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GREGORY TREES, THE CONTINUUM, AND MARTIN’S AXIOM

KENNETH KUNEN AND DILIP RAGHAVAN

Abstract. We continue the investigation of Gregory trees and the Cantor Tree Property carried out

by Hart and Kunen. We produce models of MA with the Continuum arbitrarily large in which there are

Gregory trees, and in which there are no Gregory trees.

§1. Introduction. We view the tree 2<ω1 as a forcing poset, defining p ≤ q iff p ⊇ q; so
1 = ∅, the empty sequence. A Gregory tree is a type of subtree of 2<ω1 which is “almost
countably closed”. The notion is due to Gregory [1], although the terminology in the next
definition is from Hart and Kunen [3].

Definition 1.1. A Cantor tree in 2<ω1 is a subset {fσ : σ ∈ 2<ω} ⊆ 2<ω1 such that for
all σ ∈ 2<ω, fσ_0 and fσ_1 are incompatible nodes in 2<ω1 that extend fσ. A subtree T of
2<ω1 has the Cantor Tree Property (CTP) iff

1. For every f ∈ T, f_0, f_1 ∈ T.
2. Given any Cantor tree {fσ : σ ∈ 2<ω} ⊂ T, there are x ∈ 2ω and g ∈ T such that
∀n ∈ ω [g ≤ fx�n].

A subtree T of 2<ω1 is a Gregory tree iff it has the CTP, but does not have a cofinal branch.

Paper [4] relates Gregory trees to more general forcing posets with the CTP.

Theorem 1.2 (Gregory [1]). 2ℵ0 < 2ℵ1 implies that there is a Gregory tree.

Gregory trees are of interest in the theory of proper forcing. It is easy to see (Lemma 5.5
of [3]) that a Gregory tree T is a totally proper poset, that is, it is proper and does not add
any reals. Moreover, forcing with T adds a cofinal branch through T. One might hope to
do a countable support iteration of these totally proper forcings, producing a model of CH
plus no Gregory trees, but this is impossible by Theorem 1.2, so that the iteration must add
reals, although the CTP is annoyingly close to being countably closed. Of course,

Proposition 1.3. PFA implies that there are no Gregory trees.

Whenever a result is proved from PFA, two natural questions arise. First, does it follow
just from MA + ¬CH? Second, is it consistent with 2ℵ0 > ℵ2? Of course, the second
question is trivial if the answer to the first question is “yes”. In this paper, with regard
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to Proposition 1.3, we show that the answer is “no” to the first question and “yes” to the
second. In Section 3, we produce models of MA in which there exists a Gregory tree; c can
be “anything regular”. In Section, 4 we produce models of MA + ¬CH in which there does
not exist a Gregory tree; here, c can be “anything regular” except the successor of a cardinal
of cofinality ω, so we are left with the following:

Question 1.4. Assume MA and c = ℵω+1. Must there be a Gregory tree?

Gregory trees have arisen naturally in two different ways in topology.
First, by Lemma 5.7 of [3], if X is compact, hereditarily Lindelöf, and not totally discon-

nected, and X has no subspaces homeomorphic to the Cantor set, then there is a Gregory
tree; the tree is contained in the forcing poset of non-trivial closed connected subsets of X.
We do not know if the existence of a Gregory tree implies that there is such a space X, but
there is such an X under ♦ by Theorem 1.3 of [3].

Second, a Gregory tree exists if and only if there is a compact totally disconnected Haus-
dorff space X with the CTP which is the union of ℵ1 nowhere dense sets. Here, we say that
X has the CTP iff the forcing poset of clopen subsets of X ordered by inclusion has the CTP
in the sense described in [4]. The ← direction is clear from [4]. To prove the → direction,
let X be the set of maximal chains in a Gregory tree ordered lexicographically; then X is a
compact LOTS with the CTP; the αth nowhere dense set is the set of chains of height α. The
CTP for X is a weakening of the stronger property that the forcing poset of clopen subsets
of X is countably closed (non-empty Gδ subsets of X have non-empty interiors), which holds
of many familiar spaces, such as βN\N. A compactum with this stronger property is never
the union of ℵ1 nowhere dense sets.

§2. Notational Conventions for Iterated c.c.c. Forcing. In this paper we only con-
sider finite support iterations of c.c.c. forcings. Before giving the proofs of our theorems, we
set out some notational conventions regarding these iterations.

