi : i ∈ ω⟩, proceed by induction. Define p0 = p and note that

(3)–(7) are satisfied. Suppose pj satisfying (3)–(7) is given. For each

e ∈ Levmax(X(j))+1

(
Tpj

)
,

since Tpj ⟨e⟩ = Tp0⟨e⟩, then by (2), there exist e∗ ∈ Levmax(X(j+1))

(
Tpj

)
and

S ⊆ succTpj (e
∗) having the properties listed in (2). Let {el : 1 ≤ l ≤ L} be a

1-1 enumeration of Levmax(X(j))+1

(
Tpj

)
, where L =

∣∣Levmax(X(j))+1

(
Tpj

)∣∣. Choose
{e∗l : 1 ≤ l ≤ L} and {Sl : 1 ≤ l ≤ L} such that each e∗l and Sl satisfy the
conditions of (2) with respect to el. The bigness of Sl implies that it is non-
empty, and so U = {e∗l

⌢⟨σ⟩ : 1 ≤ l ≤ L and σ ∈ Sl} ⊆ Levmax(X(j+1))+1

(
Tpj

)
is non-empty. Define pj+1 = Tpj+1

=
⋃{

Tpj ⟨h⟩ : h ∈ U
}
. By Lemma 3.11,

pj+1 ∈ P(H), and pj+1 ≤ pj . Note that if h ∈ U , then h ∈ Tpj and dom(h) =
max (X(j + 1))+1 ≥ max (X(j))+ 1, and so Tpj ⟨h⟩ = Tp0⟨h⟩. Observe also that if

f ∈ Levmax(X(j+1))

(
Tpj+1

)
, then f = e∗l , for some 1 ≤ l ≤ L. To verify (4), first note

that max (X(j)) + 1 ≤ max (X(j + 1)). Consider any f ∈ Levmax(X(j+1))

(
Tpj+1

)
.

Then f = e∗l , for some 1 ≤ l ≤ L, and so for any σ ∈ Sl, f
⌢⟨σ⟩ ∈ Tpj+1 ,

whence Sl ⊆ succTpj+1
(f) ⊆ 2P(max(X(j+1))). As Sl is ⟨max (X(j)) + 1, X(j + 1)⟩-

big, so is succTpj+1
(f). Therefore, X(j + 1) ∈ Hpj+1,max(X(j))+1. Next, con-

sider any e ∈ Tpj+1
with dom(e) ≥ max (X(j + 1)) + 1. Then h ⊆ e for some

h ∈ U . Hence Tp0⟨e⟩ ⊆ Tp0⟨h⟩ = Tpj ⟨h⟩ ⊆ Tpj+1
, whence Tp0⟨e⟩ ⊆ Tpj+1

⟨e⟩ ⊆
Tp0⟨e⟩. So Tp0⟨e⟩ = Tpj+1

⟨e⟩, as required for (5). For (6), fix i ≤ j + 1 and

e ∈ Levmax(X(i))

(
Tpj+1

)
. If i = j + 1, then there is nothing to prove. So as-

sume i ≤ j. Suppose σ ∈ succTpi (e). Since e ∈ Levmax(X(i))

(
Tpj

)
, the induc-

tion hypothesis says σ ∈ succTpj (e), whence e
⌢⟨σ⟩ ∈ Tpj . As max (X(i)) + 1 ≤

max (X(j)) + 1, there exists 1 ≤ l ≤ L with e⌢⟨σ⟩ ⊆ el ⊆ e∗l , and as Sl ̸= ∅,
there is some τ ∈ Sl with e

⌢⟨σ⟩ ⊆ e∗l
⌢⟨τ⟩ ∈ U . Thus for some h ∈ U , e⌢⟨σ⟩ ∈

Tpj ⟨h⟩, whence e⌢⟨σ⟩ ∈ Tpj+1
, and so σ ∈ succTpj+1

(e). Therefore, succTpi (e) ⊆
succTpj+1

(e), as needed for (6). Finally for (7), suppose r ≤ pj+1. Choose h ∈
Levmax(X(j+1))+1(Tr). Then h ∈ U and h = e∗l

⌢⟨σ⟩ for some 1 ≤ l ≤ L and
σ ∈ Sl. Since Tr⟨e∗l

⌢⟨σ⟩⟩ ≤ Tp⟨e∗l
⌢⟨σ⟩⟩, Tr⟨e∗l

⌢⟨σ⟩⟩ ⊩P(H) x̊(nj+1) = t. There-

fore, ∀r ≤ pj+1∃r′ ≤ r
[
r′ ⊩P(H) x̊(nj+1) = t

]
, whence pj+1 ⊩P(H) x̊(nj+1) = t. ⊣

Lemma 6.7. Suppose P is a forcing notion and V is an ultrafilter on ω. The
following hold:

(1) Suppose for every P-name x̊ such that ⊩P x̊ : ω → 2 and for every p ∈ P,
there exist q ≤ p and A ∈ V such that ∀l ∈ A∃tl ∈ 2 [q ⊩P x̊(l) = tl], then P
preserves V.

(2) If P preserves V and U is an ultrafilter on ω such that U ≤RK V, then P
preserves U .

Proof. For (1): let Å be a P-name such that ⊩P Å ⊆ ω. Let x̊ be a P-name such

that ⊩P “x̊ : ω → 2 and Å = {l ∈ ω : x̊(l) = 1}”. Suppose p ∈ P. Find q ≤ p and
A ∈ V such that ∀l ∈ A∃tl ∈ 2 [q ⊩P x̊(l) = tl]. As V is an ultrafilter, there are t ∈ 2

and B ∈ V such that B ⊆ A and ∀l ∈ B [tl = t]. If t = 0, then q ⊩P B ⊆ ω \ Å,
while if t = 1, then q ⊩P B ⊆ Å, which shows P preserves V.

For (2): suppose f : ω → ω witnesses U ≤RK V in the ground model. Let G
be (V,P)-generic. In V[G], suppose that A ⊆ ω. Since V is preserved, there exists
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B ∈ V such that either B ⊆ f−1(A) or B ⊆ ω \ f−1(A) = f−1(ω \A). Since B ∈ V
and f is an RK-map in V, f [B] ∈ U . Now either f [B] ⊆ A or f [B] ⊆ ω \ A,
showing that U is preserved. ⊣

Corollary 6.8. Suppose U is an ultrafilter such that U ≡RK Hmax. Then P(H)
preserves U .

Proof. Suppose x̊ is a P(H)-name such that ⊩P(H) x̊ : ω → 2 and that p∗ ∈ P(H).

Applying Lemma 6.5, find p ≤ p∗, t ∈ 2, and X ∈ FIN[ω] satisfying the conclusions
of that lemma. As [X] ∈ H, so N = fmax [[X]] ∈ Hmax. Let ⟨ni : i ∈ ω⟩ be the
strictly increasing enumeration of N . Then ∀i ∈ ω [ni = max (X(i))]. Thus the
hypotheses of Lemma 6.6 are satisfied. So there exists q ≤ p ≤ p∗ such that
∀1 ≤ i < ω

[
q ⊩P(H) x̊(ni) = t

]
. Let A = {ni : 1 ≤ i < ω}. Then A ∈ Hmax

and ∀l ∈ A
[
q ⊩P(H) x̊(l) = t

]
. Now (1) of Lemma 6.7 implies that P(H) preserves

Hmax. Hence by (2) of Lemma 6.7 P(H) also preserves every ultrafilter U such that
U ≡RK Hmax. ⊣

Lemma 6.9. Suppose U is a selective ultrafilter on ω with U /∈ C0(H). Then for

any L ∈ H and E ∈ U , there exist Y ∈ FIN[ω] and D ⊆ E such that [Y ] ∈ H,
[Y ] ⊆ L, D ∈ U , and letting ⟨ni : i ∈ ω⟩ be the strictly increasing enumeration of
D, ∀i ∈ ω [ni ∈ I (Y (i))].

Proof. As U is selective, but U /∈ C0(H), there exists X ∈ FIN[ω] such that [X] ∈ H
and for every Z ∈ FIN[ω], if [Z] ∈ H, [Z] ⊆ [X], then N(Z) ∈ U . Let K =
L ∩ [X] ∈ H. Define c : K → 2 by setting c(s) = 0 if and only if I(s) ∩ E ̸= ∅.
Fix Z ∈ FIN[ω] such that [Z] ⊆ K, [Z] ∈ H, and c is constant on [Z]. This
constant value cannot be 1. To see this, suppose for a contradiction that c is
constantly 1 on [Z]. As E is an infinite set, choose m ∈ E with min (Z(0)) ≤
m. Choose 0 < i < ω such that m ≤ max (Z(i)). Let s = Z(0) ∪ Z(i) ∈ [Z].
Then min(s) = min (Z(0)) ≤ m ≤ max (Z(i)) = max(s), whence m ∈ I(s) ∩ E,
contradicting the supposition that c is constantly 1 on [Z]. Thus c is constantly
0 on [Z]. By the choice of X, N(Z) ∈ U . Let C = E ∩ N(Z) ∈ U . For any
i ∈ ω, since c (Z(i)) = 0, there is m ∈ I (Z(i)) ∩ E. By the definition of N(Z),
m ∈ I (Z(i)) ∩ E ∩ N(Z) = I (Z(i)) ∩ C, and so ∀i ∈ ω [I (Z(i)) ∩ C ̸= ∅]. Since
C ⊆ N(Z), U is a Q-point and ∀i < i∗ < ω [I (Z(i)) ∩ I (Z(i∗)) = ∅], there exists
D ∈ U such that D ⊆ C ⊆ N(Z) and ∀i ∈ ω [|I (Z(i)) ∩D| = 1]. Let ⟨ni : i ∈ ω⟩ be
the strictly increasing enumeration of D. As Z ∈ FIN[ω] and as |I (Z(i)) ∩D| = 1,
it follows that ni ∈ I (Z(i)), for all i ∈ ω. Hence Z and D are as required. ⊣

Corollary 6.10. Suppose U is a selective ultrafilter on ω with U /∈ C0(H). Then
for any L ∈ H and E ∈ U , {s ∈ L : I(s) ∩ E ̸= ∅} ∈ H.

Proof. Fix Y ∈ FIN[ω] and D ⊆ E as in Lemma 6.9. Let ⟨ni : i ∈ ω⟩ be the strictly
increasing enumeration of D. If s ∈ [Y ], then s ∈ L and Y (i) ⊆ s, for some i ∈ ω.
So ni ∈ I (Y (i)) ⊆ I(s). As D ⊆ E, ni ∈ E ∩ I(s). Thus [Y ] ⊆ {s ∈ L : I(s) ∩E ̸=
∅} ⊆ L ⊆ FIN. As [Y ] ∈ H, {s ∈ L : I(s) ∩ E ̸= ∅} ∈ H. ⊣

Lemma 6.11. Suppose U is a selective ultrafilter on ω such that U /∈ C0(H) and
U ̸≡RK Hmax. Suppose x̊ is a P(H)-name such that ⊩P(H) x̊ : ω → 2. For any

p ∈ P(H), there exists q ≤ p such that there are t ∈ 2, A ∈ H, Y ∈ FIN[ω], D ∈ U ,
⟨Al : l ∈ ω⟩, and ⟨ek : k ∈ fmax [A]⟩ such that:

(1) ek ∈ Levk(Tq);
(2) for any l ∈ ω, Al ∈ H, Al ⊆ A, and for any s ∈ Al with max(s) = k,

succTq (ek) is ⟨l, s⟩-big;
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(3) for any s ∈ A, I(s) ∩D ̸= ∅, and letting k = max(s), for all n ∈ I(s) ∩D,
Tq⟨ek⟩ ⊩P(H) x̊(n) = t;

(4) A = [Y ] and for all Z ∈ FIN[ω], if [Z] ∈ H and [Z] ⊆ [Y ], then N(Z) ∈ U .

