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Abstract. We show that if T is any Hausdorff topology on ω1, then any

subset of ω1 which is homeomorphic to the rationals under T can be refined
to a homeomorphic copy of the rationals on which ρ̄ is shift-increasing.

1. Introduction

Todorcevic [Tod87] introduced walks on ordinals and analyzed their characteris-
tics through various functions, which are collectively known as rho-functions. The
study of the properties of these rho-functions has been critical to constructing and
understanding combinatorial structures on uncountable cardinals, especially the
first uncountable cardinal ω1. The monograph [Tod07] presents numerous applica-
tions of rho-functions to diverse areas of mathematics.

An important and useful class of rho-functions are those that satisfy certain
ultrametric triangle inequalities. In [Tod07], Todorcevic showed the existence of

such a function ρ : [κ+]
2 → κ for every regular κ. Chapter 3 of [Tod07] develops a

detailed theory of such rho-functions in the case of the first uncountable cardinal –
i.e. κ+ = ω1 – and presents several applications, including the construction of gaps
in P(ω)/FIN. We recall the following definitions.

Definition 1. A sequence C̄ = 〈Cα : α < ω1〉 is called a C-sequence if the following
hold:

(1) Cα ⊆ α;
(2) Cα+1 = {α};
(3) if α is a limit ordinal, then otp(Cα) = ω and sup(Cα) = α.

Given a fixed C-sequence C̄, ρ : [ω1]
2 → ω is defined by recursion as follows:

ρ(α, β) = max {|Cβ ∩ α| , ρ (α,min (Cβ \ α)) , ρ(ξ, α) : ξ ∈ Cβ ∩ α} ,

for α < β < ω1 with the boundary condition that ρ(α, α) = 0. ρ̄ : [ω1]
2 → ω is

defined by

ρ̄(α, β) = 2ρ(α,β) · (2 · |{ξ ≤ α : ρ(ξ, α) ≤ ρ(α, β)}|+ 1) .

The following was proved in Lemma 3.2.2 of [Tod07].

Lemma 2. For any α < β < γ < ω1,

(1) ρ̄(α, γ) 6= ρ̄(β, γ);
(2) ρ̄(α, γ) ≤ max {ρ̄(α, β), ρ̄(β, γ)};
(3) ρ̄(α, β) ≤ max {ρ̄(α, γ), ρ̄(β, γ)}.
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Lopez-Abad and Todorcevic [LAT13] introduced a sequence of higher-dimensional
functions having analogous properties. For each i ≤ n < ω, they defined a function

f
(n)
i : [ωn]

i+1 → ωn−i, and used these functions to construct normalized weakly-
null sequences of length ωn without any unconditional subsequences. Key to their

construction was the fact that the f
(n)
i could be made shift-increasing on some

infinite subset of every infinite set.

Definition 3. Suppose n ≥ 1 is a natural number. Suppose γ and δ are ordinals.
For a function f : [δ]

n → γ, a subset B ⊆ δ is said to be f -shift-increasing if for any
α1 < · · · < αn < αn+1 all belonging to B, f({α1, . . . , αn}) ≤ f({α2, . . . , αn+1}).

Lopez-Abad and Todorcevic showed in [LAT13] that for every i ≤ n and every

A ∈ [ωn]
ℵ0 , there existsB ∈ [A]

ℵ0 such thatB is f
(n)
i -shift-increasing. In particular,

for every A ∈ [ω1]
ℵ0 , there exists B ∈ [A]

ℵ0 such that B is shift-increasing for

f
(1)
1 = ρ̄. In this paper we generalize this result to topologically large sets. We are

interested in the situation where T is a Hausdorff topology on ω1. The main result of

this paper shows that if A ∈ [ω1]
ℵ0 is a homeomorphic copy of Q under T , then there

exists B ∈ [A]
ℵ0 such that B is homeomorphic to Q and B is ρ̄-shift-increasing. An

important difference between our situation and the one in [LAT13] is that infinite
sets of ordinals satisfy Ramsey’s theorem for pairs, but as Baumgartner [Bau86]
showed, the topological space Q badly fails Ramsey’s theorem. For this reason, the
proof of Theorem 8 below is considerably trickier than the corresponding result in
[LAT13], which relies on Ramsey’s theorem for infinite sets. We expect our result
will have further applications to topology and functional analysis.

