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Abstract. We investigate some aspects of bounding, splitting, and almost

disjointness. In particular, we investigate the relationship between the bound-
ing number, the closed almost disjointness number, the splitting number, and

the existence of certain kinds of splitting families.

1. Introduction

The closed (and Borel) almost disjointness number was recently introduced by
Brendle and Khomskii [BK], and has received a lot of attention. We study the
connections between this number and the notions of bounding and splitting in this
paper. We start with some basic definitions. Recall that two infinite subsets a and
b of ω are almost disjoint or a.d. if a∩ b is finite. We say that a family A of infinite
subsets of ω is almost disjoint or a.d. if its members are pairwise almost disjoint.
A Maximal Almost Disjoint family, or MAD family is an infinite a.d. family with
the property that ∀b ∈ [ω]

ω∃a ∈ A [|a ∩ b| = ℵ0]. The cardinal invariant a is the
least κ such that there is a MAD family of size κ. Recall that b is the least size
of a subset of 〈ωω,≤∗〉 that does not have an upper bound. It is well-known that
b ≤ a. For x, a ∈ P(ω), x splits a if |x ∩ a| = |(ω \ x) ∩ a| = ω. F ⊂ P(ω)
is called a splitting family if ∀a ∈ [ω]

ω∃x ∈ F [x splits a]. s is the least size of
a splitting family. F ⊂ P(ω) is called an ω-splitting family if for any collection
{an : n ∈ ω} ⊂ [ω]

ω
, there exists x ∈ F such that ∀n ∈ ω [x splits an]. sω is the

least size of an ω-splitting family.
Brendle and Khomskii [BK] studied the possible descriptive complexities of MAD

families in certain forcing extensions of L. This led them to consider the following
cardinal invariant.

Definition 1. aclosed is the least κ such that there are κ closed subsets of [ω]
ω

whose union is a MAD family in [ω]
ω

.

Obviously, aclosed ≤ a. Brendle and Khomskii showed in [BK] that aclosed be-
haves differently from a by showing that aclosed = ℵ1 < ℵ2 = b holds in the Hechler
model. Heuristically, the difference between a and aclosed may be seen by consid-
ering how a witness to aclosed = ℵ1 can be destroyed in a forcing extension. If
A =

⋃
α<ω1

Xα is a witness to aclosed = ω1, where the Xα are closed subsets of [ω]
ω

Date: September 16, 2013.
2010 Mathematics Subject Classification. 03E05, 03E17, 03E35, 03E65.

Key words and phrases. maximal almost disjoint family, cardinal invariants.
First author partially supported by Grants-in-Aid for Scientific Research (C) 21540128 and (C)

24540126, Japan Society for the Promotion of Science, and by the Fields Institute for Research in
Mathematical Sciences, Toronto, Canada.

Second author partially supported by Grant-in-Aid for Scientific Research for JSPS Fellows
No. 23·01017.

1
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coded in the ground model, then to destroy A it is necessary to add a set b ∈ [ω]
ω

which is almost disjoint from every member of every Xα even after these codes
have been reinterpreted in the forcing extension. Interpreting a ground model code
in a forcing extension results in a larger set of reals. This makes increasing aclosed
harder than increasing a, and this fact was exploited by Brendle and Khomskii in
their above mentioned result.

In Sections 2 and 4 we prove the consistency of b < aclosed. So taken together
with the earlier result of Brendle and Khomskii, this establishes the mutual in-
dependence of b and aclosed. Unsurprisingly, our proofs are closely modeled on
the existing proofs of the consistency of b < a. Historically there have been two
seemingly distinct methods for producing a model of b < a. In the first method,
invented by Shelah in [Sh1], the conditions consist of a finite part followed by an
infinite sequence of finite sets equipped with a measure-like structure. In the same
paper, Shelah also used this method to produce the first consistency proof of b < s.
In Section 2, we get a model of b < aclosed using Shelah’s technique. In the second
method, devised by Brendle in [Br], an ultrafilter is constructed as an ascending
union of Fσ filters, and then this ultrafilter is diagonalized by the corresponding
Mathias-Prikry forcing. One of the byproducts of the results in this paper is that
these two techniques are not so different after all. In Section 3 we show that She-
lah’s forcing from [Sh1] is equivalent to a two step iteration of a countably closed
forcing that adds an ultrafilter which is a union of Fσ filters from the ground model
succeeded by the Mathias-Prikry forcing for this generic ultrafilter. Examining this
proof one quickly realizes that for the Mathias-Prikry forcing occurring in the sec-
ond step of this iteration to have the right properties, it is not necessary for the
ultrafilter to be fully generic with respect to the countably closed forcing occurring
in the first step; it is sufficient for the ultrafilter to meet a certain collection of c
many dense sets. With this realization, assuming CH, it is possible to build a suf-
ficiently generic ultrafilter in the ground model itself. In this way, we give a proof
of the consistency of b < aclosed by a finite support iteration of Mathias-Prikry
forcings in Section 4 along the lines of Brendle [Br].

In Section 5 we show that the existence of certain special types of splitting
families implies that aclosed = ω1. The existence of such special splitting families
is closely related to the statement sω = ω1. It is unknown whether sω = ω1

implies that aclosed = ω1. The result in Section 5 sheds some light on this, and
moreover it strengthens previous results of Raghavan and Shelah [RS], and Brendle
and Khomskii [BK].

Finally in Section 6, we separate the notions of club splitting and tail splitting
(see Definition 31). This answers a question from [GS3].

2. Consistency of ℵ1 = b < aclosed

In this section we show the consistency of b < aclosed by a creature forcing.
The argument is similar to the one used by Shelah in [Sh1] and [Sh2] to show the
consistency of b < a, though we have to do some extra work to make this argument
work for aclosed. The notation and presentation in this section generally follow
Abraham [Ab].