Proof. Since U /∈ C0(H), but U is a selective ultrafilter, there exists Y ∗ ∈ FIN[ω]

such that [Y ∗] ∈ H and for all Z ∈ FIN[ω], if [Z] ∈ H and [Z] ⊆ [Y ∗], then N(Z) ∈
U . Apply Lemma 4.3 to find q,X, and

〈
ηi,e : i ∈ ω ∧ e ∈ Levmax(X(i))+1(Tq)

〉
sat-

isfying (1)–(4) of that lemma. For any k ∈ fmax [[X]], there exists a unique
jk ∈ ω with k = max (X(jk)). Choose an infinite branch F through Tq – that
is, choose F ∈ [Tq]. For each k ∈ fmax [[X]], define ek = F ↾k ∈ Levk(Tq). De-
fine ψ : ω → ω by ψ(n) = min {k ∈ fmax [[X]] : k ≥ n}, for all n ∈ ω. For
each n ∈ ω, ηjψ(n),F ↾ψ(n)+1 is defined at n and is a member of 2. Hence there

are t ∈ 2 and B ∈ U such that ∀n ∈ B
[
ηjψ(n),F ↾ψ(n)+1(n) = t

]
. Next, since

Hmax ̸≤RK U , there exists C ∈ U with ψ [C] /∈ Hmax. Thus E = B ∩ C ∈ U
and L = [Y ∗] ∩ [X] ∩ {s ∈ FIN : max(s) ∈ ω \ ψ [C]} ∈ H. Apply Lemma 6.9

to find Y ∈ FIN[ω] and D ⊆ E satisfying the conclusions of that lemma. Define
A = [Y ] ∈ H. As q ∈ P(H), for each l ∈ ω, Hq,l ∈ H, and so Al = A ∩Hq,l ∈ H.
For each k ∈ fmax [A] ⊆ fmax [[X]], ek ∈ Levk(Tq) by definition. For any l ∈ ω and
for any s ∈ Al with max(s) = k, since s ∈ Hq,l and ek ∈ Levmax(s)(Tq), succTq (ek)
is ⟨l, s⟩-big. Hence (1) and (2) hold. For (3), let ⟨ni : i ∈ ω⟩ be the strictly increas-
ing enumeration of D. Then ∀i ∈ ω [ni ∈ I (Y (i))]. For any s ∈ A, Y (i) ⊆ s, for
some i ∈ ω, whence ni ∈ I (Y (i)) ⊆ I(s), whence I(s) ∩D ̸= ∅. Now consider any
s ∈ A, let k = max(s), and fix n ∈ I(s) ∩D. Then n ∈ C and ψ(n) ∈ ψ [C]. On
the other hand, k ∈ ω \ ψ [C], whence k ̸= ψ(n). As n ∈ I(s), n ≤ max(s) = k.
As s ∈ [X] and k ∈ fmax [[X]], the minimality of ψ(n) implies that ψ(n) ≤ k.
Therefore ψ(n) < k and ψ(n) + 1 ≤ k, whence F ↾ψ(n) + 1 ⊆ F ↾k = ek. Therefore
Tq⟨ek⟩ ≤ Tq⟨F ↾ψ(n) + 1⟩. Since Tq⟨F ↾ψ(n) + 1⟩ ⊩P(H) x̊(n) = ηjψ(n),F ↾ψ(n)+1(n)

and since n ∈ B, Tq⟨ek⟩ ⊩P(H) x̊(n) = t, as needed for (3). For (4), if Z ∈ FIN[ω],
[Z] ∈ H, and [Z] ⊆ [Y ] ⊆ L ⊆ [Y ∗], then N(Z) ∈ U . ⊣

Lemma 6.12. Suppose U is a selective ultrafilter on ω such that U /∈ C0(H) and
U ̸≡RK Hmax. Suppose x̊ is a P(H)-name such that ⊩P(H) x̊ : ω → 2. Then for
every p∗ ∈ P(H), there are q, t,X, and N such that:

(1) q ≤ p∗, t ∈ 2, X ∈ FIN[ω] with [X] ∈ H, and N ∈ U ;
(2) letting ⟨ni : i ∈ ω⟩ be the strictly increasing enumeration of N , for each

i ∈ ω, for each e ∈ Levmax(X(i))+1(Tq), there exists e∗ ∈ Levmax(X(i+1))(Tq)
so that e ⊆ e∗, there exists S ⊆ succTq (e

∗) such that

S is ⟨max (X(i)) + 1, X(i+ 1)⟩ -big,

and for each σ ∈ S, Tq⟨e∗⌢⟨σ⟩⟩ ⊩P(H) x̊(ni+1) = t.

Proof. For each t ∈ 2, let Dt be the collection of all q ∈ P(H) such that there are

A ∈ H, Y ∈ FIN[ω], D ∈ U , ⟨Al : l ∈ ω⟩, and ⟨ek : k ∈ fmax [A]⟩ satisfying (1)–(4) of
Lemma 6.11 for t. By Lemma 6.11, D = D0∪D1 is dense in P(H). Hence by Lemma
6.4, there are p ≤ p∗ and t ∈ 2 such that Dt is dense below p. Since U /∈ C0(H),

but U is a selective ultrafilter, there exists Y ∗ ∈ FIN[ω] such that [Y ∗] ∈ H and for

all Z ∈ FIN[ω], if [Z] ∈ H and [Z] ⊆ [Y ∗], then N(Z) ∈ U . Let θ be a sufficiently
large regular cardinal and let M ≺ H(θ) be countable with M containing all the
relevant parameters. In particular, H,P(H),U , x̊,Dt, p, Y ∗ ∈M . As U is a P-point,
find D ∈ U such that D ⊆∗ C, for all C ∈M ∩ U .

Now define a strategy Σ for Player I in ⅁Cond (H) as follows. The definition will
insure that whenever i ∈ ω and ⟨⟨⟨pj , Aj⟩ , sj⟩ : j ≤ i⟩ is a partial run of ⅁Cond (H)
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in which Player I has followed Σ, then pi ∈ M . p0 = p ∈ P(H) ∩ M . A0 =
{s ∈ [Y ∗] : I(s) ∩D ̸= ∅}. By Corollary 6.10, A0 ∈ H. Define Σ(∅) = ⟨p0, A0⟩.
Suppose that i ∈ ω and that ⟨⟨⟨pj , Aj⟩ , sj⟩ : j ≤ i⟩ is a partial run of ⅁Cond (H)
in which Player I has followed Σ. Assume that pi ∈ M . Let k = max(si) + 1,
for ease of notation. For any e ∈ Levk(Tpi), Tpi⟨e⟩ ≤ pi ≤ p0 = p. Also
Tpi⟨e⟩ ∈ M . Since Dt is dense below p and Dt ∈ M , there exists pi,e ≤ Tpi⟨e⟩
such that pi,e ∈ M and there are Ae ∈ H ∩M , Ye ∈ FIN[ω] ∩M , De ∈ U ∩M ,
⟨Ae,k′ : k′ ∈ ω⟩ ∈ M , and ⟨he,l : l ∈ fmax [Ae]⟩ ∈ M satisfying (1)–(4) of Lemma
6.11 for t. Now C =

⋂
{De : e ∈ Levk(Tpi)} ∈ U ∩M because it is the intersection

of finitely many members of U ∩M , and so there is l∗ ∈ ω such that l∗ ≥ k and
D \ l∗ ⊆ C. Let A∗ = [Y ∗] ∩

⋂
{Ae,k : e ∈ Levk(Tpi)} ∈ H and let L = {s ∈

A∗ : min(s) > l∗} ∈ H. By Corollary 6.10, Ai+1 = {s ∈ L : I(s) ∩ D ̸= ∅} ∈ H.
Define pi+1 = Tpi+1

=
⋃{

Tpi,e : e ∈ Levk(Tpi)
}
. Note that pi+1 ∈ P(H) by Lemma

3.11, and that pi+1 ∈ M because it is the union of finitely many members of M .
Define Σ (⟨⟨⟨pj , Aj⟩ , sj⟩ : j ≤ i⟩) = ⟨pi+1, Ai+1⟩. As pi+1 ∈ M , the inductive con-
dition on Σ is insured at i + 1. Consider any s ∈ Ai+1. Observe that s ∈ L and
that I(s) ∩ D ̸= ∅. Hence s ∈ A∗ and min(s) > l∗, which, in particular, means
that s ∈ [Y ∗]. Observe that for any e ∈ Levk(Tpi), s ∈ Ae,k ⊆ Ae. Letting l =
max(s) ∈ fmax [Ae,k] ⊆ fmax [Ae], he,l ∈ Levl

(
Tpi,e

)
, and since dom(e) = k ≤ l∗ <

min(s) ≤ max(s) = l = dom(he,l), e ⊆ he,l. Further, succTpi,e (he,l) is ⟨k, s⟩-big. If

n ∈ I(s)∩D, then n ∈ D and l∗ < min(s) ≤ n, whence n ∈ C. Thus n ∈ De∩ I(s),
and so Tpi,e⟨he,l⟩ ⊩P(H) x̊(n) = t. In particular, since for every σ ∈ succTpi,e (he,l),

Tpi,e⟨he,l
⌢⟨σ⟩⟩ ≤ Tpi,e⟨he,l⟩, Tpi,e⟨he,l

⌢⟨σ⟩⟩ ⊩P(H) x̊(n) = t. Note that he,l ∈
Levl

(
Tpi+1

)
and that succTpi+1

(he,l) = succTpi,e (he,l). Therefore, succTpi+1
(he,l) is

⟨k, s⟩-big. Also since for every σ ∈ succTpi+1
(he,l), Tpi+1

⟨he,l⌢⟨σ⟩⟩ ≤ Tpi,e⟨he,l
⌢⟨σ⟩⟩,

Tpi+1
⟨he,l⌢⟨σ⟩⟩ ⊩P(H) x̊(n) = t, for every n ∈ I(s) ∩D. This completes the defini-

tion of Σ.
Since Σ is not a winning strategy for Player I, there is a run ⟨⟨⟨pi, Ai⟩ , si⟩ : i < ω⟩

of ⅁Cond (H) in which Player I has followed Σ and lost. Then X = {si : i < ω} ∈
FIN[ω] and [X] ∈ H. Furthermore, X(i) = si, for all i ∈ ω. For each i ∈ ω,

X(i) = si ∈ Ai ⊆ [Y ∗]. Since X,Y ∗ ∈ FIN[ω], it follows that [X] ⊆ [Y ∗], and so
N(X) ∈ U by the choice of Y ∗. Furthermore, for each i ∈ ω, I (X(i))∩D ̸= ∅. Let
R = N(X)∩D ∈ U . Note that for any i ∈ ω, if n ∈ I (X(i))∩D, then n ∈ N(X)∩
D = R, and so n ∈ I (X(i))∩R, meaning that I (X(i))∩R ̸= ∅. Since R ⊆ N(X), U
is a Q-point, and ∀i < j < ω [I (X(i)) ∩ I (X(j)) = ∅], there exists N ∈ U such that
N ⊆ R, and ∀i ∈ ω [|I (X(i)) ∩N | = 1]. Let ⟨ni : i ∈ ω⟩ be the strictly increasing
enumeration of N . As N ⊆ R ⊆ N(X), it is clear that {ni} = I (X(i)) ∩ N , for
every i ∈ ω. In particular, ni ∈ I (X(i)) ∩ D, for all i ∈ ω. Again, for ease of
notation, denote max(si)+1 by ki. Let q = Tq =