2. Notation

Our set-theoretic notation is standard. For any A, P(A) denotes the powerset

of A. When κ is a cardinal, [X]
κ

is {A ⊆ X : |A| = κ}, and [X]
<κ

denotes
{A ⊆ X : |A| < κ}.

Given a set a, I is said to be an ideal on a if I is a subset of P(a) such that
the following conditions hold: if b ⊆ a is finite, then b ∈ I; if b ∈ I and c ⊆ b,
then c ∈ I; if b ∈ I and c ∈ I, then b ∪ c ∈ I; and a /∈ I. The first condition is
sometimes expressed by saying that I is non-principal, and the last condition by
saying that I is proper.

For sets A and B, AB is the collection of all functions from B to A. If δ is an
ordinal, then A<δ =

⋃
γ<δA

γ . If f is a function, then dom(f) is the domain of f ,

and if X ⊆ dom(f), then f ′′X is the image of X under f – that is, f ′′X = {f(x) :
x ∈ X}.

For σ ∈ ω<ω and n ∈ ω, σ_〈n〉 is the concatenation of σ with the one element
sequence 〈n〉. Formally, σ_〈n〉 = σ ∪ {〈dom(σ), n〉}. T ⊆ ω<ω is a subtree if it is
closed under initial segments, that is if ∀σ ∈ T∀k ≤ dom(σ) [σ�k ∈ T ].

If d is a metric on X, then Bd(y, ε) denotes {z ∈ X : d(y, z) < ε}, for all y ∈ X
and ε ∈ R. A topological space 〈X, T 〉 is dense-in-itself if for each x ∈ X and each
open neighborhood U of x, there exists y ∈ U with y 6= x. A theorem of Sierpiński
(see [Eng89]) says that 〈X, T 〉 is homeomorphic to Q with its usual topology if and
only if it is non-empty, countable, metrizable, and dense-in-itself.

3. Getting ρ̄ to be shift increasing on a copy of Q

Even though our main result is about functions on ω1, its proof reduces to an
analysis of functions on countable sets satisfying certain properties. We will begin
with the proof of this countable Ramsey theoretic statement, which could be useful
in other contexts.
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Assume r : [ω]
2 → ω is a function with the following three properties:

(1) ∀k, l,m ∈ ω [k < l < m =⇒ r(k,m) 6= r(l,m)];
(2) ∀k, l,m ∈ ω [k < l < m =⇒ r(k, l) ≤ max {r(k,m), r(l,m)}];
(3) ∀k, l,m ∈ ω [k < l < m =⇒ r(k,m) ≤ max {r(k, l), r(l,m)}].

It is easy to see that these properties of r imply that for any k, l,m ∈ ω with
k < l < m, if r(k,m) > r(l,m), then r(k, l) = r(k,m), and that if r(k, l) > r(l,m),
then r(k,m) = r(k, l).

Definition 4. B ⊆ ω is r-shift-increasing if

∀k, l,m ∈ B [k < l < m =⇒ r(k, l) ≤ r(l,m)] .

Assume that X is a topological space and that 〈xn : n ∈ ω〉 is a sequence of
distinct points of X (i.e. xn = xm if and only if n = m) with the property that the
subspace {xn : n ∈ ω} is homeomorphic to Q. Fix a metric d on {xn : n ∈ ω} that
is compatible with the subspace topology. Observe that for each ε > 0 and each
n ∈ ω, Bd(xn, ε) is also homeomorphic to Q.

Definition 5. A ⊆ ω is said to be scattered if there is no B ⊆ A so that
{xn : n ∈ B} is homeomorphic to Q.

It is clear that I = {A ⊆ ω : A is scattered} is a proper non-principal ideal on
ω. Define I+ = P(ω) \ I.

Definition 6. For i, j ∈ ω, define Ai,j =
{
n ∈ ω : xn ∈ Bd

(
xi,

1
j+1

)}
.