Before plunging into the details, we make some remarks about the structure of
the proof. The final forcing will be a countable support (CS) iteration of proper
forcings which does not add a dominating real. At any stage, a specific witness to



BOUNDING, SPLITTING, AND ALMOST DISJOINTNESS 3

aclosed = ω1, call it A , is dealt with. We first define a proper poset P0 which adds
an unsplit real but does not add any dominating reals (and more; see Definition 21
and following discussion). The definition of P0 does not depend on A , and it may
or may not destroy A . If it does, then we simply force with P0. If it does not,
we first add ω1 Cohen reals. In the resulting extension we define a proper poset
P1 which depends on A and always destroys it. Under the assumption that P0 (as
defined in the extension) still does not destroy A , we prove that P1 does not add
dominating reals (and more), so that we may force with P1 to take care of A .

Definition 2. FIN denotes [ω]
<ω \ {0}. Let x ⊂ ω. A function nor : [x]

<ω → ω is
a said to be a norm on x if:

(1) ∀s ∈ [x]
<ω

[nor(s) > 0 =⇒ |s| > 1];

(2) ∀s, t ∈ [x]
<ω

[s ⊂ t =⇒ nor(s) ≤ nor(t)];

(3) for any s, s0, s1 ∈ [x]
<ω

and for any n > 0, if nor(s) ≥ n and s = s0 ∪ s1,
then there exists i ∈ 2 such that nor(si) ≥ n− 1.

A creature c is a pair 〈sc,norc〉 such that sc ∈ FIN and norc is a norm on sc such that
norc(sc) > 0. Given creatures c and d, we write c < d to mean max(sc) < min(sd)
and norc(sc) < nord(sd).

A 0-condition p is a pair 〈sp, 〈cpn : n ∈ ω〉〉 such that:

(4) sp ∈ [ω]
<ω

;
(5) for each n ∈ ω, cpn is a creature and cpn < cpn+1;

(6) ∀m ∈ sp
[
m < min

(
scp0

)]
.

Henceforth, spn and norpn will be used to denote scpn and norcpn respectively. We
may also omit the superscript p if it is clear from the context. For a 0-condition p,
int(p) =

⋃
n∈ωs

p
n. Given 0-conditions p and q, q ≤ p means:

(7) sq ⊃ sp and sq \ sp ⊂ int(p);
(8) let n0 be least such that ∀m ≥ n0 [spm ∩ sq = 0]; there exists an interval

partition 〈in : n ∈ ω〉 of [n0,∞) (that is, i0 = n0 and ∀n ∈ ω [in < in+1])

such that ∀n ∈ ω
[
sqn ⊂

⋃
m∈[in,in+1)s

p
m

]
;

(9) for any n ∈ ω, for any t ⊂ sqn, if norqn(t) > 0, then there is m ∈ ω such that
norpm(t ∩ spm) > 0.

For 0-conditions p and q, we say q≤0p if q ≤ p and sp = sq. For n > 0, q≤np if
q≤0p and for all m ≤ n− 1, cqm = cpm.

Observe that clause (8) is equivalent to saying that for each n ∈ ω, sqn ⊂⋃
m∈[n0,∞)s

p
m and max{m ∈ [n0,∞) : sqn ∩ spm 6= 0} < min{m ∈ [n0,∞) :

sqn+1 ∩ spm 6= 0}. This is sometimes useful for checking clause (8). Also, it is
easy to see that ≤ and ≤n are transitive for all n.

Lemma 3. Let 〈pn : n ∈ ω〉 be a sequence of 0-conditions and let 〈kn : n ∈ ω〉
be a sequence of elements of ω \ {0} such that ∀n ∈ ω [kn < kn+1]. Assume that
pn+1 ≤kn pn. Define q as follows. sq = spn for all n. For all m ∈ [0, k0), cqm = cp0m .
For each m ∈ [kn, kn+1), cqm = c

pn+1
m . Then q is a 0-condition and for each n ∈ ω,

q ≤kn pn.

Proof. First note that for any n, cqkn−1 = cpnkn−1. So since pn+1 ≤kn pn, cqkn−1 =

cpnkn−1 = c
pn+1

kn−1 < c
pn+1

kn
= cqkn . It follows that for all m, cqm < cqm+1, and so q is a

0-condition.
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To check that q ≤kn pn, note that sq = spn , and that for all m ∈ [0, kn),
cqm = cpnm . So it is enough to check clauses (8) and (9) of Definition 2. For clause
(9), simply note that for any m ∈ [kn,∞), there is a l > n such that cqm = cplm and
that pl ≤ pn. For clause (8) simply note that for any m ∈ ω, there is a pl ≤ pn
such that cqm = cplm and cqm+1 = cplm+1. a

Fix 〈Xα : α < ω1〉 such that:

(1) Xα is a non-empty closed subset of [ω]
ω

;
(2) A =

⋃
α<ω1

Xα is a MAD family.

We will be working with forcing extensions of the model in which the codes for the
Xα live. We adopt the standing convention that when we write either “Xα” or “A ”
while working inside such a model we mean the set that is gotten by interpreting
the codes in that model. For each α < ω1, let Yα be the closure of Xα in P(ω).

Note that Yα is compact and that Yα \Xα ⊂ [ω]
<ω

.

Definition 4. Suppose p is a 0-condition. Define Ap = {s ∈ [ω]
<ω

: ∃n ∈
ω [norn(s ∩ sn) > 0]}. Let Fp be the filter on ω generated by the set

Cp = {ω \ a : a ⊂ ω ∧ ¬∃s ∈ Ap [s ⊂ a]}.

All filters on ω are assumed to contain the Fréchet filter. Note that Cp is a
closed subset of P(ω) and so Fp is Fσ in P(ω). Note also that for any i ∈ ω, if
ω \ i ⊂ a0 ∪ · · · ∪ ak and n ∈ ω is such that i ∩ sn = 0 and norn(sn) > k + 1, then
for some 0 ≤ l ≤ k norn(al ∩ sn) > 0, whence ω \ al /∈ Cp. It follows that Fp is a
proper filter. Note that for any s ∈ Ap, s ∩ int(p) 6= 0, and so int(p) ∈ Fp.