⋂
i∈ωTpi . Then q ∈ P(H) and q ≤

p0 = p ≤ p∗. Consider i ∈ ω and e ∈ Levki(Tq). Then e ∈ Levki(Tpi). Since si+1 ∈
Ai+1, then as noted above, letting l = max(si+1) = max (X(i+ 1)), there exists
e∗ ∈ Levl

(
Tpi+1

)
such that e ⊆ e∗, there exists succTpi+1

(e∗) = S ⊆ succTpi+1
(e∗)

such that S is ⟨ki, si+1⟩-big, and for every σ ∈ S, Tpi+1
⟨e∗⌢⟨σ⟩⟩ ⊩P(H) x̊(ni+1) = t

because ni+1 ∈ I (X(i+ 1)) ∩ D = I(si+1) ∩ D. As e∗ ∈ Tpi+1 and dom(e∗) =
l ≤ max(si+1) + 1, e∗ ∈ Levmax(X(i+1))(Tq) by Lemma 3.15. Similarly, if σ ∈
succTpi+1

(e∗), then e∗⌢⟨σ⟩ ∈ Tpi+1
and dom (e∗⌢⟨σ⟩) = l + 1 = max(si+1) + 1,

e∗⌢⟨σ⟩ ∈ Tq, whence σ ∈ succTq (e
∗). Therefore, S ⊆ succTpi+1

(e∗) ⊆ succTq (e
∗)

and S is ⟨max (X(i)) + 1, X(i+ 1)⟩-big. Finally, for any σ ∈ S, Tq⟨e∗⌢⟨σ⟩⟩ ≤
Tpi+1

⟨e∗⌢⟨σ⟩⟩, and so Tq⟨e∗⌢⟨σ⟩⟩ ⊩P(H) x̊(ni+1) = t. This is as required. ⊣

Corollary 6.13. Suppose V is a selective ultrafilter on ω with V /∈ C1(H). Then
P(H) preserves V.
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Proof. It will first be argued that if U is a selective ultrafilter on ω with U /∈ C0(H),
then P(H) preserves U . Let such a U be given. If U ≡RK Hmax, then P(H) preserves
U by Corollary 6.8. So assume that U ̸≡RK Hmax. Suppose x̊ is a P(H)-name such
that ⊩P(H) x̊ : ω → 2 and that p ∈ P(H). By Lemma 6.12, there are q, t,X, and
N such that q ≤ p, t ∈ 2, N ∈ U , and the hypotheses of Lemma 6.6 are satisfied.
Let ⟨ni : i ∈ ω⟩ be the strictly increasing enumeration of N . By Lemma 6.6, there
exists q′ ≤ q ≤ p such that ∀1 ≤ i < ω

[
q′ ⊩P(H) x̊(ni) = t

]
. Since N ∈ U ,

A = {ni : 1 ≤ i < ω} ∈ U , and so (1) of Lemma 6.7 says that P(H) preserves U .
Thus it has been proved that P(H) preserves U whenever U is a selective ultrafilter
on ω with U /∈ C0(H).

Now suppose V is a selective ultrafilter on ω with V /∈ C1(H). Then there exists
U such that U is a selective ultrafilter on ω, U /∈ C0(H), and V ≡RK U . By the
previous paragraph, P(H) preserves U . Since V ≤RK U and V is an ultrafilter on
ω, P(H) preserves V by (2) of Lemma 6.7. ⊣

Lemma 6.14. Suppose U is a selective ultrafilter on ω. Suppose U ∈ C1(H). Then
P(H) preserves U .

Proof. Let x̊ be a P(H)-name such that ⊩P(H) x̊ : ω → 2 and let p ∈ P(H).

For each q ≤ p let Eq = {n ∈ ω : ∃r ≤ q
[
r ⊩P(H) x̊(n) = 1

]
}. Suppose first that

there exists q ≤ p such that Eq /∈ U . Then A = ω \ Eq ∈ U , and for all n ∈ A,
q ⊩P(H) x̊(n) = 0. This is as required by (1) of Lemma 6.7.

It will henceforth be assumed that for all q ≤ p, Eq ∈ U . Define Σ and Φ such
that:

(1) Σ is a strategy for Player I in ⅁SelStab (U ,H);
(2) for each n ∈ ω, if ⟨⟨Ci, oi⟩ : i ≤ 2n⟩ is a partial run of ⅁SelStab (U ,H) in

which Player I has followed Σ, then Φ (⟨⟨Ci, oi⟩ : i ≤ 2n⟩) = ⟨pi : i ≤ n⟩
and
(a) ∀i ≤ n [pi ∈ P(H)], ∀i < n [pi+1 ≤ pi], p0 ≤ p;
(b) for each i < j ≤ n and for each e ∈ Levmax(o2i+1)

(
Tpj

)
, succTpi (e) ⊆

succTpj (e);

(c) for each i ≤ n, pi ⊩P(H) x̊(o2i) = 1;
(3) for each n ∈ ω, if ⟨⟨Ci, oi⟩ : i ≤ 2n+ 3⟩ is a partial run of ⅁SelStab (U ,H) in

which Player I has followed Σ and if

Φ (⟨⟨Ci, oi⟩ : i ≤ 2n+ 2⟩) = ⟨pi : i ≤ n+ 1⟩ ,
then o2n+3 ∈ Hpn+1,max(o2n+1)+1;

(4) for each n ∈ ω, if ⟨⟨Ci, oi⟩ : i ≤ 2n+ 2⟩ is a partial run of ⅁SelStab (U ,H) in
which Player I has followed Σ, then

Φ (⟨⟨Ci, oi⟩ : i ≤ 2n⟩) = Φ (⟨⟨Ci, oi⟩ : i ≤ 2n+ 2⟩) ↾n+ 1.

Suppose for a moment that Σ and Φ satisfying (1)–(4) can be defined. Since Σ is not
a winning strategy for Player I, there is a play ⟨⟨Ci, oi⟩ : i < ω⟩ of ⅁SelStab (U ,H)

in which Player I follows Σ and loses. Then X = {o2i+1 : i < ω} ∈ FIN[ω] and
[X] ∈ H. Moreover, X(i) = o2i+1. Also, there is a sequence ⟨pi : i < ω⟩ such
that for each n ∈ ω, Φ (⟨⟨Ci, oi⟩ : i ≤ 2n⟩) = ⟨pi : i ≤ n⟩. Then X and ⟨pi : i < ω⟩
satisfy the hypotheses of Lemma 3.12. To see this, first note that applying (3)
with n = i gives X(i + 1) = o2n+3 ∈ Hpn+1,max(o2n+1)+1 = Hpi+1,max(X(i))+1.

Next, given i ≤ j < ω and e ∈ Levmax(X(i))

(
Tpj

)
= Levmax(o2i+1)

(
Tpj

)
, if i = j,

then trivially succTpi (e) ⊆ succTpj (e). If i < j, then applying (2)(b) with n = j

gives succTpi (e) ⊆ succTpj (e). Therefore Lemma 3.12 applies and implies that

q = Tq =
⋂
i∈ωTpi ∈ P(H). Further, q ≤ p0 ≤ p, and for each i ∈ ω, since q ≤ pi,

q ⊩P(H) x̊ (o2i) = 1. Since A = {o2i : i < ω} ∈ U , q and A satisfy the conditions of
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(1) of Lemma 6.7. Thus in both this case and in the case considered in the previous
paragraph, (1) of Lemma 6.7 applies and it implies that P(H) preserves U .

Σ and Φ are defined inductively. Σ (∅) = Ep ∈ U . If ⟨⟨C0, o0⟩⟩ is a par-
tial run of ⅁SelStab (U ,H) in which Player I has followed Σ, then C0 = Ep and
o0 ∈ C0 = Ep. Define Φ (⟨⟨C0, o0⟩⟩) = ⟨p0⟩, where p0 ≤ p and p0 ⊩P(H) x̊(o0) = 1.
Such a p0 exists by the definition of Ep. Define Σ (⟨⟨C0, o0⟩⟩) = FIN ∈ H. It is
clear that (1)–(4) are satisfied by these definitions. Now, assume that for some
n ∈ ω, ⟨⟨Ci, oi⟩ : i ≤ 2n+ 1⟩ is a partial run of ⅁SelStab (U ,H) in which Player I
has followed Σ and that Φ (⟨⟨Ci, oi⟩ : i ≤ 2n⟩) = ⟨pi : i ≤ n⟩, and that these sat-
isfy (1)–(4). Let k = max (o2n+1) + 1. For any e ∈ Levk(Tpn), Tpn⟨e⟩ ≤ pn ≤
p0 ≤ p. Therefore ETpn ⟨e⟩ ∈ U . Define Σ (⟨⟨Ci, oi⟩ : i ≤ 2n+ 1⟩) = C2n+2 =⋂{

ETpn ⟨e⟩ : e ∈ Levk(Tpn)
}
∈ U . If ⟨⟨Ci, oi⟩ : i ≤ 2n+ 2⟩ is a partial continuation

of ⅁SelStab (U ,H) in which Player I has followed Σ, then o2n+2 ∈ C2n+2 and so there
is a sequence ⟨pn,e : e ∈ Levk(Tpn)⟩ such that for each e ∈ Levk(Tpn), pn,e ≤ Tpn⟨e⟩
and pn,e ⊩P(H) x̊ (o2n+2) = 1. Define pn+1 = Tpn+1 =

⋃{
Tpn,e : e ∈ Levk(Tpn)

}
.

By Lemma 3.11, pn+1 ∈ P(H) and pn+1 ≤ pn. Define Φ (⟨⟨Ci, oi⟩ : i ≤ 2n+ 2⟩) =
⟨pi : i ≤ n+ 1⟩. Finally, define Σ (⟨⟨Ci, oi⟩ : i ≤ 2n+ 2⟩) = C2n+3 = Hpn+1,k ∈ H,
so that if o2n+3 ∈ C2n+3, then o2n+3 ∈ Hpn+1,max(o2n+1)+1. It is clear that (1),
(3), and (4) are satisfied. It is also clear that (2)(a) holds. For 2(b), suppose
i < j ≤ n + 1. If i < j ≤ n, then the induction hypothesis gives what is
needed. So assume that i < j = n + 1. Suppose that e ∈ Levmax(o2i+1)

(
Tpj

)
.

Then e ∈ Levmax(o2i+1)(Tpn). If i = n, then trivially succTpi (e) ⊆ succTpn (e),

while if i < n, then by the induction hypothesis, succTpi (e) ⊆ succTpn (e). Thus

in either case, succTpi (e) ⊆ succTpn (e). Suppose σ ∈ succTpn (e). Then e⌢⟨σ⟩ ∈
Tpn , and dom(e⌢⟨σ⟩) = max (o2i+1) + 1 ≤ max (o2n+1) + 1 = k. Choose some
e∗ ∈ Levk(Tpn) with e⌢⟨σ⟩ ⊆ e∗. Then e⌢⟨σ⟩ ∈ Tpn,e∗ ⊆ Tpn+1

, whence σ ∈
succTpn+1

(e). Therefore, succTpi (e) ⊆ succTpn (e) ⊆ succTpn+1
(e) = succTpj (e), as

required for (2)(b). For (2)(c), suppose r ≤ pn+1. Choose e ∈ Levk(Tr). Then
e ∈ Levk(Tpn) and Tr⟨e⟩ ≤ Tpn+1⟨e⟩ ≤ pn,e. So Tr⟨e⟩ ⊩P(H) x̊ (o2n+2) = 1. There-
fore, pn+1 ⊩P(H) x̊ (o2n+2) = 1, as needed for (2)(c). This concludes the definition
of Σ and Φ and the proof. ⊣

Theorem 6.15. P(H) preserves all selective ultrafilters on ω.