Lemma 7. The following hold:

(1) for all A ⊆ ω, A ∈ I+ if and only if there exists B ⊆ A such that B 6= ∅
and ∀i ∈ B∀j ∈ ω∃n ∈ B ∩Ai,j [n 6= i];

(2) ∀A ∈ I+∃B ⊆ A [B ∈ I+ and ∀i ∈ B∀j ∈ ω [B ∩Ai,j ∈ I+]].

Proof. For (1): fix A ⊆ ω. By definition, A ∈ I+ if and only if

∃B ⊆ A [{xn : n ∈ B} is homeomorphic to Q] .

Consider any B ⊆ A. By a theorem of Sierpinski, {xn : n ∈ B} is homeomorphic
to Q if and only if {xn : n ∈ B} is countable, metrizable, non-empty, and dense-
in-itself. Since {xn : n ∈ ω} is metrizable and countable, it suffices to show that
{xn : n ∈ B} is dense-in-itself if and only if ∀i ∈ B∀j ∈ ω∃n ∈ B ∩ Ai,j [n 6= i].
First assume that {xn : n ∈ B} is dense-in-itself. Fix i ∈ B and j ∈ ω. Then

Bd

(
xi,

1
j+1

)
is an open set in {xn : n ∈ ω}, and so Bd

(
xi,

1
j+1

)
∩ {xn : n ∈ B}

is an open neighborhood of xi in {xn : n ∈ B}. As {xn : n ∈ B} is dense-in-itself,

there exists y ∈ Bd
(
xi,

1
j+1

)
∩ {xn : n ∈ B} with y 6= xi. Thus y = xm for some

m ∈ B with i 6= m. By definition of Ai,j , m ∈ Ai,j . This proves one direction. For
the converse, assume ∀i ∈ B∀j ∈ ω∃n ∈ B∩Ai,j [n 6= i]. Consider xi for some i ∈ B
and some open subset V of {xn : n ∈ B} with xi ∈ V . Then V = U ∩ {xn : n ∈ B}
for some open set U in {xn : n ∈ ω}. Thus Bd

(
xi,

1
j+1

)
⊆ U for some j ∈ ω. By

the assumption there is n ∈ B∩Ai,j with n 6= i. As n, i ∈ ω and n 6= i, y = xn 6= xi.

By definition of Ai,j , y = xn ∈ Bd

(
xi,

1
j+1

)
, y = xn ∈ {xm : m ∈ B}, whence

y ∈ U ∩ {xm : m ∈ B} = V . As y ∈ V and y 6= xi, this shows {xm : m ∈ B} is
dense-in-itself, proving (1).

For (2): fix A ∈ I+. Applying (1) to A, there exists B ⊆ A so that B 6= ∅
and ∀i ∈ B∀j ∈ ω∃n ∈ B ∩ Ai,j [n 6= i]. Applying (1) to B, we see that B ∈ I+.
Fix i ∈ B and j ∈ ω. To see B ∩ Ai,j ∈ I+, we apply (1) again. We have
B ∩ Ai,j ⊆ B ∩ Ai,j and by the choice of B, ∃n ∈ B ∩ Ai,j [n 6= i], which implies
B∩Ai,j 6= ∅. Fix k ∈ B∩Ai,j and l ∈ ω. It suffices to find m ∈ B∩Ai,j ∩Ak,l with
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m 6= k. By the definition of Ai,j , d(xk, xi) <
1
j+1 . Choose q ∈ ω so that 1

q+1 <
1
l+1

and d(xk, xi) + 1
q+1 < 1

j+1 . By the choice of B, there exists m ∈ B ∩ Ak,q with

m 6= k. Thus m ∈ ω and d(xm, xk) < 1
q+1 < 1

l+1 , whence m ∈ Ak,l. Also

d(xm, xi) ≤ d(xm, xk) + d(xk, xi) < 1
q+1 + d(xk, xi) < 1

j+1 , whence m ∈ Ai,j .