As usual in forcing, a forcing poset P really denotes a triple, (P,≤,1), where ≤ is a
transitive reflexive relation on P and 1 is a largest element of P. Then, the notation P ⊆ Q
implies that the orders agree and that 1P = 1Q. P ⊆c Q means that in addition, P is
a complete sub-order of Q; this implies that we may view the Q–extension as a generic
extension of the P–extension (see, e.g., [5]). Since all our iterated forcings are c.c.c. with
finite supports, it is simpler not to follow the approach of [5], but rather to construct in the
ground model a normal chain of c.c.c. posets, 〈Pα : α ≤ κ〉, where α < β → Pα ⊆c Pβ and we
take unions at limits (which preserves the c.c.c.). In standard iterated forcing constructions,
the Pα are constructed inductively; given Pα, we choose Q̊α, which is a Pα–name forced by
1 to be a c.c.c. poset; then Pα+1 is identified with Pα ∗ Q̊α. However, the basic theory of
these iterations does not require a Q̊α; in Section 4, it will sometimes be convenient to view
a γ–chain as a cf(γ)–chain by restricting to a cofinal sequence.

We shall always take P0 = {1}, so that we can identify the P0–extension with the ground
model. If G is a (V,Pκ)–generic filter, then Gα := G ∩ Pα is (V,Pα)–generic, and we let
Vα = V[Gα]; so, V0 = V.

If ϕ is a sentence in the Pα forcing language and p ∈ Pα, then p 
α ϕ abbreviates
p 
Pα ϕ. Note that we need a subscript on the 
, since for any β > α, the assertion
“p 
β ϕ” is meaningful, although its truth can vary with β.

We use Shoenfield–style names as in [5]; that is, a name is a set of ordered pairs of names
and forcing conditions. So, an inclusion of names (Å ⊆ B̊) implies an inclusion of the sets
named (1 
 Å ⊆ B̊). Also, if Pα ⊆c Pβ , then every Pα–name is a Pβ–name. In Section 3, we
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shall build a Gregory tree T in V[G] by constructing in V an ascending sequence of names
〈T̊α : α ≤ κ〉, where T̊α is a Pα–name.

If G is P–generic over V and X ∈ V, then every subset of X in V[G] is named by a nice
name b̊ for a subset of X; so b̊ =

⋃
{{x̌} × Ex : x ∈ X}, where each Ex is an antichain

in P (see [5]). Also, if p 
 å ⊆ X̌ then there is a nice name b̊ for a subset of X such that
p 
 å = b̊. With iterated forcing, where P = Pγ results from a normal chain of c.c.c. posets
〈Pα : α ≤ γ〉: if cf(γ) ≥ ω1 and X is countable, then, since the antichains are also countable,
there is an α0 < γ such that our b̊ is also a nice Pα name whenever α0 ≤ α ≤ γ.

§3. A Model of MA + ¬CH + There is a Gregory Tree.

Theorem 3.1. Assume that in the ground model V, κ ≥ ℵ2 and κ<κ = κ. Then there is
a c.c.c. forcing extension V[G] satisfying MA + 2ℵ0 = κ in which there is a Gregory tree.

Proof. The standard procedure for constructing a model of MA in which some conse-
quence of PFA fails is to start with a counter-example in V which is not destroyed by the
c.c.c. iteration. However, every Gregory tree T in V is destroyed immediately whenever a
real is added, since that will cause the CTP to fail. Instead, our tree T will grow along with
the iterated forcing which produces our model. To do this, we inductively construct the
following, satisfying the listed conditions:

1. 〈Pα : α ≤ κ〉 is a normal chain of c.c.c. posets.
2. |Pα| < κ for all α < κ.
3. Pα+1

∼= Pα ∗ Fn(ω, 2) ∗ Q̊α, where 1 
α “Q̊α is c.c.c.”.
4. Each T̊α is a Pα–name, for α ≤ κ.
5. 1 
α “T̊α is a subtree of 2<ω1 and ∀f ∈ T̊α∀s ∈ 2<ω [f_s ∈ T̊α]”.
6. T̊0 is a name for the Cantor tree 2<ω.
7. If α < β then T̊α ⊆ T̊β , so that 1 
β T̊α ⊆ T̊β .
8. If γ is a limit, then T̊γ =

⋃
α<γ T̊γ .