Proof. Let U be a selective ultrafilter on ω. Either U ∈ C1(H) or U /∈ C1(H). If
U /∈ C1(H), then P(H) preserves U by Corollary 6.13. If U ∈ C1(H), then P(H)
preserves U by Lemma 6.14. ⊣

7. A model with many selectives and no stable ordered-unions

The main result of the paper is proved in this section. It is shown that there is
a model of set theory where 2ℵ0 = ℵ2, there are 2ℵ0 pairwise non-RK-isomorphic
selective ultrafilters, but no stable ordered-union ultrafilters. After all the work
done in the previous sections, the proof is mostly a matter of combining the earlier
lemmas with certain well-known iteration theorems. Nevertheless, we provide a
good amount of detail. The first lemma is well-known. A proof is included for
completeness.

Lemma 7.1. Suppose U is a selective ultrafilter on ω. Suppose P is proper and
ωω-bounding. If P preserves U , then

⊩P “{A ⊆ ω : ∃B ∈ U [B ⊆ A]} is a selective ultrafilter on ω′′.

Proof. Let G be (V,P)-generic. In V[G], let U0 = {A ⊆ ω : ∃B ∈ U [B ⊆ A]}.
By hypothesis, U0 is an ultrafilter on ω. Suppose {An : n ∈ ω} ⊆ U0 is given and



STABLE ORDERED-UNION VS. SELECTIVE 31

choose {Bn : n ∈ ω} ⊆ U so that Bn ⊆ An. Since P is proper, there is a set X ∈ V
which is countable in V and satisfies {Bn : n ∈ ω} ⊆ X ⊆ U . As U is a P-point in
V, there is B ∈ U such that B ⊆∗ A, for every A ∈ X. Now B ∈ U0 and B ⊆∗ An,
for every n ∈ ω. So U0 is a P-point in V[G].

Next, let I = ⟨in : n ∈ ω⟩ be an interval partition in V[G]. Since P is ωω-
bounding, there is an interval partition J = ⟨jn : n ∈ ω⟩ in V such that ∀n ∈ ω∃l ∈
ω [Il ⊆ Jn]. As U is a Q-point in V, there is B ∈ U so that ∀n ∈ ω [|B ∩ Jn| ≤ 1].
Now in V[G], B ∈ U0 and it is easily seen that ∀n ∈ ω [|B ∩ In| ≤ 2]. Define
C = {min (B ∩ In) : n ∈ ω ∧B ∩ In ̸= ∅} and D = B \ C. It is clear that ∀n ∈
ω [|C ∩ In| ≤ 1] and that ∀n ∈ ω [|D ∩ In| ≤ 1]. C ∈ U0 or D ∈ U0 because U0 is an
ultrafilter in V[G]. Therefore, U0 is a Q-point in V[G]. Finally, it is well-known
(see [2]) that an ultrafilter on ω is selective if and only if it is both a P-point and
a Q-point. ⊣

Lemma 7.2. Let U and V be selective ultrafilters on ω so that U ̸≡RK V. For
any f : ω → ω, for any ψ : ω → ω, and for any A0 ∈ U , there exists a sequence
⟨ni : i < ω⟩ such that:

(1) ni ∈ ω, ni < ni+1;
(2) {n2j : j ∈ ω} ∈ U , {n2j : j ∈ ω} ⊆ A0, and {n2j+1 : j ∈ ω} ∈ V;
(3) f(n2i) < n2i+1 and ψ(n2i+1) < n2i+2.

Proof. Define a strategy Σ for Player I in ⅁SelSel (U ,V) as follows. Σ(∅) = A0 ∈ U .
Suppose i ∈ ω and that ⟨⟨Cj , nj⟩ : j ≤ 2i⟩ is a partial run of ⅁SelSel (U ,V) in which
Player I has followed Σ. Then define

Σ (⟨⟨Cj , nj⟩ : j ≤ 2i⟩) = {n ∈ ω : n > max{n2i, f(n2i)}} ∈ V.

Next, suppose ⟨⟨Cj , nj⟩ : j ≤ 2i+ 1⟩ is a partial run of ⅁SelSel (U ,V) in which Player
I has followed Σ. Define

Σ (⟨⟨Cj , nj⟩ : j ≤ 2i+ 1⟩) = {n ∈ A0 : n > max{n2i+1, ψ(n2i+1)}} ∈ U .

This concludes the definition of Σ. Since it is not a winning strategy for Player I
(by Lemma 2.15), there is a run ⟨⟨Ci, ni⟩ : i < ω⟩ of ⅁SelSel (U ,V) in which Player
I has followed Σ and lost. Now (1)–(3) are satisfied because Player II won and
because of the way Σ is defined. ⊣

Corollary 7.3. Let U and V be selective ultrafilters on ω so that U ̸≡RK V. Suppose
P is proper and ωω-bounding. If P preserves U and V, then

⊩P “{A ⊆ ω : ∃B ∈ U [B ⊆ A]} ̸≡RK {A ⊆ ω : ∃B ∈ V [B ⊆ A]}.′′

Proof. Let G be any (V,P)-generic filter. Work in V[G]. Let U0 = {A ⊆ ω :
∃B ∈ U [B ⊆ A]} and V0 = {A ⊆ ω : ∃B ∈ V [B ⊆ A]}. They are both selective
ultrafilters on ω. Suppose for a contradiction that g : ω → ω witnesses V0 ≤RK U0.
Then for any A ∈ U0, g [A] ∈ V0. As U0 is a P-point, there is A1 ∈ U0 such that
g is either finite-to-one or constant on A1. g cannot be constant on A1 because
g [A1] ∈ V0. Therefore, there is a function φ : ω → ω such that for any k ∈ ω,
for any n ∈ A1, if n > φ(k), then g(n) > k. Let A0 ∈ U with A0 ⊆ A1. As P is
ωω-bounding, find f and ψ in V such that f : ω → ω, ψ : ω → ω, and g(n) < f(n)
and φ(n) < ψ(n), for every n ∈ ω. Applying Lemma 7.2 back in V, find a sequence
⟨ni : i < ω⟩ satisfying (1)–(3) of Lemma 7.2. Let A = {n2i : i ∈ ω} ∈ U0 and
B = {n2j+1 : j ∈ ω} ∈ V0. Note A ⊆ A0 ⊆ A1. It will be verified that g [A]∩B = ∅.
To this end, fix i, j ∈ ω. If i ≤ j, then g(n2i) < f(n2i) < n2i+1 ≤ n2j+1. If j < i,
then φ(n2j+1) < ψ(n2j+1) < n2j+2 ≤ n2i, whence g(n2i) > n2j+1. This proves
g [A] ∩B = ∅, contradicting g [A] ∈ V0, and concluding the proof. ⊣
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Lemma 7.4 (Blass and Shelah [9]). Suppose U is a P-point. Let γ be a limit ordinal

and let ⟨Pα; Q̊α : α ≤ γ⟩ be a CS iteration such that ∀α < γ
[
⊩α Q̊α is proper

]
.

Suppose that for all α < γ, Pα preserves U . Then Pγ preserves U .

Theorem 7.5. There is a model of ZFC with ℵ2 pairwise non-RK-isomorphic
selective ultrafilters on ω and no stable ordered-union ultrafilters on FIN.

Proof. Put S2
1 = {α < ω2 : cf(α) = ω1}. Let V be a model satisfying CH and

♢
(
S2
1

)
. By CH, fix a family {Uα : α < ω2} of pairwise non-RK-isomorphic selective

ultrafilters on ω (for instance, see [25] and [23]). Fixing some diamond sequence

witnessing ♢
(
S2
1

)
, define a CS iteration

〈
Pα; Q̊α : α ≤ ω2

〉
inV as follows. Assume

α < ω2 and that Pα is proper, ωω-bounding, satisfies the ℵ2-c.c., and that ⊩α CH.
Observe that ⊩α “stable ordered-union ultrafilters exist” because ⊩α CH. If the

diamond sequence at α codes a pair
〈
G̊, p

〉
such that p ∈ Pα, G̊ is a Pα-name, and

p ⊩α “G̊ is a stable ordered-union ultrafilter on FIN′′, then choose a Pα-name H̊α

such that ⊩α “H̊α is a stable ordered-union ultrafilter on FIN′′ and p ⊩α H̊α = G̊,
and define Q̊α to be a full Pα-name so that ⊩α Q̊α = P(H̊α). Otherwise choose an

arbitrary Pα-name H̊α with ⊩α “H̊α is a stable ordered-union ultrafilter on FIN′′,
and define Q̊α to be a full Pα-name so that ⊩α Q̊α = P(H̊α). Note that in both cases

⊩α
∣∣∣Q̊α∣∣∣ = ℵ1 because ⊩α CH. Standard arguments in the theory of proper forcing

(see Shelah [26] or Abraham [1]) together with lemmas proved earlier therefore
imply that for each δ ≤ ω2, Pδ is proper, ωω-bounding, and satisfies the ℵ2-c.c.
Furthermore, for each δ < ω2, ⊩δ CH.

Suppose for a contradiction that H̊ is a Pω2
-name such that

p ⊩ω2
“H̊ is a stable ordered-union ultrafilter on FIN′′,

for some p ∈ Pω2 . Then by a standard argument, there exists α ∈ S2
1 such that

the diamond sequence at α codes a pair
〈
G̊, p↾α

〉
such that G̊ is a Pα-name,

p↾α ⊩α “G̊ is a stable ordered-union ultrafilter on FIN′′, and p ⊩ω2 G̊ ⊆ H̊. Let
Gω2

be a (V,Pω2
)-generic filter with p ∈ Gω2

. Let Gα denote its projection, that

is Gα = {q↾α : q ∈ Gω2}. In V [Gα], H̊α [Gα] = G̊ [Gα] is a stable ordered-union

ultrafilter on FIN. Moreover, P
(
H̊α [Gα]

)
completely embeds into the completion

of Pω2/Gα, and Pω2/Gα is ωω-bounding. Therefore Theorem 5.7 implies that

⊩Pω2/Gα
“there is no stable ordered-union ultrafilter on FIN extending H̊α [Gα]

′′
.

However Gω2
is a (V [Gα] ,Pω2

/Gα)-generic filter, V [Gα] [Gω2
] = V [Gω2

], and in

V [Gω2 ], H̊ [Gω2 ] is a stable ordered-union ultrafilter on FIN extending G̊ [Gω2 ] =

G̊ [Gα] = H̊α [Gα]. This is a contradiction which shows that there are no stable
ordered-union ultrafilters on FIN after forcing with Pω2 .

An easy inductive argument using Theorem 6.15, Corollary 4.2, Lemma 7.1, and
Lemma 7.4 shows that for every α < ω2 and every δ ≤ ω2, Pδ preserves Uα. Let Gω2

be a (V,Pω2
)-generic filter. In V [Gω2

], define U∗
α = {A ⊆ ω : ∃B ∈ Uα [B ⊆ A]},

for every α < ω2. By Lemma 7.1, each U∗
α is a selective ultrafilter on ω, and by

Corollary 7.3, U∗
α ̸≡RK U∗

β , for every β ̸= α. Since Pω2
preserves ℵ2 because of the

ℵ2-c.c., a model gotten by forcing with Pω2 has all of the required properties. ⊣

8. Models with an intermediate number of selectives

This section introduces another partial order which allows us to control the
number of selective ultrafilters in the final model. Given a selective ultrafilter U ,
we introduce a new partial order P(U) which is proper, ωω-bounding, and destroys
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U while preserving all selective ultrafilters that are not RK-isomorphic to U . By
interleaving partial orders of the form P(U) with ones of the form P(H), it will
be possible to produce models with no stable ordered-union ultrafilters and fewer
than 2ℵ0 RK-classes of selective ultrafilters. Any cardinal strictly smaller than ℵ2

can be obtained in this way. Thus, for example, there is a model with precisely ℵ0

distinct RK-classes of selective ultrafilters, but no stable ordered-union ultrafilters.
Furthermore, we can control exactly which RK-classes of selective ultrafilters from
the ground model survive in the final forcing extension.