Therefore m ∈ B∩Ai,j ∩Ak,l, as required. This concludes the proof that B∩Ai,j ∈
I+. a

Theorem 8. For every A ∈ I+, there exists B ⊆ A such that B is r-shift-
increasing, B 6= ∅, and ∀i ∈ B∀j ∈ ω∃n ∈ B ∩Ai,j [n 6= i].

Proof. We will ensure B has the following property:

∀k, l,m ∈ B [k < l < m =⇒ r(k,m) < r(l,m)] .

To see that this implies that B is r-shift-increasing, assume for a contradiction that
for some k, l,m ∈ B with k < l < m, r(k, l) > r(l,m). Then by the properties of r
discussed earlier, r(k,m) = r(k, l) > r(l,m), contradicting the property of B.

Fix a 1 − 1 enumeration 〈σs : s < ω〉 of ω<ω such that ∀s < s′ < ω [σs′ 6⊆ σs].
Note that σ0 = ∅ and that for each s > 0, there exist unique r < s and j ∈ ω
so that σs = σ_r 〈j〉. Applying (2) of Lemma 7, fix D ⊆ A so that D ∈ I+ and
∀i ∈ D∀j ∈ ω [D ∩Ai,j ∈ I+]. Construct 〈ks : s < ω〉 and 〈Us : s < ω〉 with the
following properties:

(1) ks ∈ D, ∀r < s [kr < ks], ∀q, r [q < r < s =⇒ r(kq, ks) < r(kr, ks)];
(2) if s > 0 and σs = σ_r 〈j〉 for some r < s, then ks ∈ Akr,j ;
(3) Us ⊆ I+ is an ultrafilter on ω such that ∀j ∈ ω [D ∩Aks,j ∈ Us];
(4) ∀p, q, r ≤ s [p < q =⇒ {m ∈ D : m > kq and r(kp,m) < r(kq,m)} ∈ Ur].

Suppose for a moment that this construction can be carried out. Put B = {ks :
s < ω}. Then clearly B is non-empty, and (1) ensures that B ⊆ D ⊆ A and that B
satisfies the property claimed in the first paragraph of the proof. Consider i ∈ B
and j ∈ ω. Then i = kr for some r < ω, and σ_r 〈j〉 = σs for some r < s < ω. By
(2) n = ks ∈ B ∩ Akr,j = B ∩ Ai,j , and by (1) n = ks > kr = i. Thus B has the
required properties.

To construct 〈ks : s < ω〉 and 〈Us : s < ω〉, proceed by induction. When s = 0,
let ks ∈ D be arbitrary. By the choice of D, ∀j ∈ ω [D ∩Aks,j ∈ I+]. Since
∀j < j′ < ω [Aks,j′ ⊆ Aks,j ], {D ∩Aks,j : j ∈ ω} forms a descending collection of
elements of I+. Therefore, it is possible to find an ultrafilter Us on ω such that
{D ∩Aks,j : j ∈ ω} ⊆ Us ⊆ I+. This fulfils (1)–(4) for s = 0.

Now assume that s ∈ ω and that 〈kr : r ≤ s〉 and 〈Ur : r ≤ s〉 satisfying (1)–(4)
for all r ≤ s are given. For some unique r ≤ s and j ∈ ω, σs+1 = σ_r 〈j〉. By (3)
Ur ⊆ I+ is an ultrafilter on ω with D∩Akr,j ∈ Ur. The following simple but useful
claim is a corollary to Lemma 7.

Claim 9. ∀C ∈ Ur∃I ∈ I∀i ∈ C \ I∀w ∈ ω [(C \ I) ∩Ai,w ∈ I+].