Consider the forcing extension of V obtained by adding ω1 Cohen reals. For
each δ ≤ ω1, let Vδ denote the extension by the first δ many of these. We assume
that A remains MAD in Vω1 .

For any family B ⊂ P(ω), I(B) is the ideal on ω generated by B together with
the Fréchet ideal. For any ideal I on ω, I+ = P(ω) \ I, and I∗ is the dual filter

to I, that is I∗ = {ω \ a : a ∈ I}. For a filter F on ω, F+ = (F∗)+
, where

F∗ = {ω \ a : a ∈ F} is the dual ideal to F . For a family B ⊂ P(ω), we use F(B)
to denote (I(B))

∗
. A filter F on ω is said to be P+ if for any sequence 〈bn : n ∈ ω〉

with the property that ∀n ∈ ω [bn ∈ F+ ∧ bn+1 ⊂ bn], there exists b ∈ F+ such that
∀n ∈ ω [b ⊂∗ bn].

Lemma 5. In Vω1 , let F be any Fσ filter and suppose that G, the filter generated
by F ∪ F(A ), is a proper filter. Then G is P+.

Proof. Work in Vω1 . Fix 〈bn : n ∈ ω〉 such that bn+1 ⊂ bn and each bn ∈ G+.
Write F =

⋃
n∈ωTn, where each Tn is a compact subset of P(ω). Fix δ < ω1 such

that 〈bn : n ∈ ω〉 ∈ Vδ and (the code for) 〈Tn : n ∈ ω〉 ∈ Vδ. In Vδ, observe that
for any α0, . . . , αk < ω1, any n ∈ ω, any (a0, . . . ak) ∈ Yα0 × · · · × Yαk , any c ∈ Tn,
and any m ∈ ω, bm∩ c∩ (ω \a0)∩ · · ·∩ (ω \ak) is infinite. Therefore, by a standard
compactness argument, for each α0, . . . , αk < ω1, n,m, l ∈ ω, there is a finite set
s ⊂ bm \ l such that

∀ (a0, . . . ak) ∈ Yα0
× · · · × Yαk∀c ∈ Tn [s ∩ c ∩ (ω \ a0) ∩ · · · ∩ (ω \ ak) 6= 0] .(∗)

Note that (∗) is absolute between Vδ and Vω1
. Still in Vδ, consider the natural

poset P for adding a pseudo-intersection to 〈bn : n ∈ ω〉 using finite conditions. P
is forcing equivalent to Cohen forcing. So in Vω1 , there is a set b which is (Vδ,P)
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generic. Clearly, ∀n ∈ ω [b ⊂∗ bn]. Also, by genericity, for each α0, . . . , αk < ω1,
n, l ∈ ω, there is s ⊂ b \ l such that (∗) holds. Thus b ∈ G+. a

Definition 6. For an ultrafilter U , a U-tree is a tree T ⊂ ω<ω such that ∀s ∈
T [succT (s) ∈ U ] and ∀f ∈ [T ]∀n ∈ ω [f(n) < f(n+ 1)]. Thus each f ∈ [T ] deter-
mines an element of [ω]

ω
in a natural way. We will often confuse these below.

Lemma 7. In Vω1
, suppose that F is a Fσ filter such that G, the filter generated by

F∪F(A ), is proper. Suppose b ∈ G+. Then for each α0, . . . , αk < ω1, there is a c ∈
[b]
ω

such that c ∈ G+ and ∀(a0, . . . , ak) ∈ Xα0×· · ·×Xαk [|(a0 ∪ · · · ∪ ak) ∩ c| < ω].

Proof. Let E be the filter generated by G ∪ {b}, and let I be E∗, the dual ideal.
Consider the forcing with P(ω)/I. By Lemma 5, this forcing does not add any reals

and adds a P-point U ⊃ E . Work in V
P(ω)/I
ω1 . Fix 0 ≤ i ≤ k and let I(Xαi) be the

ideal generated byXαi . This is analytic. By a theorem of Blass [Bl], there is a U-tree
T such that either [T ] ⊂ I(Xαi) or [T ]∩I(Xαi) = 0. As U is a P-point, without loss
of generality, there is a set ci ∈ [b]

ω ∩U such that ∀s ∈ T [succT (s)=∗ci]. We claim
that ∀a ∈ Xαi [|a ∩ ci| < ω]. Suppose not. Then it is possible to choose f ∈ [T ] such
that f ∈ I(Xαi). On the other hand, ci ∈ I+(A ). As P(ω)/I adds no new reals, A

is MAD in V
P(ω)/I
ω1 , and so ∃∞a ∈ A [|a ∩ ci| = ω]. But then it is possible to choose

f ∈ [T ] such that ∃∞a ∈ A [|a ∩ f | = ω], whence f /∈ I(Xαi). This contradicts the
choice of T . Now, put c =

⋂
0≤i≤kci . c ∈ [b]

ω ∩ U . Therefore, c ∈ G+. Also, it is

clear that ∀(a0, . . . , ak) ∈ Xα0 × · · · ×Xαk [|(a0 ∪ · · · ∪ ak) ∩ c| < ω]. Since P(ω)/I
did not add any reals, c ∈ Vω1

, and we are done. a

Definition 8. A 0-condition p is said to be a 1-condition if for each a ∈ I(A ) and
for each k ∈ ω, there is n ∈ ω such that norn(sn \ a) ≥ k.

The next lemma is the major new ingredient in the proof. Most of the extra
work needed to deal with aclosed rather than a is contained in it.

Lemma 9. Work in Vω1
. Let p be a 0-condition and let c ⊂ ω. Then the following

are equivalent:

(1) for every α0, . . . , αk < ω1, there exists a 1-condition q such that q ≤0 p,
∀(a0, . . . , ak) ∈ Xα0

×· · ·×Xαk [|int(q) ∩ (a0 ∪ · · · ∪ ak)| < ω], and int(q) ⊂
c;

(2) the filter generated by Fp ∪ F(A ) ∪ {c} is proper.