The definition of P(U) depends on the notion of a k-big set, which is similar to
the notion of a ⟨k, s⟩-big set, except that the semigroup operation ∪ plays no role
here.

Definition 8.1. Let k, l ∈ ω. A ⊆ 2l is k-big if for every σ : k → 2, there exists
τ ∈ A such that σ ⊆ τ .

Definition 8.2. Define T′ =
⋃
l∈ω

∏
k∈l2

k. ⟨T′,⊊⟩ is a tree. Let U be a selective
ultrafilter on ω. p is called a U-condition if p = Tp ⊆ T′ is a subtree such that the
following hold:

(1) ∅ ∈ Tp;
(2) ∀f ∈ Tp∀dom(f) ≤ n < ω∃g ∈ Tp [f ⊆ g ∧ n ≤ dom(g)];
(3) for each k ∈ ω, Hp,k ∈ U , where Hp,k ={

l ∈ ω : ∀f ∈ Levl(Tp)
[
succTp(f) is k-big

]}
.

Let P(U) = {p : p is a U-condition}. Define q ≤ p if and only if Tq ⊆ Tp, for all
p, q ∈ P(U).

The forcing P(U) may be seen as a tree version of the one Shelah used in [27] to
produce a model with no nowhere dense ultrafilters.

For now until the end of the proof of Lemma 8.19, U is a fixed selective ultrafilter
on ω. The properties of P(U) are quite similar to those of P(H), and since the proofs
of these properties are also similar, but easier, fewer details will be provided.

Lemma 8.3. T′ ∈ P(U).
Proof. All of the requirements with the possible exception of (3) of Definition 8.2
are clear. To verify this, given k ∈ ω, define H = {l ∈ ω : l > k}, and note that
H ∈ U . Consider l ∈ H. Consider f ∈ Levl(T′). Then A = succT′(f) = 2l. It is
clear that A is k-big as k < l. Thus H ⊆ HT′,k, and so HT′,k ∈ U . ⊣

Lemma 8.4. Suppose p ∈ P(U). Then for any f ∈ Tp, q = Tp⟨f⟩ ∈ P(U) and
q ≤ p.

Proof. The argument for all the requirements, with the possible exception of Clause
(3) of Definition 8.2, is identical to the proof of Lemma 3.10. Fix k ∈ ω. Let H =
{l ∈ Hp,k : l > dom(f)} ∈ U . Suppose l ∈ H and e ∈ Levl(Tp⟨f⟩). Then l ∈ Hp,k,
e ∈ Levl(Tp), and dom(e) = l > dom(f), whence f ⊆ e. Thus succTp⟨f⟩(e) =
succTp(e) is k-big. Thus H ⊆ Hq,k, and so Hq,k ∈ U . Thus q ∈ P(U) and q ≤ p. ⊣

Lemma 8.5. Let p ∈ P(U). Let l ∈ ω, 1 ≤ m < ω, and e1, . . . , em ∈ Levl(Tp).
If p1, . . . , pm ∈ P(U) are such that ∀1 ≤ i ≤ m [pi ≤ Tp⟨ei⟩], then q = Tq =⋃

1≤i≤mTpi ∈ P(U), for each 1 ≤ i ≤ m, pi ≤ q, and q ≤ p.

Proof. Once again, only Clause (3) of Definition 8.2 may require some argument.
For each k ∈ ω, define H = Hp1,k ∩ · · · ∩ Hpm,k ∈ U . Consider l ∈ H. Consider
f ∈ Levl(Tq). Then for some 1 ≤ i ≤ m, f ∈ Levl(Tpi). Since succTpi (f) is k-big

and succTpi (f) ⊆ succTq (f) ⊆ 2l, succTq (f) is also k-big. Thus H ⊆ Hq,k, and so

Hq,k ∈ U . Therefore q ∈ P(U). Finally, since Tq ⊆ Tp, q ≤ p, and for all 1 ≤ i ≤ m,
since Tpi ⊆ Tq, pi ≤ q. ⊣
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Lemma 8.6. Suppose ⟨pi : i ∈ ω⟩ and ⟨li : i ∈ ω⟩ satisfy:
(1) ∀i ∈ ω [pi ∈ P(U)] and ∀i ∈ ω [pi+1 ≤ pi];
(2) ⟨li : i ∈ ω⟩ ∈ ωω, ∀i ∈ ω [li < li+1], and {li : i ∈ ω} ∈ U ;
(3) for each i ∈ ω, li+1 ∈ Hpi+1,li+1;

(4) for each i ≤ j < ω and for each e ∈ Levli
(
Tpj

)
, succTpi (e) ⊆ succTpj (e).

Then q = Tq =
⋂
i∈ωTpi ∈ P(U).

Proof. For ease of notation in this proof, the symbols Ti will replace Tpi , ki will
denote li + 1, and Hi,k will be used for Hpi,k, for all i ∈ ω and k ∈ ω. With the
exception of Clause (3) of Definition 8.2, the arguments for all the other conditions
are identical to the corresponding arguments in the proof of Lemma 3.12. To see
that Tq satisfies (3) of Definition 8.2, fix k ∈ ω. Choose i0 ∈ ω such that k < li0 .
Let H = {lj : ω > j > i0} ∈ U . Suppose l ∈ H. Then l = li+1, where i0 ≤ i < ω.
Note that k < li0 ≤ li < li + 1 = ki. By hypothesis, li+1 ∈ Hi+1,ki . Now, fix
f ∈ Levl(Tq). It needs to be seen that succTq (f) is k-big. To this end, let σ : k → 2
be fixed. Since f ∈ Levli+1(Ti+1), succTi+1(f) is ki-big. Now choose any σ∗ : ki → 2
with σ ⊆ σ∗. Find τ ∈ succTi+1(f) such that σ∗ ⊆ τ . Consider any i+ 1 ≤ j < ω.
Then f ∈ Levli+1

(Tj), and the hypothesis is that succTi+1
(f) ⊆ succTj (f). Thus

τ ∈ succTj (f), and so f⌢⟨τ⟩ ∈ Tj . Hence ∀i + 1 ≤ j < ω [f⌢⟨τ⟩ ∈ Tj ], whence
f⌢⟨τ⟩ ∈ Tq. Therefore τ ∈ succTq (f). Further, σ ⊆ σ∗ ⊆ τ . This proves that
succTq (f) is k-big. Thus H ⊆ Hq,k, and so Hq,k ∈ U . This concludes the proof that
q ∈ P(U). ⊣

Definition 8.7. Define the following two player game called the U-condition game
and denoted ⅁Cond (U). Players I and II alternatively choose ⟨pi, Ai⟩ and ki respec-
tively, where

(1) pi ∈ P(U) and Ai ∈ U ;
(2) ki ∈ Ai;
(3) there exists ⟨pi,e : e ∈ Levki+1(Tpi)⟩ such that

∀e ∈ Levki+1(Tpi) [pi,e ≤ Tpi⟨e⟩]

and pi+1 = Tpi+1
=

⋃{
Tpi,e : e ∈ Levki+1(Tpi)

}
.

Together they construct the sequence

⟨p0, A0⟩ , k0, ⟨p1, A1⟩ , k1, . . . ,

where each ⟨pi, Ai⟩ has been played by Player I and ki has been chosen by Player
II in response subject to Conditions (1)–(3). Player II wins if and only if ∀i < j <
ω [ki < kj ], {ki : i < ω} ∈ U , and q = Tq =

⋂
i∈ωTpi ∈ P(U).

Lemma 8.8. Player I does not have a winning strategy in ⅁Cond (U).

Proof. Suppose for a contradiction that Σ is a winning strategy for Player I in
⅁Cond (U). Define Π and Φ such that:

(1) Π is a strategy for Player I in ⅁Sel (U);
(2) for each n ∈ ω, if ⟨⟨Bi, ki⟩ : i ≤ n⟩ is a partial run of ⅁Sel (U) in which

Player I has followed Π, then Φ (⟨⟨Bi, ki⟩ : i ≤ n⟩) = ⟨⟨pi, Ai⟩ : i ≤ n⟩ and

⟨⟨⟨pi, Ai⟩ , ki⟩ : i ≤ n⟩

is a partial play of ⅁Cond (U) in which Player I has followed Σ and it has the
property that ∀i < n

[
Bi+1 = Ai+1 ∩Hpi+1,ki+1 ∩ {k ∈ ω : k > ki}

]
;

(3) for each n ∈ ω, if ⟨⟨Bi, ki⟩ : i ≤ n+ 1⟩ is a partial run of ⅁Sel (U) in which
Player I has followed Π, then

Φ (⟨⟨Bi, ki⟩ : i ≤ n⟩) = Φ (⟨⟨Bi, ki⟩ : i ≤ n+ 1⟩) ↾n+ 1.
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Π and Φ will be defined inductively. Let Σ(∅) = ⟨p0, A0⟩ define Π(∅) = B0 = A0.
As B0 ∈ U , this is a valid move for Player I in ⅁Sel (U). Note that every partial run
of ⅁Sel (U) of length 1 in which Player I has followed Π will have the form ⟨B0, k0⟩,
where k0 ∈ B0 = A0. For any such ⟨B0, k0⟩, define Φ(⟨B0, k0⟩) = ⟨⟨p0, A0⟩⟩, and
note that ⟨⟨p0, A0⟩ , k0⟩ is a partial run of ⅁Cond (U) in which Player I has followed
Σ. Now suppose n ∈ ω, ⟨⟨Bi, ki⟩ : i ≤ n⟩ is a partial run of ⅁Sel (U) in which Player
I has followed Π, Φ (⟨⟨Bi, ki⟩ : i ≤ n⟩) = ⟨⟨pi, Ai⟩ : i ≤ n⟩,

⟨⟨⟨pi, Ai⟩ , ki⟩ : i ≤ n⟩

is a partial run of ⅁Cond (U) in which Player I has followed Σ, and

∀i < n
[
Bi+1 = Ai+1 ∩Hpi+1,ki+1 ∩ {k ∈ ω : k > ki}

]
.

Let Σ (⟨⟨⟨pi, Ai⟩ , ki⟩ : i ≤ n⟩) = ⟨pn+1, An+1⟩. Then pn+1 ∈ P(U) and An+1 ∈ U .
Hence Bn+1 = An+1 ∩ Hpn+1,kn+1 ∩ {k ∈ ω : k > kn} ∈ U . Note that Bn+1 is
therefore a legitimate move for Player I in ⅁Sel (U). Define Π (⟨⟨Bi, ki⟩ : i ≤ n⟩) =
Bn+1. Note that any continuation of ⟨⟨Bi, ki⟩ : i ≤ n⟩ to length n+2 in which Player
I follows Π must have the form ⟨⟨Bi, ki⟩ : i ≤ n+ 1⟩, where kn+1 ∈ Bn+1. Given any
such ⟨⟨Bi, ki⟩ : i ≤ n+ 1⟩, define Φ (⟨⟨Bi, ki⟩ : i ≤ n+ 1⟩) = ⟨⟨pi, Ai⟩ : i ≤ n+ 1⟩.
Note that ⟨⟨⟨pi, Ai⟩ , ki⟩ : i ≤ n+ 1⟩ is a partial run of ⅁Cond (U) in which Player I
has followed Σ because of the definition of ⟨pn+1, An+1⟩ and kn+1 ∈ Bn+1 ⊆ An+1.
Further, by definition and by the induction hypothesis,

∀i ≤ n
[
Bi+1 = Ai+1 ∩Hpi+1,ki+1 ∩ {k ∈ ω : k > ki}

]
.