Proof. Put I = {i ∈ C : ∃w ∈ ω [C ∩Ai,w /∈ I+]}. To see that I ∈ I, suppose for a
contradiction that I ∈ I+. Applying (2) of Lemma 7, find J ⊆ I such that J ∈ I+
and ∀i ∈ J∀w ∈ ω [J ∩Ai,w ∈ I+]. As J is non-empty, fix some i ∈ J . Then
i ∈ C ⊆ ω and for some w ∈ ω, C ∩ Ai,w /∈ I+. Also, J ∩ Ai,w ∈ I+. However
this is a contradiction because J ∩ Ai,w ⊆ I ∩ Ai,w ⊆ C ∩ Ai,w ⊆ C ⊆ ω. Thus
I ∈ I. To see that I has the required properties, fix i ∈ C \ I and w ∈ ω. Then
C ∩ Ai,w ∈ I+ by definition of I. Therefore, (C \ I) ∩ Ai,w = (C ∩Ai,w) \ I ∈ I+,
as required. a

For each p, q ≤ s with p < q, define

Ep,q = {m ∈ D : m > kq and r(kp,m) < r(kq,m)} ∈ Ur.
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Define E =
⋂

({D ∩Akr,j} ∪ {Ep,q : p, q ≤ s and p < q}) ∈ Ur. For each p ≤ s and
i ∈ E with kp < i, define Fp,i = {m ∈ D : i < m and r(kp,m) < r(i,m)}. Define

Gp =
{
i ∈ E : kp < i and ∀w ∈ ω

[
E ∩ Fp,i ∩Ai,w ∈ I+

]}
.

Claim 10. ∀p ≤ s [Gp ∈ Ur].

Proof. Suppose not and fix a counterexample p ≤ s. Since {i ∈ E : i > kp} ∈ Ur,
it follows that Ḡp = {i ∈ E : i > kp and ∃w ∈ ω [E ∩ Fp,i ∩Ai,w ∈ I]} ∈ Ur. Using
Claim 9 fix I0 ∈ I so that ∀i ∈ H∀w ∈ ω [H ∩Ai,w ∈ I+], where H = Ḡp\I0. Since
Ḡp ∈ Ur and I0 ∈ I, H ∈ Ur. Consider some i ∈ H. Then i ∈ E, kp < i, and for
some w ∈ ω, I1 = E∩Fp,i∩Ai,w ∈ I, while H∩Ai,w ∈ I+. As (H ∩Ai,w)\I1 ∈ I+,
we may select i′ ∈ (H ∩Ai,w) \ I1 with i < i′. Then i′ ∈ E ∩Ai,w, whence i′ /∈ Fp,i.
Since E ⊆ D, i′ ∈ D and i < i′, whence r(kp, i

′) > r(i, i′). As kp < i < i′, the
properties of r imply that r(i, i′) < r(kp, i

′) = r(kp, i). We have thus proved that

∀i ∈ H∃i′ ∈ H [i < i′ and r(i, i′) < r(kp, i
′) = r(kp, i)] .

Now H being non-empty, we may fix i0 ∈ H and put u = r(kp, i0). Construct
i0 < i1 < · · · < iu+1 so that for each v ≤ u+ 1, iv ∈ H and u = r(kp, iv) as follows.
Suppose v < u + 1 and that iv ∈ H with r(kp, iv) = u. Applying the property
proved above we can find iv+1 ∈ H with iv < iv+1 and r(iv, iv+1) < r(kp, iv+1) =
r(kp, iv) = u. By construction for each v < u+ 1, r(iv, iv+1) < u. By property (3)
of r, this implies that ∀v < u + 1 [r(iv, iu+1) < u]. As {i0, . . . , iu} is a set of size
u+ 1, the pigeonhole principle implies that for some 0 ≤ v < v′ ≤ u, r(iv, iu+1) =
r(iv′ , iu+1), contradicting property (1) of r. This contradiction concludes the proof
of the claim. a

For each r′, p ≤ s, define Hr′,p = {i ∈ E : i > kp and Fp,i ∈ Ur′}.

Claim 11. For each r′, p ≤ s, Hr′,p ∈ Ur.

