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Abstract. The almost disjointness numbers associated to the quotients determined by the transfinite products of the
ideal of finite sets are investigated. A ZFC lower bound involving the minimum of the classical almost disjointness and

splitting numbers is proved for these characteristics. En route, it is shown that the splitting numbers associated to these

quotients are all equal to the classical splitting number. Finally, it is proved to be consistent that the almost disjointness
numbers associated to these quotients are all equal to the second uncountable cardinal while the bounding number is the

first uncountable cardinal. Several open problems are considered.

1. Introduction

Cardinal characteristics associated with definable ideals and their quotients have received considerable attention. Two
notable examples include the papers Brendle and Shelah [6] and Hernández-Hernández and Hrušák [8]. This paper will
focus on the products of the ideal of finite subsets of ω, including transfinite products, and the quotients they determine.
The main result will be a ZFC lower bound on the almost disjointness numbers associated to these quotients, and as
a consequence of this ZFC lower bound, it will be shown to be consistent that b = ℵ1 while these almost disjointness
numbers are all ℵ2. The next few definitions set the basic notation.

Definition 1.1. Given an infinite set X, I is said to be an ideal on X if I is a subset of P(X) such that the following
conditions hold:

(1) if Y ⊆ X is finite, then Y ∈ I;
(2) if Y ∈ I and Z ⊆ Y , then Z ∈ I;
(3) if Y ∈ I and Z ∈ I, then Y ∪ Z ∈ I;
(4) X /∈ I.

Conditions (1) and (4) are often expressed as I is non-principal and I is proper respectively. For an ideal I on X and A
and B subsets of X define A ≡I B if and only if A△B ∈ I and define A ⊆I B if A \B ∈ I. Then P(X)/I is a Boolean
algebra of ≡I equivalence classes and [Y ]I denotes the ≡I equivalence class of Y , for any set Y ⊆ X. A set Y ∈ P(X) is
I-positive if Y /∈ I, equivalently [Y ]I > 0. This is often written as Y ∈ I+. Observe that by (1), every I-positive set is
infinite.

For Y ∈ I+, the restriction of I to Y , denoted I↾Y is {Z ∈ I : Z ⊆ Y }. It is easy to see that I↾Y is an ideal on Y .
Attention will be restricted to ideals with the property that P(X)/I is non-atomic, which is an easy consequence (as will
be seen in Proposition 1.5) of the following additional condition:

(5) for every Y ⊆ X, if Y /∈ I, then I↾Y is not a maximal ideal on Y .

All ideals to be considered in this paper will enjoy this property.

It is worth bearing in mind that an ideal I on a set X is not maximal if there exist disjoint subsets Y, Z ⊆ X with
Y,Z /∈ I.

Definition 1.2. Let B be a non-atomic Boolean algebra. An antichain in B is a set A ⊆ B such that ∀a ∈ A [a > 0] and
∀a, a′ ∈ A [a ̸= a′ =⇒ a ∧ a′ = 0]. A maximal antichain in B is a set A ⊆ B which is an antichain in B and which is not
a proper subset of any antichain in B. Define

aB = min {|A| : A ⊆ B is an infinite maximal antichain in B} .

Note that aB is well-defined for any non-atomic Boolean algebra B, for it is possible to find an infinite antichain below
every b ∈ B \ {0} in view of the lack of atoms. The absence of atoms also ensures that the splitting number, define in
Definition 1.3, is well-defined for B.

Definition 1.3. F ⊆ B is called a splitting family in B if for every b ∈ B with b > 0, there exists a ∈ F with b ∧ a > 0
and b ∧ (1− a) > 0. Define

sB = min{|F| : F ⊆ B and F is a splitting family in B}
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Proposition 1.4. If B is a non-atomic Boolean algebra, then B is a splitting family in B.

Conversely, if B has atoms, then there are no splitting families in B as the atoms cannot be split, and hence sB is not
well-defined. Condition (5) of Definition 1.1 ensures that P(X)/I will be non-atomic.

Proposition 1.5. Let I be an ideal on an infinite set X satisfying condition (5) of Definition 1.1. Then P(X)/I is
non-atomic.

Proof. Consider a ∈ P(X)/I with a > 0. So a = [Y ]I for some Y ∈ P(X) such that Y ∈ I+. By hypothesis I↾Y is not
a maximal ideal on Y . Let J be an ideal on Y so that I↾Y ⊊ J . Fix Z ∈ J \ (I↾Y ). Z ⊆ Y because J is an ideal on Y
and Z ∈ J . As J is a proper ideal, Y \Z /∈ I↾Y . Thus Y \Z /∈ I and Z /∈ I. Hence 0 < [Z]I , [Y \ Z]I ≤ [Y ]I . Further,
[Y \ Z]I ∧ [Z]I = [(Y \ Z) ∩ Z]I = 0, showing that a is not an atom. □

When B is of the form P(X)/I, aP(X)/I and sP(X)/I will sometimes be rewritten as aI and sI . The Fubini square
(see Definition 2.4) of the ideal FIN of finite subsets of ω is usually denoted as FIN × FIN and it is most naturally
viewed as an ideal on ω × ω. The quotient P(ω × ω)/ (FIN× FIN) and its cardinal characteristics have been studied
by several researchers. A notable difference between P(ω)/FIN and P(ω × ω)/ (FIN× FIN), first noticed by Szymański
and Zhou [14], is that the tower number tP(ω×ω)/(FIN×FIN) is provably equal to ℵ1 in ZFC. The properties of the generic
ultrafilter added by P(ω × ω)/ (FIN× FIN) were studied in [1].