9. g̊α is a Pα+1–name and 1 
α+1 “T̊α+1 = T̊α ∪ {̊g_α s : s ∈ 2<ω}”
10. 1 
α “T̊α has no uncountable chains”.
11. 1 
α+1 “T̊α is special”.
12. c̊α is a Pα+1–name for the function from ω to 2 added by the Fn(ω, 2) in item (3).
13. K̊α and k̊α,s are Pα–names whenever α < ω1 and s ∈ 2<ω.
14. 1 
α “K̊α is a Cantor tree in T̊α, and K̊α is indexed in the standard way as {̊kα,s : s ∈

2<ω}”.
15. 1 
α+1 “̊gα =

⋃
{kα,̊cα�n : n ∈ ω}”.

Ignoring the “Fn(ω, 2)”, Conditions (1)(2)(3) are the standard setup for forcing MA. We
apply the usual bookkeeping to make sure that the Q̊α run through names for all possible
c.c.c. orders of size < κ; then Vκ satisfies MA + 2ℵ0 = κ. This all still works if we include
the “Fn(ω, 2)”, which we use to construct the Gregory tree.

Conditions (1 − 10) give us the Gregory tree T in Vκ, named by T̊κ. Condition (10)
implies that T has no uncountable chains, and the usual bookkeeping would let us choose
the g̊α so that every Cantor subtree of T has a path. The main difficulty in the construction
is in preserving (10). There are problems both at successors and at limits, addressed by
Conditions (11− 15).

At successors: Since T̊α+1 is forced to be a subtree of 2<ω1 , (9) requires g̊α to be forced
to be in 2<ω1 , with all proper initial segments of g̊α in T̊α. Since T̊α+1\T̊α is forced to be
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countable, Condition (10) is preserved in passing from T̊α to T̊α+1 unless Q̊α adds a path
through T̊α, but this cannot happen by (11).

There is no problem ensuring (11) in the inductive construction. Fn(ω, 2) can never add a
path through Tα. To make sure that Q̊α does not add such a path, let Q̊α

∼= S̊α ∗ R̊α, where
S̊α is the name for the poset which specializes T̊α. Note that this does not interfere with
the usual bookkeeping for making MA true. Say this bookkeeping tells us that Q̊α should
be B̊α, which we may assume is always a Pα–name and that 1 
α “B̊α is c.c.c.”; the c.c.c. is
not affected by the Fn(ω, 2), but it could be affected by the specializing order. Then R̊α is
a Pα ∗ Fn(ω, 2) ∗ S̊α name for the partial order which is B̊α if B̊α remains c.c.c. after forcing
with S̊α, and otherwise is the trivial order {1}.

At limits: In (8), we are literally taking the union of names in the ground model. This
clearly preserves (4)(5) for Tγ , and (10) is also preserved unless cf(γ) = ω1, in which case (10)
might fail. For example, the gα for α < ω1 might all be compatible, yielding an uncountable
chain in Tω1 .

We avoid this problem by (12 − 15). These say that working in Vα+1, we choose the
node gα ∈ Tα+1 as follows: We take a Cantor tree Kα ⊆ Tα (given to us by the usual
bookkeeping) and let gα be the path through this Cantor tree indexed by the Cohen real cα
added into Vα+1 by the Fn(ω, 2). Since Kα ∈ Vα by (13),

gα /∈ Vα.(a)

Now, suppose that (10) should fail at some point during the construction. Then we have
γ ≤ κ such that (10) holds for all α < γ but (10) fails at γ, so that we have a Pγ–name h̊
and a p ∈ Pγ which forces that h̊ ∈ 2ω1 and is a path through T̊γ ; we may assume that h̊ is
a nice name for a subset of ω1 × 2. As noted above, γ is a limit of cofinality ω1. Now, we
argue both in V and in V[G], where p ∈ G and G is (V,Pγ)–generic.

In V, let 〈αξ : ξ < ω1〉 be a continuously increasing sequence of limit ordinals with
supremum γ. For µ < ω1, we regard h̊�µ as a nice Pγ–name for an element of 2µ; since Pγ is
c.c.c., this h̊�µ is actually a Pαξ

–name for some ξ < ω1. Then there is a club C0 ⊂ ω1 such
that h̊�αξ is a Pαξ

–name for each ξ ∈ C0; so, in V[G], we have

h�αξ ∈ Vαξ
.(b)

Also in V[G], each Tαξ
is special, so there is an η > ξ such that h�αη /∈ Tαξ

. Since we are
taking unions of the trees at limit ordinals, there is a club C1 ⊂ ω1 such that for ξ ∈ C1 we
have

h�αξ /∈ Tαξ
.(c)