Proof. Suppose not and fix some counterexample r′, p ≤ s. Since {i ∈ E : i > kp} ∈
Ur, it follows that H̄r′,p = {i ∈ E : i > kp and Fp,i /∈ Ur′} ∈ Ur. Consider some
i ∈ E with i > kp and Fp,i /∈ Ur′ . By (3) of the induction hypothesis ap-
plied to r′ ≤ s, D ∩ Akr′ ,0 ∈ Ur′ , and so {m ∈ D : m > i} ∈ Ur′ . There-

fore, F̄p,i = {m ∈ D : m > i and r(kp,m) > r(i,m)} ∈ Ur′ . Now H̄r′,p is an in-
finite subset of ω. Fix any i0 ∈ H̄r′,p and put a = r(kp, i0). Observe that
for any m ∈ F̄p,i0 , kp < i0 < m and r(i0,m) < r(kp,m), whence r(kp,m) =
r(kp, i0) = a. Choose {i1, . . . , ia+1} ⊆ H̄r′,p such that i0 < i1 < · · · < ia+1. Let
F =

⋂{
F̄p,ib : 0 ≤ b ≤ a+ 1

}
∈ Ur′ , and fix m ∈ F . As m ∈ F̄p,i0 , r(kp,m) = a.

For each 1 ≤ b ≤ a + 1, as m ∈ F̄p,ib , ib < m and r(ib,m) < r(kp,m) = a. Hence
by the pigeonhole principle, for some 1 ≤ b < b′ ≤ a + 1, r(ib,m) = r(ib′ ,m),
contradicting property (1) of r. This contradiction proves the claim. a

Let

H =
(⋂
{Gp : p ≤ s}

)
∩
(⋂
{Hr′,p : r′, p ≤ s}

)
∈ Ur.

Choose ks+1 ∈ H. Then ks+1 ∈ E and ∀p ≤ s [kp < ks+1]. Put

a = max {r(kp, ks+1) : p ≤ s} ,

and suppose q ≤ s is such that a = r(kq, ks+1). As ks+1 ∈ Gq,

∀w ∈ ω
[
E ∩ Fq,ks+1

∩Aks+1,w ∈ I+
]
.

Since ∀w < w′ < ω
[
Aks+1,w′ ⊆ Aks+1,w

]
,
{
E ∩ Fq,ks+1

∩Aks+1,w : w ∈ ω
}

forms
a descending sequence of members of I+. Therefore, there exists an ultrafil-
ter Us+1 on ω such that

{
E ∩ Fq,ks+1

∩Aks+1,w : w ∈ ω
}
⊆ Us+1 ⊆ I+. We
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have E ∩ Fq,ks+1
∩ Aks+1,0 ⊆ E ⊆ ω and E ∩ Fq,ks+1

∩ Aks+1,0 ⊆ Fq,ks+1
⊆

D ⊆ ω, whence E ∈ Us+1 and Fq,ks+1
∈ Us+1. Similarly for each w ∈ ω,

E∩Fq,ks+1
∩Aks+1,w ⊆ D∩Aks+1,w ⊆ D ⊆ ω, and so ∀w ∈ ω

[
D ∩Aks+1,w ∈ Us+1

]
.

For every p ≤ s, if m ∈ Fq,ks+1
, then m ∈ D, ks+1 < m, and r(kq,m) < r(ks+1,m).

Then kp < ks+1 < m, and by properties (2) and (3) of r and by the choice
of q, r(kp,m) ≤ max {r(kp, ks+1), r(ks+1,m)} ≤ max {r(kq, ks+1), r(ks+1,m)} ≤
max {max {r(kq,m), r(ks+1,m)} , r(ks+1,m)} = r(ks+1,m). By property (1) of r,
we conclude that r(kp,m) < r(ks+1,m), and hence that m ∈ Fp,ks+1

. Therefore,

for every p ≤ s, Fq,ks+1
⊆ Fp,ks+1

⊆ D ⊆ ω. Therefore, ∀p ≤ s
[
Fp,ks+1

∈ Us+1

]
.