In an unpublished work [2], Brendle investigated the almost disjointness number of the quotient P(ω×ω)/ (FIN× FIN).
He observed that b ≤ aP(ω×ω)/(FIN×FIN) ≤ a and by using a template style iteration along the lines of Shelah [13], he was
able to show the consistency of b = d < aP(ω×ω)/(FIN×FIN).

Theorem 1.6 (Brendle [2]). It is consistent that ℵ2 = b = d < aP(ω×ω)/(FIN×FIN).

As template iterations will not produce models with ℵ1 = b, Brendle [2] asked whether ℵ1 = b < aP(ω×ω)/(FIN×FIN) is
consistent. Section 2 of this paper will provide a positive answer to Brendle’s question: it is consistent that ℵ1 = b and
that aP(ω×ω)/(FIN×FIN) = ℵ2.

2. Products of ideals

This section begins with some preliminary results about products of ideals in general. We then focus on products
that are supported on the ideal of finite subsets of the index set. The results about transfinite products of FIN are then
derived as corollaries. It turns out that the splitting number of the quotients induced by such products is important to
understanding their almost disjointness numbers.

Definition 2.1. For an indexed family ⟨Ax : x ∈ X⟩, define∐
x∈X

Ax =
⋃
x∈X

({x} ×Ax).

Definition 2.2. For any sets A and x, define A(x) = {y : ⟨x, y⟩ ∈ A}.

The next proposition summarizes some basic attributes of the Definitions 2.1 and 2.2. The proofs are straightforward
applications of the definitions and are left to the reader.

Proposition 2.3. The following properties hold:

(1) A ⊆ B =⇒ A(x) ⊆ B(x);
(2) (A ∪B)(x) = A(x) ∪B(x);
(3) (A ∩B)(x) = A(x) ∩B(x);
(4) (A \B)(x) = A(x) \B(x);

(5) suppose ⟨Dx : x ∈ X⟩ is an indexed family of sets, D =
∐
x∈X

Dx, A ⊆ X, ⟨Ex : x ∈ A⟩ is an indexed family such

that ∀x ∈ A [Ex ⊆ Dx], and E =
∐
x∈A

Ex; then the following hold:

(a) E ⊆ D;
(b) ∀x ∈ A [Ex = E(x)];
(c) ∀x /∈ A [E(x) = ∅].

Definition 2.4. Let X be an infinite set and let ⟨Dx : x ∈ X⟩ be an indexed family of infinite sets. Suppose ⟨Ix : x ∈ X⟩
is an indexed family so that Ix is an ideal on Dx, for all x ∈ X. Let D =

∐
x∈X

Dx. For any A ⊆ D, define

suppt(A) = {x ∈ X : A(x) /∈ Ix}.
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Given an ideal I on X, define ∐
I

Ix = {A ⊆ D : suppt(A) ∈ I} .

Lemma 2.5. J =
∐
I

Ix is an ideal on the infinite set D.

Proof. As X is infinite and as each Dx is infinite, it is clear that D is infinite. By definition J ⊆ P(D). Suppose A and
B satisfy B ⊆ A and A ∈ J . So A ⊆ D and suppt(A) ∈ I. As B ⊆ A, it is easy to see that suppt(B) ⊆ suppt(A),
whence suppt(B) ∈ I. Therefore, B ∈ J , as required for condition (2) of Definition 1.1.

For condition (3) of Definition 1.1, fix A,B ∈ J . Thus A,B ⊆ D and suppt(A) ∪ suppt(B) ∈ I. Consider any
x ∈ suppt(A ∪ B). Then x ∈ X and, since Ix is an ideal on Dx, either A(x) /∈ Ix or B(x) /∈ Ix. It follows that
x ∈ suppt(A) ∪ suppt(B). So suppt(A ∪ B) ⊆ suppt(A) ∪ suppt(B), which implies that suppt(A ∪ B) ∈ I. Therefore,
A ∪B ∈ J , as wanted.

Next, note that by Proposition 2.3, ∀x ∈ X [Dx = D(x)]. Hence for all x ∈ X, Ix is a proper ideal on D(x), and so
D(x) /∈ Ix. Hence suppt(D) = X /∈ I. Therefore, D /∈ J .

Finally suppose E ⊆ D is finite. Then suppt(E) = ∅. To see this suppose otherwise that x ∈ suppt(E). Then x ∈ X
and E(x) /∈ Ix. However, E(x) is finite and E(x) ⊆ D(x) = Dx, which implies E(x) ∈ Ix because Ix is an ideal on Dx.
This contradiction shows that suppt(E) = ∅ ∈ I. Therefore, E ∈ J , completing the proof. □

Isomorphism between ideals is considered next. This becomes necessary in order to show that the sequence of cardinal
invariants to be defined does not depend on an arbitrary choice of bijections.