Proof. Assume (1), and suppose for a contradiction that there exist b0, . . . , bl ∈ Cp,
α0, . . . , αk < ω1, (a0, . . . , ak) ∈ Xα0×· · ·×Xαk , and i ∈ ω such that c∩ int(p)∩b0∩
· · · ∩ bl ∩ (ω \ a0)∩ · · · ∩ (ω \ ak) ⊂ i. Applying (1), find q ≤0 p such that int(q) ⊂ c,
and int(q) ∩ (a0 ∪ · · · ∪ ak) is finite. Find n ∈ ω such that norqn(sqn) > l + 1,
i ∩ sqn = 0, and (a0 ∪ · · · ∪ ak) ∩ sqn = 0. Since sqn ⊂ int(p) ∩ c, it follows that
sqn ⊂ (ω \ b0) ∪ · · · ∪ (ω \ bl). But then, for some 0 ≤ j ≤ l, norqn((ω \ bj) ∩ sqn) > 0.
So there must be m ∈ omega such that norpm(spm ∩ (ω \ bj) ∩ sqn) > 0, whence
(ω \ bj) ∩ sqn ∈ Ap. This, however, means that bj /∈ Cp, a contradiction.

Next, suppose that Fp∪F(A )∪{c} generates a proper filter. We will prove (1).
Let G denote the filter generated by Fp ∪ F(A ) ∪ {c}. First notice the following
things about Ap. If s ∈ Ap, then |s| > 1. Next, if s ⊂ t, and s ∈ Ap, then t ∈ Ap.
Finally, if b ∈ G+, then ∃s ∈ Ap [s ⊂ b]. Now, we define the norm induced by Ap,

nor : [ω]
<ω → ω by the following clauses:
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• nor(s) ≥ 0, for every s ∈ [ω]
<ω

;
• nor(s) ≥ 1 iff s ∈ Ap;
• for n > 1, nor(s) ≥ n iff for every s0, s1 such that s = s0 ∪ s1, there is i ∈ 2

such that nor(si) ≥ n− 1;
• nor(s) = max{n ∈ ω : nor(s) ≥ n}.

It is easy to check that nor is well defined and is a norm on ω. Next, we check by
induction on n ∈ ω that for any b ∈ G+, ∃s ⊂ b [nor(s) ≥ n]. If n = 0, then there
is nothing to prove. For n = 1, use the previous observation that ∃s ∈ Ap [s ⊂ b].
Suppose that n > 1 and that the claim is true for n−1. Suppose for a contradiction
that it fails for n. In particular, for every k ∈ ω, nor(b ∩ k) 6≥ n, and so there exist
bk0 , b

k
1 such that b ∩ k = bk0 ∪ bk1 , and neither bk0 nor bk1 contains a set s such that

nor(s) ≥ n− 1. By a standard König’s Lemma argument, this gives us b0, b1 such
that b = b0∪b1 and neither b0 nor b1 contains a set s with nor(s) ≥ n−1. However,
either b0 or b1 is in G+, which contradicts the induction hypothesis.

Now, fix α0, . . . , αk < ω1. As Fp is a Fσ filter and as int(p) ∩ c is positive
for the filter generated by Fp ∪ F(A ), Lemma 7 applies and implies that there
is a set d ∈ [int(p) ∩ c]ω which is positive for the filter generated by Fp ∪ F(A ),
and ∀(a0, . . . , ak) ∈ Xα0 × · · · ×Xαk [|(a0 ∪ · · · ∪ ak) ∩ d| < ω]. Of course, d ∈ G+.
Therefore, for any a ∈ I(A ), and for any n ∈ ω, there is a s ⊂ d such that
nor(s) ≥ n and a ∩ s = 0. Choose δ < ω1 such that p, c, d, and nor are in Vδ.

Now, work in Vδ. Define a poset P as follows. For s ∈ [d]
<ω \ {0}, let ms denote

min{m ∈ ω : s∩ spm 6= 0} and let ms denote max{m ∈ ω : s capspm 6= 0}. P consists

of all σ : dom(σ)→ [d]
<ω

such that:

• dom(σ) ∈ ω and for each i < dom(σ), nor(σ(i)) > 0;
• for any i < i + 1 < dom(σ), 〈σ(i),nor � σ(i)〉 < 〈σ(i + 1),nor � σ(i + 1)〉

and also mσ(i) < mσ(i+1).

For σ, τ ∈ P, τ ≤ σ iff τ ⊃ σ. Fix β0, . . . , βl < ω1, n,m ∈ ω. For any (a0, . . . , al) ∈
Yβ0
× · · ·×Yβl , there is a s ⊂ d \m such that s∩ (a0 ∪ · · · ∪ al) = 0 and nor(s) ≥ n.

Again, by a compactness argument, there is a set s ⊂ d \m such that

∀(a0, . . . , al) ∈ Yβ0 × · · · × Yβl∃t ⊂ s [(a0 ∪ · · · ∪ al) ∩ t = 0 ∧ nor(t) ≥ n] .(∗)

Note that (∗) is absolute between Vδ and Vω1
. Now, for each β0, . . . , βl < ω1 and

n ∈ ω,

{τ ∈ P : ∃i < dom(τ) [τ(i) satisfies (∗) with respect to β0, . . . , βl, n]}

is dense in P. Since P is forcing equivalent to Cohen forcing, there is a function
f : ω → [d]

<ω
in Vω1

which is (Vδ,P)-generic. For each i ∈ ω, put cqi = 〈f(i),nor �
f(i)〉. Put q = 〈sp, 〈cqi : i ∈ ω〉〉. It is clear that q is a 0-condition and that q ≤0 p.
It is also clear that int(q) ⊂ c. By genericity of f , for each β0, . . . , βl < ω1 and
n ∈ ω, there is i ∈ ω such that sqi satisfies (∗) with respect to β0, . . . , βl and n. It
follows that q is a 1-condition, and we are done. a

Corollary 10. There are 1-conditions. Moreover, given any 1-condition p and
α0, . . . , αk < ω1, there is a 1-condition q ≤ p such that ∀(a0, . . . , ak) ∈ Xα0 × · · · ×
Xαk [|(a0 ∪ · · · ∪ ak) ∩ int(q)| < ω].