Unfix q from the last paragraph. Let us verify that (1)–(4) are satisfied by
〈kr′ : r′ ≤ s+ 1〉 and 〈Ur′ : r′ ≤ s+ 1〉. We have noted above that ks+1 ∈ E ⊆ D
and that ∀r′ ≤ s [kr′ < ks+1]. Consider p, q ≤ s with p < q. Then Ep,q is defined
and ks+1 ∈ Ep,q, whence r(kp, ks+1) < r(kq, ks+1). This verifies (1). (2) holds be-
cause σs+1 = σ_r 〈j〉, where r ≤ s and j ∈ ω are unique, and ks+1 ∈ E ⊆ D∩Akr,j .
For (3), by definition, Us+1 is an ultrafilter on ω with Us+1 ⊆ I+, and we have noted
above that ∀w ∈ ω

[
D ∩Aks+1,w ∈ Us+1

]
. Finally, we turn to (4). Fix p, q, r′ ≤ s+1

with p < q and define Lp,q = {m ∈ D : m > kq and r(kp,m) < r(kq,m)}. We
must show Lp,q ∈ Ur′ . Note that since p ≤ s, there are four cases to consider.
Suppose first that q, r′ ≤ s. Then by the induction hypothesis (4) applied to
s, Lp,q ∈ Ur′ . Suppose next that q ≤ s and r′ = s + 1. Then Ep,q is defined
and Ep,q = Lp,q. Since E ⊆ Ep,q ⊆ D ⊆ ω, and since E ∈ Us+1, Ep,q ∈ Us+1

as well. Thirdly, suppose q = s + 1 and r′ ≤ s. Then Hr′,p is defined, and
since ks+1 ∈ Hr′,p, ks+1 ∈ E, ks+1 > kp and Fp,ks+1

∈ Ur′ . Since by definition,
Lp,q = {m ∈ D : m > ks+1 and r(kp,m) < r(ks+1,m)} = Fp,ks+1

, Lp,q ∈ Ur′ as
well. Finally suppose that q = s + 1 = r′. Then since ks+1 ∈ E and kp < ks+1,
Lp,q = {m ∈ D : m > ks+1 and r(kp,m) < r(ks+1,m)} = Fp,ks+1 , and since we
have showed in the previous paragraph that Fp,ks+1 ∈ Us+1, Lp,q ∈ Us+1 = Ur′
as well. This concludes the verification of (1)–(4). Therefore the induction can
proceed. a

Corollary 12. Let 〈X, T 〉 be a topological space. Suppose that 〈xα : α < ω1〉 is a

1–1 enumeration of all the points of X. Let P ⊆ [ω1]
<ℵ1 be a family such that:

(1) P is hereditary, that is, ∀A ∈ P∀B ⊆ A [B ∈ P];
(2) there exists A ∈ P such that the subspace {xα : α ∈ A} is homeomorphic

to Q.

Then there exists A ∈ P such that otp(A) = ω, A is ρ̄-shift-increasing, and the
subspace {xα : α ∈ A} is homeomorphic to Q.

Proof. It is not hard to show that there is an M ∈ P such that otp(M) = ω
and the subspace {xα : α ∈ M} is homeomorphic to Q. Indeed this is proved
in Lemma 6 of [RT22]. Let {αn : n ∈ ω} be the strictly increasing enumeration
of M . Define yn = xαn

∈ X, for all n ∈ ω. Then 〈yn : n ∈ ω〉 is a sequence of
distinct points of X and the subspace {yn : n ∈ ω} is homeomorphic to Q. Let
d be a metric on {yn : n ∈ ω} that is compatible with the subspace topology.

Define r : [ω]
2 → ω by setting r(k, l) = ρ̄(αk, αl), for all k < l < ω. Let the ideal

I and the sets Ai,j be as in Definitions 5 and 6. Then Theorem 8 applies and
implies that there exists a set B ⊆ ω such that B is r-shift-increasing, B 6= ∅, and
∀i ∈ B∀j ∈ ω∃n ∈ B∩Ai,j [n 6= i]. Applying (1) of Lemma 7 to B we conclude that
B ∈ I+. By definition of I, there exists A ⊆ B so that the subspace {yn : n ∈ A}
is homeomorphic to Q. Let N = {αn : n ∈ A} ⊆ M . As P is hereditary, N ∈ P.
Clearly, A is an infinite subset of ω, and so otp(N) = ω. By definition N is ρ̄-shift-
increasing. Finally, the subspace {xα : α ∈ N} = {xαn : n ∈ A} = {yn : n ∈ A} is
homeomorphic to Q. So N is as needed. a
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