Definition 2.6. Suppose X and Y are infinite sets, and I and J are ideals on X and Y respectively. We say I is
isomorphic to J if there is a bijection f : X → Y such that

J = {f ′′A : A ∈ I} .

f is called an isomorphism from I to J .

The following proposition lists two important properties of isomorphisms which will be useful in the proof of Lemma
2.8. Their proofs are easy and left to the reader. In (1) of Proposition 2.7 and in the rest of the paper, FINX is the ideal
of finite subsets of X.

Proposition 2.7. Let X,Y be infinite sets. Then

(1) if f : X → Y is a bijection, then FINY = {f ′′A : A ∈ FINX};
(2) if I is an ideal on X, J is an ideal on Y , and g : X → Y is an isomorphism from I to J , then for any A ⊆ X,

if A /∈ I, then g′′A /∈ J .

Proposition 2.7 is used to prove the following lemma. Its proof is a straightforward unraveling of the definitions.
Details are left to the reader.

Lemma 2.8. Let X,Y be infinite sets and ⟨Dx : x ∈ X⟩ and ⟨Ey : y ∈ Y ⟩ be indexed families of infinite sets. Let
f : X → Y be any bijection. Suppose ⟨Ix : x ∈ X⟩, ⟨Jy : y ∈ Y ⟩, and ⟨gx : x ∈ X⟩ are indexed families so that Ix is an
ideal on Dx, Jy is an ideal on Ey, and gx : Dx → Ef(x) is an isomorphism from Ix to Jf(x), for all x ∈ X. Then if I is
an ideal on X, J is an ideal on Y , and f is an isomorphism from I to J , then∐

I
Ix is isomorphic to

∐
J

Jy.

We define an ω1-sequence of countable sets and ideals on them by starting with FINω and iterating the operation of
taking products that are supported on FINω through all the countable ordinals. These ideals have been studied at least
since the 1960s in the context of convergence of functions, for example see [7] and [9].

Definition 2.9. Lim(ω1) = {α < ω1 : α is a limit ordinal}. Let s̄ = ⟨sα : α ∈ Lim(ω1)⟩ be an indexed family so that
∀α ∈ Lim(ω1) [sα : ω → α is a bijection]. By induction on α < ω1, define an infinite set D(s̄, α) and an ideal FIN(s̄, α)
on D(s̄, α) as follows:

(1) if α = 0, then D(s̄, α) = ω and FIN(s̄, α) = FINω;
(2) when α = ξ + 1, and an infinite set D(s̄, ξ) as well as an ideal FIN(s̄, ξ) on D(s̄, ξ) are given, then D(s̄, α) =∐

n∈ω

D(s̄, ξ) and FIN(s̄, α) =
∐
FINω

FIN(s̄, ξ); by Lemma 2.5, D(s̄, α) is an infinite set and FIN(s̄, α) is an ideal on

D(s̄, α);



4 D. RAGHAVAN AND J. STEPRĀNS

(3) when α is a limit ordinal, and for each n ∈ ω, an infinite set D(s̄, sα(n)) as well as an ideal FIN(s̄, sα(n))

on D(s̄, sα(n)) are given, then D(s̄, α) =
∐
n∈ω

D(s̄, sα(n)) and FIN(s̄, α) =
∐
FINω

FIN(s̄, sα(n)); once again by

Proposition 2.5, D(s̄, α) is an infinite set and FIN(s̄, α) is an ideal on D(s̄, α).

Lemma 2.10. Let s̄ = ⟨sα : α ∈ Lim(ω1)⟩ and t̄ = ⟨tα : α ∈ Lim(ω1)⟩ be indexed families such that

∀α ∈ Lim(ω1) [sα : ω → α and tα : ω → α are bijections] .

Then for each α < ω1, FIN(s̄, α) is isomorphic to FIN(t̄, α).

Proof. Proceed by induction on α < ω1. If α = 0, then by definition, D(s̄, α) = ω = D(t̄, α) and FIN(s̄, α) = FINω =
FIN(t̄, α). Hence the identity map on ω is an isomorphism.

Suppose α = ξ + 1. By the induction hypothesis, there exists g : D(s̄, ξ) → D(t̄, ξ) which is an isomorphism from
FIN(s̄, ξ) to FIN(t̄, ξ). Lemma 2.8 is applicable with ω as X and Y , ⟨D(s̄, ξ) : n ∈ ω⟩ as ⟨Dx : x ∈ X⟩, ⟨D(t̄, ξ) : n ∈ ω⟩
as ⟨Ey : y ∈ Y ⟩, the identity map on ω as f , ⟨FIN(s̄, ξ) : n ∈ ω⟩ as ⟨Ix : x ∈ X⟩, ⟨FIN(t̄, ξ) : n ∈ ω⟩ as ⟨Jy : y ∈ Y ⟩,
⟨g : n ∈ ω⟩ as ⟨gx : x ∈ X⟩, and FINω as I and J . And it yields the conclusion that FIN(s̄, ξ + 1) is isomorphic to
FIN(t̄, ξ + 1).