Proof. For the second statement, note that if p is a 1-condition, then the filter
generated by Fp ∪ F(A ) is proper. Now, apply Lemma 9.
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The first statement is a corollary of the proof of Lemma 9. For example, let

A = [ω]
≥2

, and let nor, the norm induced by A, be defined as in the proof of
Lemma 9. Let P be defined (with d = ω) as in the proof of Lemma 9, leaving
out any mention about mσ(i) and mσ(i+1), which are irrelevant here. Then an
appropriate generic for P yields a 1-condition. a

From this point on the argument is fairly standard, and follows Shelah [Sh2].

Definition 11. P0 = {p : p is a 0-condition}. P1 = {p : p is a 1-condition}. The
ordering on both P0 and P1 is ≤.

Fix p ∈ P0. Suppose t ∈ [int(p)]
<ω

. Define mp
t = max{m ∈ ω : spm ∩ t 6= 0}, with

the convention that mp
t = −1 when t = 0. For t ∈ [int(p)]

<ω
and n > mp

t , p(t, n) is

the 0-condition defined as follows. sp(t,n) = sp ∪ t, and for all i ∈ ω, c
p(t,n)
i = cpi+n.

It is clear that p(t, n) ≤ p.

The poset P0 is proper and does not add dominating reals. Consult either [Sh2]
or [Ab] for a proof of this. We will work towards showing that P1 is proper. We first
make some basic observations about the above definitions. Fix p ∈ P0 and suppose
q ≤0 p. Suppose t ∈ [int(q)]

<ω
. Then mq

t ≤ mp
t . Moreover, if k > mp

t , then

q(t, k) ≤0 p(t, k). Also, suppose that p, q ∈ P0 with q ≤0 p. Suppose t ∈ [int(q)]
<ω

and suppose that k > mq
t and that l > mp

t . If for each m ≥ k, sqm ⊂
⋃
j∈[l,∞)s

p
j ,

then q(t, k) ≤0 p(t, l). To avoid unnecessary repetitions, all conditions belong to
P1 from this point on unless specified. Also, unless specified, we are working inside
Vω1

.

Lemma 12. Let x̊ ∈ VP1
ω1

such that 
1x̊ ∈ Vω1
. Fix p, k ∈ ω \ {0}, and t ⊂⋃

m∈[0,k)s
p
m. Then there is p̄ ≤k p such that for any q ≤k p̄, if there exists r ≤ q

such that sr \ sp = t and r
1x̊ = x, then q(t, k)
1x̊ = x.

Proof. p̄ is gotten as follows. First suppose that there is a q̄ ≤0 p(t, k) and x ∈ Vω1

such that q̄ 
1 x̊ = x. We may assume that norq̄0
(
sq̄0
)
> norpk−1

(
spk−1

)
. Now define

p̄, by sp̄ = sp, cp̄m = cpm, for m < k, and cp̄m = cq̄m−k, for m ≥ k. If there is no such
q̄, then simply set p̄ = p. In either case, it is clear that p̄ ≤k p.

Now, fix q ≤k p̄. Note that if the first case happens above, then q(t, k) ≤0 q̄,
and so q(t, k) 
1 x̊ = x. Suppose r ≤ q such that sr \ sp = t and y ∈ Vω1

such
that r 
1 x̊ = y. First, we claim that the first case must have happened above.
Suppose not. Then p̄ = p. We may assume that sr0 ⊂

⋃
m∈[k,∞)s

q
m. But then

r ≤0 p(t, k), which contradicts the supposition that the first case did not occur. So
the first case occurs, and therefore, q(t, k) 
1 x̊ = x. Again, we may assume that
sr0 ⊂

⋃
m∈[k,∞)s

q
m. But then r ≤0 q(t, k), whence x = y. a

Lemma 13. Let x̊ ∈ VP1
ω1

such that 
1x̊ ∈ Vω1
. Fix p, k ∈ ω \ {0}. There exists

p̄ ≤k p such that

for any q ≤k p̄ and for any t ⊂
⋃

m∈[0,k)
spm, if there exists r ≤ q and(†1)

x ∈ Vω1
such that sr \ sp = t and r 
1 x̊ = x, then q(t, k) 
1 x̊ = x.

Proof. Let t0, . . . , tl enumerate all t ⊂
⋃
m∈[0,k)s

p
m. Now construct a sequence

p = p−1 k≥ p0 k≥ · · · k≥ pl = p̄ as follows. For −1 ≤ i < l, suppose pi ≤k p is
given. Note that ti+1 ⊂

⋃
m∈[0,k)s

pi
m. So apply Lemma 12 to find pi+1 ≤k pi such
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that for any q ≤k pi+1, if there are r ≤ q and x ∈ Vω1 such that sr \ sp = ti+1 and
r 
1 x̊ = x, then q(ti+1, k) 
1 x̊ = x. It is clear that p̄ is as needed. a

Lemma 14. Fix p ∈ P1 and f̊ ∈ VP1
ω1

such that 
1f̊ ∈ ω(Vω1). Then there is a
p̄ ≤0 p such that

for any q ≤0 p̄, for any t ∈ [int(q)]
<ω
, and for any i ∈ ω, there is a(†2)

k > mq
t such that if there is a r ≤ q and x ∈ Vω1

such that sr \ sp = t

and r 
1 f̊(i) = x, then q(t, k) 
1 f̊(i) = x.

Proof. Define functions Σ : ω<ω → P1 and ∆ : ω<ω \ {0} → ω \ {0} with the
following properties:

(1) Σ(0) = p and for each σ ∈ ω<ω and j ∈ ω, Σ(σ_〈j〉) ≤∆(σ_〈j〉) Σ(σ);
(2) for each σ ∈ ω<ω \ {0}, and for each j ∈ ω, ∆(σ_〈j〉) > ∆(σ); also, for

each σ ∈ ω<ω and k ∈ ω, there is a j ∈ ω such that ∆(σ_〈j〉) > k;
(3) for each σ ∈ ω<ω, j ∈ ω, i < ∆(σ_〈j〉), (†1) holds with p̄ as Σ(σ_〈j〉), k

as ∆(σ_〈j〉), p as Σ(σ), and x̊ as f̊(i).