Fix a limit ordinal ξ ∈ C0 ∩ C1. Since h�αξ ∈ Tγ , we may fix δ with αξ ≤ δ < γ such that
h�αξ ∈ Tδ+1\Tδ, which implies, by (9), that h�αξ = gδ, so gδ ∈ Vδ by (b), contradicting
(a). a

§4. Consistency of no Gregory Trees with Large Continuum. In this section we
shall prove:

Theorem 4.1. Assume that in the ground model V:
1. κ ≥ ℵ2 and κ<κ = κ.
2. λℵ0 < κ for all λ < κ.
3. ♦κ(S), where S = {α < κ : cf(α) = ω1}.
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Then there is a c.c.c. forcing extension V[G] satisfying MA + 2ℵ0 = κ in which there are no
Gregory trees.

We do not know whether (3) follows from (1) and (2); it does by Gregory [2] in the case
that κ = λ+ and λℵ1 = λ. If we start with V = L, then (1) and (3) hold for all regular
κ ≥ ℵ2, but (2) fails if κ is the successor to a cardinal of cofinality ω, so we are left with
Question 1.4.

As with the proof of Theorem 3.1, we shall modify the usual ccc iteration to produce a
model of MA+2ℵ0 = κ (using (1)). To kill a potential Gregory tree T in V[G], we use (2) plus
countably closed elementary submodels to produce a club C ⊆ κ such that Tα := T ∩V[Gα]
has the CTP in V[Gα] for all α ∈ C ∩S. Then, we use (3) to ensure that at some stage α in
the construction, we kill Tα by shooting a cofinal branch through it, so that we also kill T.

Now, to kill Tα by a c.c.c. poset, we cannot force with Tα, since this is not c.c.c. Instead,
we shall find a Suslin subtree Qα ⊂ Tα and force with Qα. This method is patterned after
[3], which proved Theorem 4.1 in the special case that κ = ℵ2 and ♦ (that is, ♦ω1) holds in
V. It is well-known that ♦ will remain true in V[Gα] (since α < ω2), and hence, by Lemma
5.8 of [3], the tree Tα will have a Suslin subtree. But for longer iterations, ♦ (and CH) will
fail whenever α ≥ ω2. Instead, we shall use the fact that cf(α) = ω1. It is well-known that
this implies that there is a Suslin tree in V[Gα], since Cohen reals have been added cofinally
often below α (see, for example, Theorems 3.1 and 6.1 of [6]). Here, we shall prove Theorem
4.7, which shows how to get the Suslin tree Qα inside of Tα.

Definition 4.2. For a limit ordinal γ and a subtree T ⊆ 2<γ : T is uniformly of height γ
iff ∀f ∈ T∀α < γ ∃h ∈ T [h < f & ht(h) > α], and T is branchy iff f_0, f_1 ∈ T for all
f ∈ T. If T ∈ V and g : γ → 2, then g is T–generic over V iff {g�α : α < γ} is T–generic
over V.

Such a tree is an atomless forcing order, and every T–generic filter is a path through T.
If T is countable, then T is equivalent to Cohen forcing Fn(ω, 2). We can now modify the
standard Jensen construction of a Suslin tree T ⊆ 2<ω1 ; the Cohen reals allow us to replace
the use of ♦ at limits γ < ω1 by the requirement that all g ∈ T ∩ 2γ be T ∩ 2<γ–generic.
This is described in Lemma 4.4, which we shall prove after listing some further conventions
for names in c.c.c. forcing extensions.

Say P is c.c.c. and p 
 å ∈ 2<ω1 . Then p may not decide what the height (= domain)
ht(̊a) is, but there is a ξ < ω1 such that p 
 ht(̊a) ≤ ξ, so å is forced to be a subset of ξ× 2,
and there is a nice name b̊ for a subset of ξ × 2 such that p 
 å = b̊.