Now assume that α is a limit ordinal. f : ω → ω defined by f(n) = t−1
α (sα(n)) is a bijection. By item (1) of Proposition

2.7, f is an isomorphism from FINω to FINω. For any n ∈ ω, by the induction hypothesis, there is gn : D(s̄, sα(n)) →
D(t̄, sα(n)) which is an isomorphism from FIN(s̄, sα(n)) to FIN(t̄, sα(n)). Hence Lemma 2.8 is applicable with ω as X
and Y , ⟨D(s̄, sα(n)) : n ∈ ω⟩ as ⟨Dx : x ∈ X⟩, ⟨D(t̄, tα(n)) : n ∈ ω⟩ as ⟨Ey : y ∈ Y ⟩, f as f , ⟨FIN(s̄, sα(n)) : n ∈ ω⟩ as
⟨Ix : x ∈ X⟩, ⟨FIN(t̄, tα(n)) : n ∈ ω⟩ as ⟨Jy : y ∈ Y ⟩, ⟨gn : n ∈ ω⟩ as ⟨gx : x ∈ X⟩, and FINω as I and J . And it yields
the conclusion that FIN(s̄, α) is isomorphic to FIN(t̄, α). □

Therefore the choice of s̄ is inconsequential to the properties of the quotients P(D(s̄, α))/FIN(s̄, α). The splitting
numbers of these quotients will now be considered. The first observation is that the splitting numbers are well-defined.

Lemma 2.11. Suppose W is a countably infinite set. Let ⟨Dw : w ∈ W ⟩ be an indexed family of infinite sets and let

⟨Iw : w ∈ W ⟩ be an indexed family such that for each w ∈ W , Iw is an ideal on Dw. Suppose E =
∐

w∈W

Dw and

J =
∐

FINW

Iw. Then for any A ⊆ E with A /∈ J , J ↾A is not maximal on A.

Proof. As A /∈ J , suppt(A) ⊆ W is infinite. Find disjoint infinite sets X,Y with X ∪ Y = suppt(A). Let B =
∐
w∈X

A(w)

and C =
∐
w∈Y

A(w). Then for any w ∈ X, B(w) = A(w) /∈ Iw and for any w ∈ Y , C(w) = A(w) /∈ Iw. It is thus clear

that X ⊆ suppt(B) and Y ⊆ suppt(C). Therefore, B,C /∈ J , whence B,C /∈ J ↾A. Furthermore, it is simple to check
that B ∩ C = ∅. Thus C ⊆ A \ B, and as J ↾A is an ideal on A, it follows that A \ B /∈ J ↾A. Since B ⊆ A, J ↾A is an
ideal on A, and A \B /∈ J ↾A, there is an ideal K on A such that (J ↾A) ∪ {B} ⊆ K. J ↾A ⊊ K because B ∈ K \ (J ↾A),
showing that J ↾A is not a maximal ideal on A. □

Corollary 2.12. Let s̄ = ⟨sα : α ∈ Lim(ω1)⟩ be so that ∀α ∈ Lim(ω1) [sα : ω → α is a bijection]. The following hold:

(1) for each α < ω1 and for each A ⊆ D(s̄, α), if A /∈ FIN(s̄, α), then FIN(s̄, α)↾A is not maximal on A;
(2) for each α < ω1 and for each A ⊆ D(s̄, α), if A /∈ FIN(s̄, α), then sP(A)/(FIN(s̄,α)↾A) is well-defined.

Proof. It has already been established that each D(s̄, α) is an infinite set and that FIN(s̄, α) is an ideal on D(s̄, α). Item
(1) is proved by induction on α. If α = 0, then D(s̄, α) = ω and FIN(s̄, α) = FINω. So if A ⊆ D(s̄, α) and if A /∈ FIN(s̄, α),
then A is an infinite subset of ω and FINω↾A = FINA, which is not maximal on A. If α > 0, then D(s̄, α) has the form∐
n∈ω

Dn and FIN(s̄, α) has the form
∐
FINω

In, where each Dn is an infinite set and In is an ideal on Dn. Thus 2.11 yields

the conclusion of item (1).
To prove item (2), fix some α < ω1 and A ⊆ D(s̄, α) with A /∈ FIN(s̄, α). Then FIN(s̄, α)↾A is an ideal on A, and

according to Propositions 1.4 and 1.5, it needs to be seen that for every B ⊆ A with B /∈ FIN(s̄, α)↾A, (FIN(s̄, α)↾A) ↾B
is not maximal on B. This is however clear because (FIN(s̄, α)↾A) ↾B = FIN(s̄, α)↾B, which is not maximal on B by item
(1). □

Lemma 2.13. Suppose X is a countably infinite set. Suppose ⟨Dx : x ∈ X⟩ and ⟨Ix : x ∈ X⟩ are indexed families so
that for all x ∈ X, Dx is an infinite set and Ix is an ideal on Dx with the property that for each A ⊆ Dx, if A /∈ Ix, then
Ix↾A is not maximal on A. Let D =

∐
x∈X

Dx and J =
∐

FINX

Ix. Fix A ⊆ D with A /∈ J . Then the following hold:
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(1) sP(A)/(J ↾A) ≤ s;
(2) suppose κ is a cardinal such that κ < s and for each x ∈ suppt(A), κ < sP(A(x))/(Ix↾A(x)). Then sP(A)/(J ↾A) > κ.