By Lemma 13 it is possible to define such functions Σ and ∆. Now, fix g ∈ ωω.
The hypotheses of Lemma 3 are satisfied when pn is taken to be Σ(g � n) and kn as
∆(g � n+1). Let qg be the 0-condition defined as in Lemma 3. By Lemma 3, for each
n ∈ ω, qg ≤∆(g�n+1) Σ(g � n). Suppose for a moment that there is g ∈ ωω such that
qg ∈ P1. We first check that setting qg = p̄ does the job. Suppose q ≤0 qg. Fix t ∈
[int(q)]

<ω
and i ∈ ω. Find n ∈ ω such that ∆(g � n+ 1) > max

{
m
qg
t , i

}
. Observe

that mq
t < ∆(g � n + 1). Thus t ⊂

⋃
m∈[0,∆(g�n+1))s

qg

m . As qg ≤∆(g�n+1) Σ(g � n),

t ⊂
⋃
m∈[0,∆(g�n+1))s

Σ(g�n)
m . We know that (†1) holds with p̄ as Σ(g � n + 1), k

as ∆(g � n + 1), p as Σ(g � n), and x̊ as f̊(i). Note that qg ≤∆(g�n+2) Σ(g �
n + 1), and so qg ≤∆(g�n+1) Σ(g � n + 1). Now, suppose there exists r ≤ q and

x ∈ Vω1
such that sr \ sp = t and r 
1 f̊(i) = x. Note that sp = sΣ(g�n) and that

q ≤ qg. Therefore, r ≤ qg and sr \ sΣ(g�n) = t. Applying (†1), we conclude that

qg(t,∆(g � n+ 1)) 
1 f̊(i) = x. But since q(t,∆(g � n+ 1)) ≤0 qg(t,∆(g � n+ 1)),

q(t,∆(g � n+ 1)) 
1 f̊(i) = x, and we are done.
Therefore, it is enough to find g ∈ ωω such that qg ∈ P1. Find δ < ω1 such that

Σ,∆ ∈ Vδ. Work in Vδ. View ω<ω as a forcing poset with τ ≤ σ iff τ ⊃ σ. Fix σ ∈
ω<ω, α0, . . . , αk < ω1, and n,m ∈ ω. Then for each (a0, . . . , ak) ∈ Yα0 × · · · × Yαk ,

there is i ∈ ω and t ⊂ sΣ(σ)
i with nor

Σ(σ)
i (t) ≥ n such that t∩(m∪a0∪· · ·∪ak) = 0.

Again, by a compactness argument, there exists j ∈ ω such that

∀(a0, . . . , ak) ∈Yα0
× · · · × Yαk∃i ≤ j(∗)

∃t ⊂ sΣ(σ)
i

[
nor

Σ(σ)
i (t) ≥ n ∧ t ∩ (m ∪ a0 ∪ · · · ∪ ak) = 0

]
.

Note that (∗) is absolute between Vδ and Vω1
. It follows that for any α0, . . . , αk <

ω1 and n,m ∈ ω, the set

{τ ∈ ω<ω \ {0} : ∆(τ)− 1 satisfies (∗) with respect to τ � |τ | − 1, α0, . . . , αk, n,m}

is dense in ω<ω. There is a g ∈ Vω1 which is (Vδ, ω
<ω)-generic. By genericity, for

each α0, . . . , αk < ω1, and n,m ∈ ω, there is a l ∈ ω such that ∆(g � l + 1) − 1
satisfies (∗) with respect to g � l, α0, . . . , αk, n,m. Since qg ≤∆(g�l+1) Σ(g � l), it
follows that qg ∈ P1. a
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An easy corollary of Lemma 14 is the properness of P1. The details are left to
the reader.

Corollary 15. P1 is proper.

We next work towards showing that if P0 does not destroy A , then P1 does not
add dominating reals, and more.

Definition 16. Fix f̊ ∈ VP1
ω1

such that 
1 f̊ ∈ ω(Vω1). Let p ∈ P1 satisfy (†2) of

Lemma 14 with respect to f̊ . For each i ∈ ω, define

B(p, f̊ , i) =
{
t ∈ [int(p)]

<ω
: ∃k > mp

t∃x ∈ Vω1

[
p(t, k) 
1 f̊(i) = x

]}
.

Note that if f̊ and p are as in Definition 16, and if q ≤0 p, then q also satisfies

(†2) with respect to f̊ and that B(q, f̊ , i) = [int(q)]
<ω ∩B(p, f̊ , i), for each i ∈ ω.

Lemma 17. Let f̊ and p be as in Definition 16. Fix k ∈ ω \ {0}. There exists
p̄ ≤k p such that

∀t ⊂
⋃

m∈[0,k)
spm∀i < k∀m ≥ k(†3)

∀u ⊂ sp̄m
[
norp̄m(u) > 0 =⇒ ∃v ⊂ u

[
t ∪ v ∈ B(p̄, f̊ , i)

]]
.

Proof. Let A be the set of all u ∈
[⋃

n∈[k,∞)s
p
n

]<ω
such that:

(1) for some m ∈ ω, norpm(spm ∩ u) > 0;
(2) for each t ⊂

⋃
m∈[0,k)s

p
m and i < k, there exists v ⊂ u such that t ∪ v ∈

B(p, f̊ , i).

It is easy to see that for any u ∈ A, |u| > 1 and that if u ⊂ w, then w ∈ A.
Let G denote the filter generated by Fp ∪ F(A ). Note that G is a proper filter.
Fix c ∈ G+. Then the filter generated by G ∪ {c} is proper, and so by Lemma 9,
there is a 1-condition q ≤0 p such that int(q) ⊂ c. Let n0 be least such that for
each n ≥ n0, sqn ⊂

⋃
m∈[k,∞)s

p
m, and norqn(sqn) > norpk−1(spk−1). Define q̄ such that

sq̄ = sq, for each m ∈ [0, k), sq̄m = spm, and for all m ∈ [k,∞), sq̄m = sq(m−k)+n0
.