Thus the inductive definition satisfies (1)–(3). This concludes the definition of Π
and Φ.

Since Π is not a winning strategy for Player I in ⅁Sel (U), there is a play
⟨⟨Bi, ki⟩ : i < ω⟩ of ⅁Sel (U) in which Player I follows Π and loses. There exists
⟨⟨pi, Ai⟩ : i < ω⟩ such that for each n ∈ ω, Φ (⟨⟨Bi, ki⟩ : i ≤ n⟩) = ⟨⟨pi, Ai⟩ : i ≤ n⟩.
Therefore, ⟨⟨⟨pi, Ai⟩ , ki⟩ : i < ω⟩ is a play of ⅁Cond (U) in which Player I has followed
Σ, and ∀i < ω

[
Bi+1 = Ai+1 ∩Hpi+1,ki+1 ∩ {k ∈ ω : k > ki}

]
. Since Player II wins

the play ⟨⟨Bi, ki⟩ : i < ω⟩, {ki : i < ω} ∈ U . Lemma 8.6 will be used to verify that
q = Tq =

⋂
i∈ωTpi ∈ P(U). Note that by (3) of Definition 8.7 and by Lemma 8.5,

pi+1 ≤ pi, for all i ∈ ω. For each i ∈ ω, ki+1 ∈ Bi+1, and so ki+1 ∈ Hpi+1,ki+1,
and ki+1 > ki. Therefore ∀i < j < ω [ki < kj ]. Next, fix some i < ω. It will be
proved by induction on j that for each i ≤ j < ω and for each e ∈ Levki

(
Tpj

)
,

succTpi (e) ⊆ succTpj (e). This is clear when i = j. Assume this is true for some

i ≤ j. Fix e ∈ Levki
(
Tpj+1

)
and consider σ ∈ succTpi (e). Since Tpj+1 ⊆ Tpj ,

e ∈ Levki
(
Tpj

)
. So by the induction hypothesis, σ ∈ succTpj (e). Therefore

e⌢⟨σ⟩ ∈ Tpj and dom (e⌢⟨σ⟩) = ki + 1 ≤ kj + 1. Choose e∗ such that e⌢⟨σ⟩ ⊆ e∗

and e∗ ∈ Levkj+1

(
Tpj

)
. By (3) of Definition 8.7, there exists pj,e∗ ≤ Tpj ⟨e∗⟩ such

that Tpj,e∗ ⊆ Tpj+1 . Since e⌢⟨σ⟩ ⊆ e∗, e⌢⟨σ⟩ ∈ Tpj,e∗ . Therefore e⌢⟨σ⟩ ∈ Tpj+1 ,
whence σ ∈ succTpj+1

(e), as required. This concludes the induction. Thus the

hypotheses of Lemma 8.6 are all satisfied, and so q = Tq =
⋂
i∈ωTpi ∈ P(U). How-

ever, this means that Player II wins the play ⟨⟨⟨pi, Ai⟩ , ki⟩ : i < ω⟩ of ⅁Cond (U) even
though Player I has followed Σ during this play, contradicting the hypothesis that
Σ is a winning strategy for Player I in ⅁Cond (U). ⊣

Lemma 8.9. Suppose ⟨⟨⟨pi, Ai⟩ , ki⟩ : i ∈ ω⟩ is a run of ⅁Cond (U) which is won by
Player II. If q = Tq =

⋂
i∈ωTpi , then for each i ∈ ω,

∀f ∈ Tpi [dom(f) ≤ ki + 1 =⇒ f ∈ Tq] .

Proof. Recall that by Clause (3) of Definition 8.7 and by Lemma 8.5, pi+1 ≤ pi, for
all i ∈ ω. Fix i ∈ ω and f ∈ Tpi with dom(f) ≤ ki+1. It will be proved by induction
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on j that ∀i ≤ j < ω
[
f ∈ Tpj

]
. When j = i, there is nothing to prove. Suppose

the statement holds for some i ≤ j < ω. So f ∈ Tpj and dom(f) ≤ ki + 1 ≤ kj + 1.
Choose e ∈ Tpj such that f ⊆ e and dom(e) = kj + 1. By Clause (3) of Definition
8.7, there exists pj,e ≤ Tpj ⟨e⟩ so that Tpj,e ⊆ Tpj+1 . As f ⊆ e, f ∈ Tpj,e , and

so f ∈ Tpj+1 . This concludes the induction. Thus, ∀i ≤ j < ω
[
f ∈ Tpj

]
, whence

f ∈
⋂
l∈ωTpl = Tq. ⊣

Lemma 8.10. Suppose ⟨⟨⟨pi, Ai⟩ , ki⟩ : i ∈ ω⟩ is a run of ⅁Cond (U) which is won
by Player II. Let i ∈ ω and q = Tq =

⋂
j∈ωTpj . If ki+1 ∈ Hpi+1,ki+1, then ki+1 ∈

Hq,ki+1.

Proof. Assume that ki+1 ∈ Hpi+1,ki+1. Consider some e ∈ Levki+1
(Tq). Then

e ∈ Levki+1

(
Tpi+1

)
and so succTpi+1

(e) is ki + 1-big. If σ ∈ succTpi+1
(e), then

e⌢⟨σ⟩ ∈ Tpi+1 and dom (e⌢⟨σ⟩) = ki+1+1. Therefore, by Lemma 8.9, e⌢⟨σ⟩ ∈ Tq,

whence σ ∈ succTq (e). Thus succTpi+1
(e) ⊆ succTq (e) ⊆ 2ki+1 , and so succTq (e) is

ki + 1-big. This shows ki+1 ∈ Hq,ki+1. ⊣

Lemma 8.11. Let θ be a sufficiently large regular cardinal. Assume M ≺ H(θ) is
countable and that M contains all relevant parameters. Suppose f : ω →M is such
that ∀n ∈ ω

[
f(n) ∈ VP(U) and ⊩P(U) f(n) ∈ V

]
. Let p ∈ P(U) ∩M . Then there

exist q, ⟨ki : i ∈ ω⟩, and F such that:

(1) q ≤ p, ⟨ki : i ∈ ω⟩ ∈ ωω, ∀i < j < ω [ki < kj ], F is a function, dom(F ) =

{⟨i, e⟩ : i ∈ ω ∧ e ∈ Levki+1(Tq)} ;
(2) {ki : i ∈ ω} ∈ U , ∀i ∈ ω [ki+1 ∈ Hq,ki+1];
(3) for each i ≤ j < ω and each e ∈ Levkj+1(Tq),

Tq⟨e⟩ ⊩P(U) f(i) = F (⟨i, e↾ki + 1⟩);
(4) for any ⟨i, e⟩ ∈ dom(F ), F (⟨i, e⟩) ∈M .

Proof. Define a strategy Σ for Player I in ⅁Cond (U) as follows. p0 = p ∈ P(U) and
A0 = ω ∈ U . Note that p0 ∈ M . Define Σ(∅) = ⟨p0, A0⟩. Now suppose that i ∈ ω
and that ⟨⟨⟨pj , Aj⟩ , kj⟩ : j ≤ i⟩ is a partial run of ⅁Cond (U) in which Player I has fol-
lowed Σ and that pi ∈M . Let l = ki+1, for ease of notation. For any e ∈ Levl(Tpi),
Tpi⟨e⟩ ∈ P(U) and by hypothesis, ⊩P(U) f(i) ∈ V. Since pi ∈ M and f(i) ∈ M ,
there exist sequences ⟨pi,e : e ∈ Levl(Tpi)⟩ ∈M and ⟨xi,e : e ∈ Levl(Tpi)⟩ ∈M such
that

∀e ∈ Levl(Tpi)
[
pi,e ≤ Tpi⟨e⟩ and pi,e ⊩P(U) f(i) = xi,e

]
.

Define pi+1 = Tpi+1
=

⋃{
Tpi,e : e ∈ Levl(Tpi)

}
. Note that pi+1 ∈ M and that

pi+1 ∈ P(U) by Lemma 8.5. Hence Ai+1 = Hpi+1,l ∈ U . Define

Σ (⟨⟨⟨pj , Aj⟩ , kj⟩ : j ≤ i⟩) = ⟨pi+1, Ai+1⟩ .
This completes the definition of Σ. Note that by definition, if ⟨⟨⟨pi, Ai⟩ , ki⟩ : i < ω⟩
is a run of ⅁Cond (U) in which Player I has followed Σ, then pi ∈M , for all i < ω.

Since Σ is not a winning strategy for Player I, there is a run ⟨⟨⟨pi, Ai⟩ , ki⟩ : i < ω⟩
of ⅁Cond (U) in which Player I has followed Σ and lost. Then ⟨ki : i ∈ ω⟩ ∈ ωω,
∀i < j < ω [ki < kj ], and {ki : i ∈ ω} ∈ U . Again, for ease of notation, denote
ki + 1 by li. Let q = Tq =

⋂
i∈ωTpi . Then q ∈ P(U) and q ≤ p0 = p. Moreover, for

any i ∈ ω, ki+1 ∈ Ai+1 = Hpi+1,li , and so by Lemma 8.10, ki+1 ∈ Hq,li , as required
for (2). Next, by the definition of Σ, for each i ∈ ω, pi ∈ M and there exist
sequences ⟨pi,e : e ∈ Levli(Tpi)⟩ ∈ M and ⟨xi,e : e ∈ Levli(Tpi)⟩ ∈ M as described
in the previous paragraph. Given i ∈ ω and e ∈ Levli(Tq), then e ∈ Levli(Tpi), and
since e ∈M , so xi,e ∈M . Define F (⟨i, e⟩) = xi,e. The argument for (3) is identical
to the corresponding argument in the proof of Lemma 4.1. ⊣
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Corollary 8.12. P(U) is proper and ωω-bounding.

Proof. The proof is identical to the proof of Corollary 4.2, using Lemma 8.11 in
place of Lemma 4.1. ⊣

The construction of Lemma 8.11 can be easily modified to show that P(U) has
the weak Sacks property. Taken in conjunction with Lemmas 8.13 and 8.19, this
shows that P(U) is a forcing with the weak Sacks property which does not add an
independent real and yet does not preserve P-points. Forcings with these properties
were considered by Zapletal in [30]

Lemma 8.13. Suppose V is a selective ultrafilter on ω. Suppose V ̸≡RK U . Then
P(U) preserves V.

Proof. Let x̊ be a P(U)-name such that ⊩P(U) x̊ : ω → 2 and let p ∈ P(U).
For each q ≤ p let Eq = {n ∈ ω : ∃r ≤ q

[
r ⊩P(U) x̊(n) = 1

]
}. Suppose first that

there exists q ≤ p such that Eq /∈ V. Then A = ω \ Eq ∈ V, and for all n ∈ A,
q ⊩P(U) x̊(n) = 0. This is as required by (1) of Lemma 6.7.