Proof. We prove (1) first. Define Y = suppt(A). Y is a countably infinite set. By the definition of s, find a splitting family

G =
{
[Yα]FINY

: α < s
}
in P(Y )/FINY . For each α < s, define Bα =

∐
x∈Yα

A(x). Then Bα ⊆ A. Now suppose B ⊆ A and

B /∈ J ↾A. Then suppt(B) is an infinite subset of suppt(A) = Y . By the choice of G, find α < s so that both Yα∩suppt(B)
and (Y \ Yα)∩suppt(B) are infinite. It is necessary to check that Bα∩B and (A \Bα)∩B don’t belong to J ↾A. It suffices
to see that they are not in J . For this, it is enough to show that suppt(Bα ∩B) and suppt ((A \Bα) ∩B) are infinite. It
is not difficult to verify that Yα∩ suppt(B) ⊆ suppt(Bα∩B) and that (Y \ Yα)∩ suppt(B) ⊆ suppt ((A \Bα) ∩B), which

shows that suppt(Bα ∩ B) and suppt ((A \Bα) ∩B) are infinite. It now follows that
{
[Bα]J ↾A : α < s

}
is a splitting

family in P(A)/ (J ↾A), which establishes (1).
To prove (2), let {bα : α < κ} ⊆ P(A)/ (J ↾A) be given. SelectBα ⊆ A with [Bα]P(A)/(J ↾A) = bα. Define Y = suppt(A).

As Bα(x) ⊆ A(x), the hypothesis on κ implies that
{
[Bα(x)]P(A(x))/(Ix↾A(x)) : α < κ

}
is not a splitting family in P(A(x))/

(Ix↾A(x)), for each x ∈ Y . Hence for each x ∈ Y , it is possible to find Bx ⊆ A(x) with Bx /∈ Ix↾A(x) and with the
property that for every α < κ, either Bx ⊆(Ix↾A(x)) Bα(x) or Bx ⊆(Ix↾A(x)) A(x) \ Bα(x). Now for each α < κ, let

Yα =
{
x ∈ Y : Bx ⊆(Ix↾A(x)) Bα(x)

}
. As Y is a countably infinite set and κ < s, there is an infinite set Z ⊆ Y so that

for all α < κ, either Z ⊆FINY
Yα or Z ⊆FINY

Y \ Yα. Define B =
∐
x∈Z

Bx. It is clear B ⊆ A and it is easy to verify that

Z ⊆ suppt(B). Since Z is infinite, B /∈ J , whence B /∈ J ↾A. Therefore b = [B]P(A)/(J ↾A) > 0, and it will be shown that

for each α < κ, either b ≤ bα or b ≤ 1− bα, which will show that {bα : α < κ} is not a splitting family in P(A)/ (J ↾A).
To see this, fix α < κ. There are two cases to consider.

Case 1: Z ⊆FINY
Yα. Thus F = Z \ Yα ∈ FINY . In this case, b ≤ bα holds. In other words, B \ Bα ∈ J ↾A. To show

this, it is enough to show B \ Bα ∈ J , which is implied by showing suppt (B \Bα) is finite, which in turn is implied by
showing suppt (B \Bα) ⊆ F . Indeed if x ∈ suppt (B \Bα), then x ∈ X and (B \Bα) (x) /∈ Ix. In particular, B(x) ̸= ∅,
which implies x ∈ Z because if x were not in Z, then by the definition of B as

∐
x∈Z

Bx, B(x) would be empty, contradicting

(B \Bα) (x) /∈ Ix. If x were in Yα, then by definition of Yα, Bx \ Bα(x) would be in Ix↾A(x). However this would be a
contradiction because (B \Bα) (x) ⊆ Bx \Bα(x). Therefore, x ∈ Z \ Yα = F . This concludes Case 1.

Case 2: Z ⊆FINY
(Y \ Yα). Thus F = Z ∩ Yα is finite. In this case b ≤ 1− bα holds. In other words, B ∩ Bα ∈ J ↾A.

For this, it suffices to show B ∩ Bα ∈ J , which is implied by showing suppt (B ∩Bα) is finite, and this in turn is
implied by showing suppt (B ∩Bα) ⊆ F . Indeed if x ∈ suppt (B ∩Bα), then x ∈ X and (B ∩Bα) (x) /∈ Ix, whence
B(x) ∩Bα(x) /∈ Ix. This immediately gives x ∈ Z ∩ Yα = F , concluding the proof of Case 2 and of the lemma. □

Corollary 2.14. Suppose s̄ = ⟨sα : α ∈ Lim(ω1)⟩ is so that ∀α ∈ Lim(ω1) [sα : ω → α is a bijection]. Then for any
A ⊆ D(s̄, α) with A /∈ FIN(s̄, α), sP(A)/(FIN(s̄,α)↾A) = s.