It is clear that q̄ is a 1-condition and that q̄ ≤k p. Now, fix t ⊂
⋃
m∈[0,k)s

p
m and

i < k. Find r ≤ q̄(t, k) and x ∈ Vω1 such that r 
1 f̊(i) = x. Let v = sr \ (sp ∪ t)
and note that since p satisfies (†2), t ∪ v ∈ B(p, f̊ , i). Find n(t, i) > n0 such

that v ⊂
⋃
m∈[n0,n(t,i))s

q
m. Put n = max

{
n(t, i) : t ⊂

⋃
m∈[0,k)s

p
m ∧ i < k

}
. Let

u =
⋃
m∈[n0,n)s

q
m. Observe that u ∈

[⋃
m∈[k,∞)s

p
m

]<ω
. Since sqn0

⊂ u, (1) is

satisfied. Also by the way n is chosen, (2) is satisfied. Therefore u ∈ A. Since
u ⊂ int(q) ⊂ c, we conclude that for any c ∈ G+, there is a u ∈ A such that u ⊂ c.

Now, let nor : [ω]
<ω → ω be the norm induced by A, defined exactly as in the

proof of Lemma 9. Arguing as in Lemma 9, it is easy to prove that for any c ∈ G+

and n ∈ ω, there is a s ⊂ c with nor(s) ≥ n. Find a δ < ω1 such that p and
nor are in Vδ. Working in Vδ, define a poset P as follows. For a non-empty set
u ∈ [int(p)]

<ω
, mu and mu are defined as in the proof of Lemma 9. A condition in

P is a function σ : dom(σ)→ [int(p)]
<ω

such that:

(3) dom(σ) ∈ ω and for each i < dom(σ), σ(i) ⊂
⋃
m∈[k,∞)s

p
m and nor(σ(i)) >

norpk−1(spk−1);
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(4) for each i < i + 1 < dom(σ), 〈σ(i),nor � σ(i)〉 < 〈σ(i + 1),nor � σ(i + 1)〉,
and mσ(i) < mσ(i+1).

For σ, τ ∈ P, τ ≤ σ if τ ⊃ σ. Given α0, . . . , αl < ω1, m,n ∈ ω, and (a0, . . . , al) ∈
Yα0
× · · · × Yαl , there is a finite u ⊂ int(p) \m such that u ∩ (a0 ∪ · · · ∪ al) = 0

and nor(u) ≥ n. So by a compactness argument, for each α0, . . . , αl < ω1, and
m,n ∈ ω, there is a finite s ⊂ int(p) \m such that

∀(a0, . . . , al) ∈ Yα0 × · · · × Yαl∃u ⊂ s [u ∩ (a0 ∪ · · · ∪ al) = 0 ∧ nor(u) ≥ n] .(∗)

Observe that (∗) is absolute between Vδ and Vω1 . For each α0, . . . , αl < ω1 and
n ∈ ω, the set

{τ ∈ P : ∃i < dom(τ) [τ(i) satisfies (∗) with respect to α0, . . . , αl, n]}

is dense in P. In Vω1 , choose f : ω →
[⋃

m∈[k,∞)s
p
m

]<ω
which is (Vδ,P)-generic.

Define p̄ as follows. sp̄ = sp. For each m ∈ [0, k), cp̄m = cpm. For m ∈ [k,∞),
cp̄m = 〈f(m − k),nor � f(m − k)〉. From the genericity of f , it follows that p̄ is a
1-condition. Also, it is clear that p̄ ≤k p. Now, suppose that t ⊂

⋃
m∈[0,k)s

p
m and

i < k. Fix m ≥ k and u ⊂ sp̄m with nor(u) > 0. Then u ∈ A, and so there is a

v ⊂ u such that t ∪ v ∈ B(p, f̊ , i). As B(p̄, f̊ , i) = [int(p̄)]
<ω ∩ B(p, f̊ , i), it follows

that t ∪ v ∈ B(p̄, f̊ , i). a

Note that if p̄ satisfies (†2) with respect to f̊ and it satisfies (†3) with respect to

f̊ and k, then any q ≤k p̄ also satisfies (†3) with respect to f̊ and k.

Lemma 18. Let p and f̊ be as in Definition 16. There is a p̄ ≤0 p such that

for any i ∈ ω, there is k > i such that for any(†4)

t ⊂
⋃

m∈[0,k)
sp̄m, j < k,m ≥ k, and u ⊂ sp̄m, if norp̄m(u) > 0,

then there exists v ⊂ u such that t ∪ v ∈ B(p̄, f̊ , j).

Proof. Define two functions Σ : ω<ω → P1 and ∆ : ω<ω \ {0} → ω \ {0} with the
following properties:

(1) Σ(0) = p and for each σ ∈ ω<ω and j ∈ ω, Σ(σ_〈j〉) ≤∆(σ_〈j〉) Σ(σ);
(2) for each σ ∈ ω<ω \ {0}, and for each j ∈ ω, ∆(σ_〈j〉) > ∆(σ); also, for

each σ ∈ ω<ω and k ∈ ω, there is a j ∈ ω such that ∆(σ_〈j〉) > k;

(3) for each σ ∈ ω<ω and j ∈ ω, Σ(σ_〈j〉) satisfies (†3) with respect to f̊ and
∆(σ_〈j〉).

By Lemma 17 it is possible to find Σ and ∆ with these properties. Note that for

any σ ∈ ω<ω, Σ(σ) ≤0 p. Therefore, Σ(σ) satisfies (†2) with respect to f̊ . So
Lemma 17 does apply to each Σ(σ).