It will henceforth be assumed that for all q ≤ p, Eq ∈ V. Define Σ and Φ such
that:

(1) Σ is a strategy for Player I in ⅁SelSel (V,U);
(2) for each n ∈ ω, if ⟨⟨Ci, oi⟩ : i ≤ 2n⟩ is a partial run of ⅁SelSel (V,U) in which

Player I has followed Σ, then Φ (⟨⟨Ci, oi⟩ : i ≤ 2n⟩) = ⟨pi : i ≤ n⟩ and
(a) ∀i ≤ n [pi ∈ P(U)], ∀i < n [pi+1 ≤ pi], p0 ≤ p;
(b) for each i < j ≤ n and for each e ∈ Levo2i+1

(
Tpj

)
, succTpi (e) ⊆

succTpj (e);

(c) for each i ≤ n, pi ⊩P(U) x̊(o2i) = 1;
(3) for each n ∈ ω, if ⟨⟨Ci, oi⟩ : i ≤ 2n+ 3⟩ is a partial run of ⅁SelSel (V,U) in

which Player I has followed Σ and if

Φ (⟨⟨Ci, oi⟩ : i ≤ 2n+ 2⟩) = ⟨pi : i ≤ n+ 1⟩ ,
then o2n+3 ∈ Hpn+1,o2n+1+1 and o2n+3 > o2n+1;

(4) for each n ∈ ω, if ⟨⟨Ci, oi⟩ : i ≤ 2n+ 2⟩ is a partial run of ⅁SelSel (V,U) in
which Player I has followed Σ, then

Φ (⟨⟨Ci, oi⟩ : i ≤ 2n⟩) = Φ (⟨⟨Ci, oi⟩ : i ≤ 2n+ 2⟩) ↾n+ 1.

Suppose for a moment that Σ and Φ satisfying (1)–(4) can be defined. Since Σ is
not a winning strategy for Player I, there is a play ⟨⟨Ci, oi⟩ : i < ω⟩ of ⅁SelSel (V,U)
in which Player I follows Σ and loses. Then ⟨o2i+1 : i < ω⟩ ∈ ωω and {o2i+1 :
i < ω} ∈ U . Also, there is a sequence ⟨pi : i < ω⟩ such that for each n ∈ ω,
Φ (⟨⟨Ci, oi⟩ : i ≤ 2n⟩) = ⟨pi : i ≤ n⟩. Then ⟨o2i+1 : i < ω⟩ and ⟨pi : i < ω⟩ satisfy
the hypotheses of Lemma 8.6. To see this, first note that applying (3) with n = i
gives o2i+3 = o2n+3 ∈ Hpn+1,o2n+1+1 = Hpi+1,o2i+1+1 and o2i+3 > o2i+1. Hence

∀i < j < ω [o2i+1 < o2j+1]. Next, given i ≤ j < ω and e ∈ Levo2i+1

(
Tpj

)
, if

i = j, then trivially succTpi (e) ⊆ succTpj (e). If i < j, then applying (2)(b) with

n = j gives succTpi (e) ⊆ succTpj (e). Therefore Lemma 8.6 applies and implies that

q = Tq =
⋂
i∈ωTpi ∈ P(U). Further, q ≤ p0 ≤ p, and for each i ∈ ω, since q ≤ pi,

q ⊩P(U) x̊ (o2i) = 1. Since A = {o2i : i < ω} ∈ V, q and A satisfy the conditions of
(1) of Lemma 6.7. Thus in both this case and in the case considered in the previous
paragraph, (1) of Lemma 6.7 applies and it implies that P(U) preserves V.

Σ and Φ are defined inductively. Σ (∅) = Ep ∈ V. If ⟨⟨C0, o0⟩⟩ is a partial run
of ⅁SelSel (V,U) in which Player I has followed Σ, then C0 = Ep and o0 ∈ C0 =
Ep. Define Φ (⟨⟨C0, o0⟩⟩) = ⟨p0⟩, where p0 ≤ p and p0 ⊩P(U) x̊(o0) = 1. Such
a p0 exists by the definition of Ep. Define Σ (⟨⟨C0, o0⟩⟩) = ω ∈ U . It is clear
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that (1)–(4) are satisfied by these definitions. Now, assume that for some n ∈ ω,
⟨⟨Ci, oi⟩ : i ≤ 2n+ 1⟩ is a partial run of ⅁SelSel (V,U) in which Player I has followed
Σ and that Φ (⟨⟨Ci, oi⟩ : i ≤ 2n⟩) = ⟨pi : i ≤ n⟩, and that these satisfy (1)–(4). Let
k = o2n+1 + 1. For any e ∈ Levk(Tpn), Tpn⟨e⟩ ≤ pn ≤ p0 ≤ p. Therefore ETpn ⟨e⟩ ∈
V. Define Σ (⟨⟨Ci, oi⟩ : i ≤ 2n+ 1⟩) = C2n+2 =

⋂{
ETpn ⟨e⟩ : e ∈ Levk(Tpn)

}
∈ V.

If ⟨⟨Ci, oi⟩ : i ≤ 2n+ 2⟩ is a partial continuation of ⅁SelSel (V,U) in which Player I
has followed Σ, then o2n+2 ∈ C2n+2 and so there is a sequence ⟨pn,e : e ∈ Levk(Tpn)⟩
such that for each e ∈ Levk(Tpn), pn,e ≤ Tpn⟨e⟩ and pn,e ⊩P(U) x̊ (o2n+2) = 1.

Define pn+1 = Tpn+1 =
⋃{

Tpn,e : e ∈ Levk(Tpn)
}
. By Lemma 8.5, pn+1 ∈ P(U)

and pn+1 ≤ pn. Define Φ (⟨⟨Ci, oi⟩ : i ≤ 2n+ 2⟩) = ⟨pi : i ≤ n+ 1⟩. Finally, define
Σ (⟨⟨Ci, oi⟩ : i ≤ 2n+ 2⟩) = C2n+3 = Hpn+1,k ∩ {o ∈ ω : o > o2n+1} ∈ U , so that
if o2n+3 ∈ C2n+3, then o2n+3 ∈ Hpn+1,o2n+1+1 and o2n+3 > o2n+1. It is clear that
(1), (3), and (4) are satisfied. It is also clear that (2)(a) holds. For 2(b), suppose
i < j ≤ n+1. If i < j ≤ n, then the induction hypothesis gives what is needed. So
assume that i < j = n+1. Suppose that e ∈ Levo2i+1

(
Tpj

)
. Then e ∈ Levo2i+1

(Tpn).
If i = n, then trivially succTpi (e) ⊆ succTpn (e), while if i < n, then by the induction

hypothesis, succTpi (e) ⊆ succTpn (e). Thus in either case, succTpi (e) ⊆ succTpn (e).

Suppose σ ∈ succTpn (e). Then e⌢⟨σ⟩ ∈ Tpn , and dom(e⌢⟨σ⟩) = o2i+1 + 1 ≤
o2n+1 + 1 = k. Choose some e∗ ∈ Levk(Tpn) with e⌢⟨σ⟩ ⊆ e∗. Then e⌢⟨σ⟩ ∈
Tpn,e∗ ⊆ Tpn+1 , whence σ ∈ succTpn+1

(e). Therefore, succTpi (e) ⊆ succTpn (e) ⊆
succTpn+1

(e) = succTpj (e), as required for (2)(b). For (2)(c), suppose r ≤ pn+1.

Choose e ∈ Levk(Tr). Then e ∈ Levk(Tpn) and Tr⟨e⟩ ≤ Tpn+1⟨e⟩ ≤ pn,e. So
Tr⟨e⟩ ⊩P(U) x̊ (o2n+2) = 1. Therefore, pn+1 ⊩P(U) x̊ (o2n+2) = 1, as needed for
(2)(c). This concludes the definition of Σ and Φ and the proof. ⊣

Lemma 8.14. Suppose G is (V,P(U))-generic. In V[G], there exists a function
F ∈

∏
k∈ω2

k such that {F} =
⋂
{[Tp] : p ∈ G}.

Proof. Similar to Lemma 5.3. ⊣

Definition 8.15. Suppose G is (V,P(U))-generic. In V[G], let FG ∈
∏
k∈ω2

k

denote the unique function such that {FG} =
⋂

{[Tp] : p ∈ G}. Define cG : [ω]
2 → 2

as follows. For {k, l} ∈ [ω]
2
with k < l, define cG({k, l}) = FG(l)(k) ∈ 2. In V, let

F̊G and c̊G be P(U)-names that are forced by every condition to denote FG and cG
respectively.

Lemma 8.16. Suppose k ≤ k′ ≤ l < ω. Suppose A ⊆ 2l is k′-big. Suppose t ∈ 2.
Then B = {τ ∈ A : ∀n ∈ ω [k ≤ n < k′ =⇒ τ(n) = 1− t]} ⊆ A ⊆ 2l is k-big.

Proof. Let σ : k → 2 be given. Define σ′ : k′ → 2 by stipulating that for any n ∈ k′,

σ′(n) =

{
σ(n) if n ∈ k

1− t if n /∈ k.

As A is k′-big, there exists τ ∈ A such that σ′ ⊆ τ . τ ∈ B because for any n ∈ ω,
if k ≤ n < k′, then τ(n) = σ′(n) = 1− t. Further, σ ⊆ σ′ ⊆ τ . As σ was arbitrary,
B is k-big. ⊣

Lemma 8.17. Suppose k ≤ k′ ≤ l < ω. Suppose p ∈ P(U) and t ∈ 2. Assume that
l ∈ Hp,k′ . Then there exists q ≤ p such that:

(1) ∀i ∈ ω \ {l}∀e ∈ Levi(Tq)
[
succTq (e) = succTp(e)

]
;

(2) l ∈ Hq,k;
(3) for each n ∈ ω, if k ≤ n < k′, then q ⊩P(U) c̊G({n, l}) = 1− t.

Proof. Since l ∈ Hp,k′ , for each f ∈ Levl(Tp), Af = succTp(f) ⊆ 2l is k′-big.
Thus, by applying Lemma 8.16, it is seen that for each f ∈ Levl(Tp), Bf = {τ ∈
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Af : ∀n ∈ ω [k ≤ n < k′ =⇒ τ(n) = 1− t]} is k-big. In particular, each Bf is
non-empty. Since Levl(Tp) is non-empty,

B = {f⌢⟨τ⟩ : f ∈ Levl(Tp) ∧ τ ∈ Bf}

is a non-empty subset of Levl+1(Tp). Therefore by defining

q =
⋃

{Tp⟨f⌢⟨τ⟩⟩ : f ∈ Levl(Tp) ∧ τ ∈ Bf} ,

Lemma 8.5 insures that q ∈ P(U) and q ≤ p.
The argument for (1) is similar to the corresponding argument in the proof of

Lemma 5.5.
For (2), consider f ∈ Levl(Tq). It needs to be seen that succTq (f) ⊆ 2l is k-big.

Indeed f ∈ Levl(Tp) and for any τ ∈ Bf , f
⌢⟨τ⟩ ∈ Tq, whence τ ∈ succTq (f). So

Bf ⊆ succTq (f), and so succTq (f) is k-big.
Finally for (3), fix n ∈ ω such that k ≤ n < k′. Now let G be (V,P(U))-generic

with q ∈ G. Since FG ∈ [Tq], FG↾l + 1 ∈ Tq, and so FG↾l + 1 = f⌢⟨τ⟩, for some
f ∈ Levl(Tp) and τ ∈ Bf . Therefore, cG({n, l}) = FG(l)(n) = τ(n) = 1− t, by the
definition of Bf . ⊣

Lemma 8.18. Suppose p ∈ P(U) and ψ ∈ ωω is such that for all k ∈ ω, k ≤ ψ(k).
Let t ∈ 2. Then there exist q ≤ p and ⟨li : i ∈ ω⟩ ∈ ωω such that ∀i < j < ω [li < lj ],
{li : i ∈ ω} ∈ U , ∀i ∈ ω [ψ (li + 1) ≤ li+1], and for each i ∈ ω, for each n ∈ ω, if
li + 1 ≤ n < ψ (li + 1), then q ⊩P(U) c̊G ({n, li+1}) = 1− t.