Next, consider subsets A ⊆ 2<ω1 in V[G]; A may be a tree, or an antichain in a tree;
again, P is c.c.c. A is not a subset of a ground model set, but we may simplify the name for
A as follows. Say p forces that Å ⊆ 2<ω1 and 1 ≤ |Å| ≤ κ. Then, in V[G], we may list A in
a κ–sequence (possibly with repetitions), so there is a name B̊ such that p 
 Å = B̊, where
B̊ = {〈̊bµ, p〉 : µ < κ} and each b̊µ is a nice name for a subset of some ξµ × 2, where ξµ < ω1

and 1 
 b̊µ ∈ 2<ω1 ∧ ht(̊bµ) ≤ ξµ.
These conventions make it easy to apply elementary submodel arguments in V to the

forcing construction. For example,

Lemma 4.3. Assume in V: κ ≥ ℵ2 is regular and λℵ0 < κ for all λ < κ and 〈Pα : α ≤ κ〉
is a normal chain of c.c.c. posets, with each |Pα| < κ. Let T̊ = {〈̊bµ,1〉 : µ < κ} be a
Pκ–name which is forced by 1 to be a subtree of 2<ω1 with the CTP, where each b̊µ is a nice
name for a subset of some ξµ × 2 with ξµ < ω1. Let T̊α = {〈̊bµ,1〉 : µ < α}.
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There is then a club C ⊆ κ such that for all α ∈ C with cf(α) > ω: T̊α is a Pα–name and
1 
α “ T̊α is a subtree of 2<ω1 with the CTP”.

Proof. Fix a suitably large regular θ. Given the assumptions on κ, it is sufficient to
prove that the conclusion to the lemma holds whenever α is an ordinal of the form M ∩ κ,
where M ≺ H(θ) is a countably closed elementary submodel containing the relevant objects.

The fact that T̊α is a Pα–name is immediate and does not need countable closure. Likewise,
to show that 1 
α “ T̊α is a subtree”, note that for each µ < κ there is a countable R ⊆ κ

such that 1 
 ∀η ≤ ξµ∃ν ∈ R [̊bµ�η = b̊ν ], and by M ≺ H(θ), some such R is in M , so that
R ⊂ α. The proof of the CTP is similar, but uses the countable closure of M to imply that
M contains Pα–names for every possible Cantor subtree of T̊α which lies in Vα. a

Similar (and easier) reflection arguments work for sets A of size ℵ1. Call A ⊆ 2<ω1 skinny
iff |A| = ℵ1 and each A ∩ 2ξ is countable. Then we can list A in an ω1–sequence, listing
nodes in order of their height. If p forces that Å is a skinny subset of ω1, then there is
a club C and a name B̊ such that p 
 Å = B̊, where B̊ = {〈̊bµ, p〉 : µ < ω1} as above,
and also 1 
 ht(̊bµ) ≥ γ whenever µ ≥ γ ∈ C. If B̊γ is the name {〈̊bµ, p〉 : µ < γ}, then
1 
 B̊ ∩ 2<γ = B̊γ whenever γ ∈ C. With iterated forcing, where P = Pω1 results from a
normal chain of c.c.c. posets 〈Pα : α ≤ ω1〉, we can also arrange for B̊γ to be a Pγ–name
whenever γ ∈ C, so that from the point of view of V[G] with p ∈ G, each A∩ 2<γ ∈ V[Gγ ].

Lemma 4.4. Suppose that in V, 〈Pα : α ≤ ω1〉 is a normal chain of c.c.c. posets and G is
Pω1–generic. In V[G], suppose that the subtree T ⊆ 2<ω1 is uncountable, branchy, skinny,
and uniformly of height ω1. Assume also that there is club of limit ordinals C ⊂ ω1 such
that for all γ ∈ C: T ∩ 2<γ ∈ V[Gγ ] and every g ∈ T ∩ 2γ is T ∩ 2<γ–generic over V[Gγ ].
Then T is Suslin in V[G].

Proof. If not, then in V[G] we have an uncountable maximal antichain A ⊆ T. Then
there is a club C1 such that A∩ 2<γ is a maximal antichain in T∩ 2<γ for all γ ∈ C1. Also,
A is skinny, so as pointed out above, there is a club C2 such that A ∩ 2<γ ∈ V[Gγ ] for all
γ ∈ C2. Now, fix γ ∈ C ∩ C1 ∩ C2, and consider any g ∈ T ∩ 2γ . Then {g�ξ : ξ < γ} is
generic over V[Gγ ], so it meets the maximal antichain A∩2<γ ∈ V[Gγ ]. But then A ⊆ 2<γ ,
so A is countable. a

This lemma lets us construct a Suslin tree in an iterated forcing extension, but we actually
need our tree to be inside a given Gregory tree. To do that, we use the following lemma,
which is related to the well-known fact that adding a Cohen real actually adds a perfect set
of Cohen reals:

Lemma 4.5. Assume that in V: γ is a countable limit ordinal and T is a countable subtree
of 2<γ which is branchy and uniformly of height γ. Fix an ω–sequence 〈αi : i < ω〉 of ordinals
increasing to γ and fix any f ∈ T with ht(f) = α0. Let V[G] be any forcing extension of V
which contains a Cohen real (e.g., a filter which is Fn(ω, 2)–generic over V).