Proof. By the results established above, κ = sP(A)/(FIN(s̄,α)↾A) is always well-defined for any relevant A. Now pro-
ceed by induction on α. If α = 0, then D(s̄, α) = ω and FIN(s̄, α) = FINω. So A ⊆ ω with A infinite. Thus
FIN(s̄, α)↾A = (FINω) ↾A = FINA. Therefore P(A)/ (FIN(s̄, α)↾A) = P(A)/FINA, which is isomorphic to P(ω)/FINω.

So sP(A)/(FIN(s̄,α)↾A) = s. If α > 0, then D(s̄, α) =
∐
n∈ω

Dn and FIN(s̄, α) =
∐
FINω

In, where each Dn has the form D(s̄, ξ)

and In has the form FIN(s̄, ξ) for some ξ < α. In particular, each Dn is an infinite set and In is an ideal on Dn with
the property that for any C ⊆ Dn, if C /∈ In, then In↾C is not maximal on C. Hence κ ≤ s by (1) of Lemma 2.13. On
the other hand, κ cannot be strictly less than s. For if κ < s, then by the induction hypothesis, for each n ∈ suppt(A),
κ < s = sP(A(n))/(In↾A(n)). And so by (2) of Lemma 2.13, there can be no splitting family of size κ in P(A)/ (FIN(s̄, α)↾A),
contradicting the definition of κ. Therefore κ = s. □

Question 2.15. What are the possible values for sI relative to other cardinal invariants if I is an Fσ ideal? What of
the specific case for the summable ideal?

Corollary 2.14 says that the splitting number is not a new cardinal invariant for the ideals from Definition 2.9 or for
any of their restrictions. Their almost disjointness numbers are examined next.

Definition 2.16. For each α ∈ ω1, define aα = aP(D(s̄,α))/FIN(s̄,α), where s̄ = ⟨sα : α ∈ Lim(ω1)⟩ is any sequence so that
∀α ∈ Lim(ω1) [sα : ω → α is a bijection]. By Lemma 2.10, the choice of s̄ is immaterial.

Proposition 2.17. If Jn are ideals on the infinite sets Yn for n ∈ ω, then a∐
FINω

Jn
≥ b.

Proof. Suppose that A is a family such that:
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• |A| < b
• A ⊆ (

∐
FINω

Jn)
+

• if A and B are distinct elements of A then A ∩B ∈
∐

FINω
Jn.

Let {An}n∈ω be distinct elements of A. It is easy to find A∗
n ⊆ An such that A∗

n /∈
∐

FINω
Jn and A∗

n ∩ A∗
m = ∅ for

distinct n and m. For each A ∈ A \ {An}n∈ω define FA : ω → ω such that A(k) ∩A∗
n(k) ∈ Jk for all k ≥ FA(n).

There is then F : ω → ω such that F ≥∗ FA for all A ∈ A \ {An}n∈ω. Find a function F ′ : ω → ω such that for each
n ∈ ω, F ′(n) > F (n) and A∗

n(F
′(n)) /∈ JF ′(n). Define V =

∐
n∈ω A∗

n(F
′(n)). It is routine to check that V ∩A ∈

∐
FINω

Jn

for each A ∈ A showing that A is not maximal. □

Corollary 2.18. aα ≥ b for all α ∈ ω1.

Proposition 2.19. If In are ideals on the infinite sets Dn for n ∈ ω, then aJ ≤ a, where J is the ideal
∐
FINω

In on

D =
∐
n∈ω

Dn.

Proof. Let {Yα : α < a} be a m.a.d. family on ω. Define Aα =
∐

n∈Yα

Dn. Then Aα ⊆ D and Aα /∈ J because

Yα ⊆ suppt(Aα). If α < β < a and n ∈ suppt(Aα ∩Aβ), then Aα(n)∩Aβ(n) = (Aα ∩Aβ) (n) /∈ In, whence n ∈ Yα ∩ Yβ .
Thus suppt(Aα ∩ Aβ) ⊆ Yα ∩ Yβ , which is finite, and so Aα ∩ Aβ ∈ J . Finally, suppose that A ⊆ D with A /∈ J . Then
suppt(A) is an infinite subset of ω. Find α < a so that suppt(A)∩Yα is infinite. If n ∈ suppt(A)∩Yα, then (A ∩Aα) (n) =
A(n) ∩ Aα(n) = A(n) ∩ Dn = A(n) /∈ In, whence n ∈ suppt (A ∩Aα). Thus suppt(A) ∩ Yα ⊆ suppt (A ∩Aα), and so

A ∩Aα /∈ J . This shows that
{
[Aα]P(D)/J : α < a

}
is an infinite maximal almost disjoint family in P(D)/J . □

Corollary 2.20. For each α < ω1, aα ≤ a.

Of course, a0 is the classical invariant a. By Corollaries 2.18 and 2.20, the cardinals aα stand sandwiched between b
and a. It is unknown at present whether any of the aα can be distinguished from each other.

Question 2.21. Is it consistent to have aα < aβ for some α, β < ω1? For each n ≥ 1, is it consistent to have
b < an < · · · < a?