Proof. For each n ∈ ω, let An = Hp,ψ(n+1) ∩ {l ∈ ω : l > ψ(n + 1)} ∈ U . As U
is selective, there exists ⟨li : i ∈ ω⟩ ∈ ωω such that ∀i < j < ω [li < lj ], {li : i ∈
ω} ∈ U , and for each i ∈ ω, li+1 ∈ Ali . For ease of notation, let ki = li + 1, and
k′i = ψ (li + 1). Thus li+1 ∈ Hp,k′i

, and ki ≤ k′i ≤ li+1 < ω.

Lemma 8.6 will be used to obtain q. To this end, construct a sequence ⟨pi : i ∈ ω⟩
satisfying the following:

(1) ∀i ∈ ω [pi ∈ P(U)], ∀i ∈ ω [pi+1 ≤ pi], p0 = p;
(2) for each i ∈ ω, li+1 ∈ Hpi+1,ki ;

(3) for each i ≤ j < ω and for each e ∈ Levli
(
Tpj

)
, succTpi (e) ⊆ succTpj (e);

(4) for each j ≤ j∗ < ω, lj∗+1 ∈ Hpj ,k′j∗
;

(5) for each i ∈ ω, for each n ∈ ω, if ki ≤ n < k′i, then

pi+1 ⊩P(U) c̊G ({n, li+1}) = 1− t.

Suppose for a moment that such a sequence has been constructed. Then by Lemma
8.6, q = Tq =

⋂
i∈ωTpi ∈ P(U), q ≤ p0 = p, and for each i ∈ ω, since q ≤ pi+1, q is

as desired because of (5).
The sequence ⟨pi : i ∈ ω⟩ is constructed by induction. Define p0 = p and notice

that (4) is satisfied because for each j∗ < ω, lj∗+1 ∈ Hp,k′
j∗
. Fix j ∈ ω and

suppose that ⟨pi : i ≤ j⟩ satisfying (1)–(5) is given. Applying (4) with j = j∗ yields
lj+1 ∈ Hpj ,k′j

. Hence by Lemma 8.17, there exists pj+1 ≤ pj satisfying (1)–(3) of

Lemma 8.17. It is clear that (1), (2), and (5) are satisfied. And the verification of
(3) and (4) is similar to the corresponding part of the proof of Lemma 5.6. This
concludes the induction and the proof. ⊣

Lemma 8.19. Suppose Q is an ωω-bounding forcing. If P(U) completely embeds
into Q, then

⊩Q “there is no selective ultrafilter on ω extending U ′′.

Proof. Let π : P(U) → Q be a complete embedding, and let π∗ denote the associated

map from P(U)-names to Q-names. Let c̊ denote π∗ (̊cG). Then ⊩Q c̊ : [ω]
2 → 2.
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Suppose t ∈ 2 and that Å is a Q-name such that ⊩Q Å ∈ [ω]
ω
. Let p∗ ∈ Q be given.

It will be shown that there exist q∗ ≤ p∗ and B ∈ U such that

∀l ∈ B∀r∗ ≤ q∗∃n < l∃r∗1 ≤ r∗
[
r∗1 ⊩Q n ∈ Å and r∗1 ⊩Q c̊ ({n, l}) ̸= t

]
.(∗)

Let G be any (V,Q)-generic filter with p∗ ∈ G. Then Å [G] ∈ [ω]
ω
in V[G]. So in

V[G], there is a function φ : ω → ω such that for every k ∈ ω, there exists n ∈ Å [G]
with k ≤ n < φ(k). As this holds for every (V,Q)-generic G with p∗ ∈ G, there is

a Q-name φ̊ in V such that ⊩Q φ̊ : ω → ω and p∗ ⊩Q ∀k ∈ ω∃n ∈ Å [k ≤ n < φ̊(k)].
Since Q is ωω-bounding, there exist p∗1 ≤ p∗ and ψ : ω → ω in V such that

p∗1 ⊩Q ∀k ∈ ω [φ̊(k) < ψ(k)]. Let p ∈ P(U) be a reduction of p∗1 with respect to the
complete embedding π. Applying Lemma 8.18 in V, find q ≤ p and ⟨li : i ∈ ω⟩ ∈ ωω

satisfying the conclusions of Lemma 8.18. Let B = {lj : j > 0} ∈ U . By the choice
of p, π(q) is compatible with p∗1 in Q. Choose any q∗ ≤ π(q), p∗1. To see that
q∗ ≤ p∗ and B ∈ U satisfy (∗), fix some l ∈ B and r∗ ≤ q∗. Then l = li+1, for
some i ∈ ω. Since r∗ ≤ p∗1 ≤ p∗, there exist r∗1 ≤ r∗ and n such that li + 1 ≤ n,

r∗1 ⊩Q n ∈ Å ⊆ ω, and r∗1 ⊩Q n < φ̊ (li + 1) < ψ (li + 1) ≤ li+1 = l. By the choice
of q, q ⊩P(U) c̊G({n, l}) = c̊G({n, li+1}) = 1− t, and so

π(q) ⊩Q c̊({n, l}) = π∗ (̊cG) ({n, l}) = 1− t.

Therefore, r∗1 ⊩Q c̊({n, l}) = 1− t, as needed.
To conclude, suppose for a contradiction that G is some (V,Q)-generic filter and

that in V[G], there is a selective ultrafilter V on ω with V ⊇ U . Then there exist

A ∈ V and t ∈ 2 so that c̊ [G] is constantly t on [A]
2
. Let Å be a Q-name in V

so that ⊩Q Å ∈ [ω]
ω
and A = Å [G]. By what has been proved above, there exist

q∗ ∈ G and B ∈ U satisfying (∗). Choose any l ∈ B ∩ A. By (∗), there is n < l

such that n ∈ Å [G] = A and c̊ [G] ({n, l}) ̸= t, contradicting the fact that c̊ [G] is

constantly t on [A]
2
. ⊣

It is worth noting here that by iterating partial orders of the form P(U), it is
possible to get models with, for example, a unique selective ultrafilter. Models like
this were first produced by Shelah in [26]. However, the details seem to be simpler
for P(U).

Theorem 8.20. Put S2
1 = {α < ω2 : cf(α) = ω1}. Let V be a transitive model of

a sufficiently large fragment of ZFC which satisfies CH and ♢
(
S2
1

)
. Let κ < ℵ2 be

a cardinal. Suppose {Uα : α < κ} is a family of selective ultrafilters on ω such that
Uα ̸≡RK Uβ, for α ̸= β. Then there is a cardinal preserving forcing extension of V
in which:

(1) there are no stable ordered-union ultrafilters on FIN;
(2) each Uα generates a selective ultrafilter on ω;
(3) the ultrafilter generated by Uα is not RK-isomorphic to the ultrafilter gen-

erated by Uβ, for α ̸= β;
(4) if V is any selective ultrafilter on ω, then V ≡RK Uα, for some α < κ.

Proof. Fixing some diamond sequence witnessing ♢
(
S2
1

)
, define a CS iteration〈

Pα; Q̊α : α ≤ ω2

〉
in V as follows. Assume α < ω2 and that Pα is proper, ωω-

bounding, satisfies the ℵ2-c.c., that ⊩α CH, and that Pα preserves Uξ, for all

ξ < κ. Let {Ůαξ : ξ < κ} be a family of Pα-names so that for each ξ < κ,

⊩α Ůαξ = {A ⊆ ω : ∃B ∈ Uξ [B ⊆ A]}. Then ⊩α “Ůαξ is a selective ultrafilter on ω′′,

for every ξ < κ, and ⊩α Ůαξ ̸≡RK Ůαζ , for ξ ̸= ζ.
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Observe that ⊩α “stable ordered-union ultrafilters exist” because ⊩α CH. And

⊩α “∃V
[
V is a selective ultrafilter on ω and ∀ξ < κ

[
Ůαξ ̸≡RK V

]]′′
due to the fact

that κ < ℵ2 and ⊩α CH.

If the diamond sequence at α codes a pair
〈
G̊, p

〉
such that p ∈ Pα, G̊ is a

Pα-name, and p ⊩α “G̊ is a stable ordered-union ultrafilter on FIN′′, then choose a
Pα-name H̊α such that ⊩α “H̊α is a stable ordered-union ultrafilter on FIN′′ and
p ⊩α H̊α = G̊, and define Q̊α to be a full Pα-name so that ⊩α Q̊α = P(H̊α).

If the diamond sequence at α codes a pair
〈
G̊, p

〉
such that p ∈ Pα, G̊ is a Pα-

name, p ⊩α “G̊ is a selective ultrafilter on ω′′, and for each ξ < κ, p ⊩α G̊ ̸≡RK Ůαξ ,
then choose a Pα-name H̊α such that ⊩α “H̊α is a selective ultrafilter on ω′′, and
for each ξ < κ, ⊩α H̊α ̸≡RK Ůαξ , and define Q̊α to be a full Pα-name so that

⊩α Q̊α = P(H̊α).

If neither of these occurs, then choose an arbitrary Pα-name H̊α such that
⊩α “H̊α is a stable ordered-union ultrafilter on FIN′′, and define Q̊α to be a full

Pα-name so that ⊩α Q̊α = P(H̊α). Note that in all cases ⊩α
∣∣∣Q̊α∣∣∣ = ℵ1 because

⊩α CH. Standard arguments in the theory of proper forcing (see Shelah [26]
or Abraham [1]) together with lemmas proved earlier therefore imply that for
each δ ≤ ω2, Pδ is proper, ωω-bounding, and satisfies the ℵ2-c.c. In particu-
lar, this implies that the extension by Pω2

preserves all cardinals. Furthermore,
for each δ < ω2, ⊩δ CH. An easy inductive argument using the earlier lemmas
shows that for each ξ < κ and for each δ ≤ ω2, Pδ preserves Uξ. Therefore, for

each ξ < κ, ⊩ω2
“Ůω2

ξ is a selective ultrafilter on ω′′, and ⊩ω2
Ůω2

ξ ̸≡RK Ůω2

ζ , for
ζ ̸= ξ. An argument identical to the one in the proof of Theorem 7.5 shows that
⊩ω2 “there are no stable ordered-union ultrafilters on FIN′′.

Next, suppose for a contradiction that V̊ is a Pω2
-name such that for some p ∈

Pω2
, p ⊩ω2

“V̊ is a selective ultrafilter on ω′′, and for each ξ < κ, p ⊩ω2
V̊ ̸≡RK Ůω2

ξ .

Then by a standard argument, there exists α ∈ S2
1 such that the diamond sequence

at α codes a pair
〈
G̊, p↾α

〉
such that G̊ is a Pα-name,

p↾α ⊩α “G̊ is a selective ultrafilter on ω′′,

for each ξ < κ, p↾α ⊩α G̊ ̸≡RK Ůαξ , and p ⊩ω2 G̊ ⊆ V̊. Let Gω2 be a (V,Pω2)-generic

filter with p ∈ Gω2
, and let Gα denote its projection to Pα. In V [Gα], H̊α [Gα] =

G̊ [Gα] is a selective ultrafilter on ω such that for every ξ < κ, H̊α [Gα] ̸≡RK Ůαξ [Gα].

Moreover, P
(
H̊α [Gα]

)
completely embeds into the completion of Pω2

/Gα, and

Pω2
/Gα is ωω-bounding. Therefore Lemma 8.19 implies that

⊩Pω2/Gα
“there is no selective ultrafilter on ω extending H̊α [Gα]

′′
.

However Gω2
is a (V [Gα] ,Pω2

/Gα)-generic filter, V [Gα] [Gω2
] = V [Gω2

], and

in V [Gω2 ], V̊ [Gω2 ] is a selective ultrafilter on ω extending G̊ [Gω2 ] = G̊ [Gα] =

H̊α [Gα]. This is a contradiction which shows that in the extension by Pω2
, every

selective ultrafilter on ω is RK-isomorphic to the ultrafilter generated by Uξ, for
some ξ < κ. ⊣
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