Then, in V[G]: There is a Cantor tree {fσ : σ ∈ 2<ω} ⊆ T such that f∅ = f and
αi ≤ ht(fσ) < γ whenever ht(σ) = i, and such that for all ψ ∈ 2ω,

⋃
{fψ�i : i < ω} is

T–generic over V.

Proof. In V, let P be the poset of “partial Cantor trees starting at f”. So, p ∈ P iff for
some n = np ∈ ω: p is a function from 2≤n into T, p(0) = f , αi ≤ ht(fσ) < γ whenever
ht(σ) = i ≤ n, and p(σ_0) ⊥ p(σ_1) whenever ht(σ) < n. Order P by q ≤ p iff q ⊇ p.
P is countable, so the existence of a Cohen real implies the existence of a (V,P)–generic
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filter H ∈ V[G]. Note that {p ∈ P : np ≥ m} is dense for each m because T is uniformly of
height γ, so

⋃
H : 2<ω → T. Let fσ = (

⋃
H)(σ). Fix any ψ ∈ 2ω. To verify T–genericity of⋃

{fψ�i : i < ω}, let D ⊆ T be dense. Then D∗ := {p : ∀σ ∈ 2np [p(σ) ∈ D]} is dense in P. If
p ∈ H ∩D∗ then fψ�np ∈ D. a

In any non-trivial iterated forcing, the Cohen reals come for free because of the following
well-known lemma.

Lemma 4.6. Suppose that in V, γ is any limit ordinal and 〈Pα : α ≤ γ〉 is a normal chain
of c.c.c. posets. Let G be Pγ–generic over V, and assume that V[G] 6= V[Gα] for any α < γ.
Then V[G] contains a real which is Cohen generic over V.

This lemma is actually not critical for our proof, since in iterating to make MA true, we
could easily add a Cohen real explicitly at each stage.

Theorem 4.7. Suppose that in V: π is a limit ordinal with cf(π) = ω1, and 〈Pα : α ≤ π〉
is a normal chain of c.c.c. posets.

Let G be Pπ–generic over V, and assume that V[G] 6= V[Gα] for any α < π.
In V[G]: Let T be a subtree of 2<ω1 with the CTP. Then T has a Suslin subtree.

Proof. First, restricting to a club and applying Lemma 4.6 (using the various V[Gα]
as the ground model), we may assume that π = ω1 and that each V[Gα+1] contains a real
which is Cohen generic over V[Gα]. Actually, the club is obtained in V[G]; but it then
contains a ground model club by the c.c.c.; so the restricted sequence of forcing posets also
lies in V.

Now, working in V[G], we construct a Suslin subtree S ⊂ T by constructing inductively
S∩2<γ . S will be branchy, so we only need to specify the construction for limit γ. We assume
that we have S∩2<γ , and we assume (inductively) that each such S∩2<γ is countable and is
uniformly of height γ, and we must describe S ∩ 2γ . For each f ∈ S ∩ 2<γ , choose a gf ∈ 2γ

such that gf < f and such that gf �ξ ∈ S∩2<γ for all ξ < γ; then S∩2γ = {gf : f ∈ S∩2<γ}.
To get each gf : Fix an ω–sequence 〈αi : i < ω〉 of ordinals increasing to γ, with α0 = ht(f).
Then choose a Cantor tree {fσ : σ ∈ 2<ω} ⊆ S ∩ 2<γ such that f∅ = f and αi ≤ ht(fσ) < γ
whenever ht(σ) = i; this is easily done since S is uniformly of height γ. Furthermore, if
S ∩ 2<γ ∈ V[Gγ ], apply Lemma 4.5 and assume that for all ψ ∈ 2ω,

⋃
{fψ�i : i < ω} is

(S ∩ 2<γ)–generic over V[Gγ ]. Whether or not S ∩ 2<γ ∈ V[Gγ ], we apply the CTP of T to
always choose gf =

⋃
i fψ�i ∈ T.