The invariant a1 was investigated by Brendle [2]. Brendle considered both the questions of whether or not a1 < a is
consistent and weather or not b < a1 is consistent. He used a template style iteration similar to the one from Shelah [13]
to produce a model where ℵ2 = b < a = a1 = ℵ3. Brendle [2] asked whether ℵ1 = b < a1 is consistent. The question
of whether or not a1 < a is consistent was again implicitly raised in [11] and explicitly by Törnquist at the Fields Set
Theory meeting in May 2019.

Question 2.22. What are the possible values for aI relative to other cardinal invariants if I is an Fσ ideal? What of
the specific case for the summable ideal?

The next theorem, which is the main result of this paper, provides a ZFC lower bound for aα in terms of a and s. It
will shed some light on Question 2.21 by constraining possible models of aα < a.

Theorem 2.23. Let X be a countably infinite set and let ⟨Dx : x ∈ X⟩ be an indexed family of infinite sets. Suppose
⟨Ix : x ∈ X⟩ is an indexed family such that Ix is an ideal on Dx with the property that for every A ⊆ Dx, if A /∈ Ix,
then Ix↾A is not maximal on A. Let κ be an infinite cardinal. Assume that for each x ∈ X and for every A ⊆ Dx

with A /∈ Ix, κ < sP(A)/(Ix↾A) and that κ < a. Let D =
∐
x∈X

Dx and J =
∐

FINX

Ix. Then no (P(D)/J )-almost disjoint

sequence ⟨aα : α < κ⟩ is maximal in P(D)/J .

Proof. Choose Aα ∈ (P(D)/J )
+

so that [Aα]P(D)/J = aα. Let Xα = suppt(Aα) ⊆ X and note that Xα /∈ FINX .

Thus for each α < κ, |Xα| = ℵ0. Find a family {Yn : n ∈ ω} so that Yn is infinite and Yn ⊆ Xn, for all n ∈ ω,
and ∀n < m < ω [Yn ∩ Ym = ∅]. Define Y =

⋃
n∈ωYn. Fix x ∈ Y and let nx be the unique n ∈ ω so that x ∈ Yn.

Then by definition, x ∈ X, Anx(x) ⊆ Dx, and Anx(x) /∈ Ix. The assumption that κ < sP(Anx (x))/(Ix↾Anx (x))
implies

that
{
[Anx(x) ∩Aα(x)]P(Anx (x))/(Ix↾Anx (x))

: α < κ
}

is not a splitting family in P (Anx(x)) / (Ix↾Anx(x)). So there is

Bx ⊆ Anx(x) such that Bx /∈ Ix and for any α < κ, either Bx ⊆Ix
Anx(x) ∩ Aα(x) or Bx ⊆Ix

Anx(x) \ Aα(x). Now for
each α < κ, define Zα = {x ∈ Y : Bx ⊆Ix

Anx
(x) ∩Aα(x)}. Although the following claim is simple, it plays an important

role.

Claim 2.24. For each n ∈ ω, Yn ⊆ Zn.
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Proof. x ∈ Yn =⇒ nx = n, and by choice of Bx, Bx ⊆ An(x) = Anx(x)∩An(x). Hence x ∈ Y and Bx⊆Ix
Anx(x)∩An(x),

whence x ∈ Zn by definition. □

Claim 2.25. For all α < β < κ, Zα ∩ Zβ is finite.

Proof. Suppose for a contradiction that Zα ∩Zβ is infinite. Consider x ∈ Zα ∩Zβ . Then x ∈ X, Bx ⊆Ix
Anx

(x) ∩Aα(x)
and Bx ⊆Ix

Anx
(x)∩Aβ(x). Hence Bx ⊆Ix

Aα(x)∩Aβ(x) ⊆ Aα(x) ⊆ Dx. As Ix is an ideal on Dx and Bx /∈ Ix, Aα(x)∩
Aβ(x) /∈ Ix. So (Aα ∩Aβ) (x) /∈ Ix. Thus x ∈ suppt (Aα ∩Aβ). It has been shown that Zα ∩ Zβ ⊆ suppt (Aα ∩Aβ),
whence suppt (Aα ∩Aβ) is infinite. So Aα ∩ Aβ /∈ J . However this implies aα ∧ aβ = [Aα]P(D)/J ∧ [Aβ ]P(D)/J =

[Aα ∩Aβ ]P(D)/J > 0, contradicting the almost disjointness of ⟨aξ : ξ < κ⟩. □

Let T = {α < κ : Zα is infinite}. By Claim 2.24 and by the fact that each Yn is infinite, ω ⊆ T . Therefore by Claim
2.25, F = {Zα : α ∈ T} is an infinite almost disjoint family of infinite subsets of Y with |F| ≤ |T | ≤ κ < a. As Y is a

countably infinite set, fix Z ⊆ Y infinite with |Z ∩ Zα| < ℵ0 for all α < κ. Define B =
∐
x∈Z

Bx. Now for each x ∈ Z,

Bx /∈ Ix. Hence Z ⊆ suppt(B). As Z is infinite, suppt(B) is infinite as well and so B /∈ J .

Claim 2.26. [B]P(D)/J is P(D)/J -almost disjoint to {aα : α < κ}.

Proof. As B ⊆ D and B /∈ J , b = [B]P(D)/J > 0. Fix α < κ. Then b ∧ aα = [B ∩Aα]P(D)/J . Consider any

x ∈ suppt (B ∩Aα). Then x ∈ X and B(x) ∩ Aα(x) /∈ Ix. In particular, x ∈ Z because otherwise B(x) = ∅ ∈ Ix. Thus
x ∈ Y . Now assume for a contradiction that x /∈ Zα. Then Bx ⊆Ix

Anx
(x) \ Aα(x). However as Bx ⊆ Anx

(x) ⊆ Dx, it
follows that B(x) ∩ Aα(x) ∈ Ix, which is a contradiction. This contradiction shows that x ∈ Z ∩ Zα. Thus it has been
shown that suppt (B ∩Aα) ⊆ Z ∩ Zα. As α < κ, Z ∩ Zα is finite. So suppt (B ∩Aα) is finite. Therefore B ∩ Aα ∈ J ,
whence b ∧ aα = 0. □

Claim 2.26 shows that ⟨aα : α < κ⟩ is not maximal. □

Corollary 2.27. For each α < ω1, aα ≥ min{a, s}.

Proof. Let κ = aα, which is always an infinite cardinal. When α = 0, κ = a ≥ min{a, s}. When α > 0, D(s̄, α) has the

form
∐
n∈ω

Dn and FIN(s̄, α) has the form
∐
FINω

In, where each Dn is an infinite set and In is an ideal on Dn. Furthermore,

each Dn has the form D(s̄, ξ) and In has the form FIN(s̄, ξ). By Corollary 2.12, for any A ⊆ Dn, if A /∈ In, then In↾A
is not maximal on A. Now assume for a contradiction that κ < min{a, s}. Then by Corollary 2.14, for any A ⊆ Dn with
A /∈ In, κ < s = sP(A)/(In↾A). Therefore the hypotheses of Theorem 2.23 are satisfied and it implies that there are no
maximal almost disjoint families of size κ in P(D(s̄, α))/FIN(s̄, α), contradicting the definition of κ. □

The next theorem, which easily follows from Theorem 2.23 and from the work of Shelah in [12], answers Brendle’s
question about the consistency of ℵ1 = b < a1 = ℵ2.

Theorem 2.28. It is consistent that b = ℵ1 and for each α < ω1, aα = ℵ2.

Proof. In [12], Shelah produced a model in which b = ℵ1 and a = s = c = ℵ2. So Theorem 2.23 says that the necessary
configuration holds in Shelah’s model. □

In [3], Brendle found a c.c.c. forcing closely related to Shelah’s creature forcing from [12] to produce models where
b is small while a and s are both larger. In fact, Brendle [3] showed that for any regular κ, there is a model with
b = κ < κ+ = a = s. Brendle’s methods from [3] yield the following consistency result.

Corollary 2.29. Let κ be a regular uncountable cardinal. It is consistent with ZFC that κ = b and for each α < ω1,
aα = s = c = κ+.

Brendle and Khomskii [4] introduced the cardinal aclosed, which is the least κ such that there are κ many closed subsets
of [ω]

ω
whose union is a m.a.d. family in P(ω)/FINω. Brendle and Khomskii showed in [4] that aclosed = ℵ1 < ℵ2 = b

holds in the Hechler model. Since b ≤ aα, this shows the consistency of aclosed < aα for any α < ω1. However the
following seems unclear.

Question 2.30. Is there some α < ω1 for which aα < aclosed is consistent?

Brendle and Raghavan [5] adapted the arguments of Shelah [12] and Brendle [3] to produce models of b < aclosed.
Their models show the following.

Corollary 2.31. Let κ be a regular uncountable cardinal. It is consistent with ZFC that κ = b and for each α < ω1,
aclosed = aα = s = c = κ+.
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None of the presently available techniques seem to produce a model where b = ℵ1 and a is larger than ℵ2. So the
following basic question seems to be open.

Question 2.32. Is it consistent to have b = ℵ1 and a > ℵ2?

For α > 0, Theorem 2.23 contains some information about the possible techniques that could be used to exhibit a
model of aα < a. b < a must hold in any such model and three essentially different techniques are presently known
for getting models with b < a. The first class of techniques derive from Shelah’s method in [12] and its c.c.c. version
discovered by Brendle [3]. All of these techniques increase s in addition to a and they tend to produce models where
a = s = c, and so by Theorem 2.23, they are unsuitable for aα < a. This class of techniques remains the only currently
available one for getting ℵ1 = b < a. Hence it will be necessary to solve the following open problem in order to show the
consistency of ℵ1 = aα < a for some α < ω1.

Question 2.33 (Brendle and Raghavan). Is it consistent to have ℵ1 = b = s < a?

It is consistent to have ℵ2 = b = s < a. In fact, Shelah [13] showed the consistency of d < a and he invented two
different techniques for this. The first method involves a measurable cardinal and the ultrapower of a well chosen forcing
notion. The second is the method for iteration along a template. However neither of these techniques will produce a
model of aα < a because the argument which shows that a is increased by these forcings will also apply to aα. It should
be noted that unlike the case for a, Raghavan and Shelah [10] showed that aclosed = ℵ1 if d = ℵ1.
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