Now that we have constructed S ⊂ T in V[G], we note that it is skinny, so as pointed out
above, there is a club of limits C ⊂ ω1 such that S∩ 2<γ ∈ V[Gγ ] for all γ ∈ C. For these γ,
every g ∈ S ∩ 2γ is S ∩ 2<γ–generic over V[Gγ ], so, by Lemma 4.4, S is Suslin in V[G]. a

Proof of Theorem 4.1. As with the proof of Theorem 3.1, in V we inductively con-
struct the following, satisfying the listed conditions:

1. 〈Pα : α ≤ κ〉 is a normal chain of c.c.c. posets.
2. |Pα| < κ for all α < κ.
3. Pα+1

∼= Pα ∗ Q̊α, where 1 
α “Q̊α is c.c.c.”.
4. Pα as a set is the ordinal δα ≤ κ, with 1 = 0.

As before, (1)(2)(3) are the standard setup for forcing MA. We apply the usual bookkeeping
to make sure that the Q̊α, for cf(α) 6= ω1, run through names for all possible atomless c.c.c.
orders of size < κ, so V[G] = Vκ satisfies MA + 2ℵ0 = κ. Condition (4) is irrelevant for
this, although it is sometimes included in expositions to facilitate the bookkeeping. Note
that κ is regular, so the δα, for α < κ, form a continuously increasing sequences of ordinals
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less than κ, and δκ = κ; also note that {α < κ : δα = α} is a club. We have included (4) to
facilitate the use of ♦κ(S), which will give us Qα when cf(α) = ω1.

To show that there are no Gregory trees in V[G], it is sufficient to show in V that
whenever 1 forces T̊ to be a subtree of 2<ω1 with the CTP, 1 also forces T̊ to have a cofinal
branch. By the CTP, |T| = 2ℵ0 = κ in V[G], so as noted above, T has a name of the form
T̊ = {〈̊bµ,1〉 : µ < κ}, where each b̊µ is a nice name for a subset of some ξµ × 2, where
ξµ < ω1 and 1 
 b̊µ ∈ 2<ω1 ∧ ht(̊bµ) ≤ ξµ.

We must specify our ♦ sequence before we have defined an order on the sets Pα = δα.
The definition of x̌ only uses the identity 1 = 0, but the notion of “nice name” presupposes
that we know what an antichain is. So, call b̊ a pseudo-nice δ–name for a subset of X ∈ V iff
b̊ =

⋃
{{x̌}×Ex : x ∈ X}, where each Ex ∈ [δ]≤ω. Then every nice name using the eventual

order on δα will be also pseudo-nice.
Our ♦ sequence will make believe that δα = α, since this is true on a club. So, for

α ∈ S = {α < κ : cf(α) = ω1}, choose a T̊α of the form {〈̊bαµ,1〉 : µ < α}, where each b̊αµ is
a pseudo-nice α–name for a subset of some ξαµ × 2, where ξαµ < ω1. These T̊α must have the
♦ property that whenever T̊ = {〈̊bµ,1〉 : µ < κ} has the analogous form (replacing α with
κ), the set of α ∈ S for which T̊α = {〈̊bµ,1〉 : µ < α} is stationary.

Now, when α ∈ S and we have constructed Pα (i.e., we know the ordinal δα and its
ordering), choose Q̊α as follows: Q̊α is a name for the trivial one-element order unless
δα = α and each b̊αµ is indeed a nice Pα–name and 1 
α b̊αµ ∈ 2<ω1 and 1 
α “T̊α is a subtree
of 2<ω1 with the CTP”. In that case, Vα will contain the tree Tα which (in Vα) has the
CTP, and then Theorem 4.7 applies to construct a Suslin subtree Qα ⊂ Tα. Then, back in
V, we let Q̊α be a name for this Qα, so that in Vα+1 we have a cofinal branch in Qα.

Finally to show that there are no Gregory trees in V[G], assume that 1 forces T̊ to be a
subtree of 2<ω1 with the CTP. Let the T̊α be as in Lemma 4.3. Then, by Lemma 4.3, there
is then a club C of ω1–limits such that for α ∈ C: δα = α, T̊α is a Pα–name, and 1 
α “ T̊α
is a subtree of 2<ω1 with the CTP”. Choosing α ∈ C with T̊α = T̊α shows that 1 forces that
there is (in Vα+1) a cofinal branch in T̊. a
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