For each g ∈ ωω, let qg be defined exactly as in the proof of Lemma 14. By the
same argument as in Lemma 14, there exists g ∈ ωω such that qg ∈ P1. We argue
that putting p̄ = qg works. Fix i ∈ ω. Find n ∈ ω such that ∆(g � n + 1) > i.
Recall that qg ≤∆(g�n+1) Σ(g � n). Moreover, qg ≤∆(g�n+2) Σ(g � n + 1), and so

qg ≤∆(g�n+1) Σ(g � n+ 1). By (3), Σ(g � n+ 1) satisfies (†3) with respect to f̊ and

∆(g � n+ 1). Also, Σ(g � n+ 1) satisfies (†2) with respect to f̊ . It follows that qg
satisfies (†3) with respect to f̊ and ∆(g � n+ 1), and we are done. a
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Lemma 19. Assume that 
0A is MAD. Let p ∈ P1. There exists {an : n ∈ ω} ⊂
A and {qn : n ∈ ω} ⊂ P0 such that:

(1) ∀n < n∗ [an 6= an∗ ];
(2) ∀n ∈ ω [qn ≤0 p ∧ int(qn) ⊂ an].

Proof. Let x̊ be the canonical P0-name for the generic subset of ω added by P0. Fix
n ∈ ω and suppose that {ai : i < n} ⊂ A and {qi : i < n} ⊂ P0 are given. We will
show how to get an and qn. Put a =

⋃
i<nai. Then a ∈ I(A ). Put c = int(p) \ a.

As p is a 1-condition, the filter generated by Fp ∪ F(A ) ∪ {c} is proper. Apply
Lemma 9 to find a 1-condition p̄ ≤0 p with int(p̄) ⊂ c. Since 
0A is MAD, there
is a 0-condition q ≤ p̄ and α < ω1 such that q 
0 ∃a∗ ∈ Xα [|a∗ ∩ x̊| = ω]. Note
that for any r ∈ P0, r 
0 x̊ ⊂∗ int(r). It follows that there can be no r ∈ P0 with
r ≤0 q such that ∀a∗ ∈ Xα [|int(r) ∩ a∗| < ω]. By Lemma 9, this means that the
filter generated by Fq∪F(A ) is not proper. Fix b0, . . . , bl ∈ Cq, a∗0, . . . a∗k ∈ A , and
i ∈ ω such that b0 ∩ · · · ∩ bl ∩ (ω \ a∗0)∩ · · · ∩ (ω \ a∗k)∩ int(q) ⊂ i. Fix m0 ∈ ω such
that for all m ≥ m0, sqm ∩ i = 0, and norqm(sqm) > max{l, k}+ 1. As bj ∈ Cq for any
0 ≤ j ≤ l, it follows that for any m ≥ m0 there is a jm with 0 ≤ jm ≤ k such that
norqm

(
a∗jm ∩ s

q
m

)
≥ (m−m0)+1. So there is an infinite X ⊂ [m0,∞) and 0 ≤ j ≤ k

such that for each m ∈ X, jm = j. Put an = a∗j . Note that an ∩ int(p̄) 6= 0, and so

an 6= ai for any i < n. Define qn as follows. sqn = sp̄ = sp. Choose l0 < l1 < · · · ,
with li ∈ X such that norqli

(
an ∩ sqli

)
< norqli+1

(
an ∩ sqli+1

)
. For each i ∈ ω, define

cqni = 〈an ∩ sqli ,norqli �
(
an ∩ sqli

)
〉. As q ≤ p̄, it is clear that qn ≤0 p̄ ≤0 p. Also,

int(qn) ⊂ an, and so qn and an are as needed. a

Lemma 20. Assume that 
0A is MAD. Let f̊ be as in Definition 16. Suppose

that p ∈ P1 satisfies both (†2) and (†4) with respect to f̊ . There exists a 1-condition
q ≤0 p and {an : n ∈ ω} ⊂ A with the following properties:

(1) for all n < n∗, an 6= an∗ ;
(2) for each n, l ∈ ω, ∀∞m ∈ ω∃t ⊂ sqm [norqm(t) ≥ l ∧ t ⊂ an];
(3) for any k ∈ ω, t ⊂

⋃
m∈[0,k)s

q
m, and u ⊂ sqk, if norqk(u) > 0, then there

exists v ⊂ u and x ∈ Vω1 such that q(t ∪ v, k + 1) 
1 f̊(k) = x.

Proof. First apply Lemma 19 to p to find {an : n ∈ ω} and {qn : n ∈ ω} ⊂ P0

satisfying (1) and (2) of Lemma 19. Define A = {s ∈ [ω]
<ω

: ∃n ∈ ω∃m ∈
ω [norqnm (s ∩ sqnm ) > 0]}. Note that for any s ∈ A, |s| > 1 and that if s ⊂ t, then
t ∈ A. Moreover, for any s ∈ A, there is m ∈ ω such that norpm(s ∩ spm) > 0. Let

nor : [ω]
<ω → ω be the norm on ω induced by A, defined as in the proof of Lemma

9. Note that for any n,m ∈ ω and s ⊂ sqnm , nor(s) ≥ norqnm (s). Next, recalling that

p satisfies (†2) with respect to f̊ , for each i ∈ ω and t ∈ B(p, f̊ , i), fix kit > mp
t such

that ∃x ∈ Vω1

[
p
(
t, kit

)

1 f̊(i) = x

]
.

Now, to get q proceed as follows. sq = sp. For each i ∈ ω choose m0, . . . ,mi ∈ ω
such that putting sqi = sq0m0

∪ · · · ∪ sqimi , the following properties hold:

(4) for each i < i + 1, max(sqi ) < min(sqi+1), max{n ∈ ω : spn ∩ s
q
i 6= 0} <

min{n ∈ ω : spn ∩ s
q
i+1 6= 0}, and nor(sqi ) < nor(sqi+1) (recall that for all

j ∈ ω, qj ≤0 p; therefore, for any fixed i ∈ ω, s
qj
mj ⊂ int(p), for each

0 ≤ j ≤ i; also, sq0m0
⊂ sqi ; therefore, sqi is a non-empty finite subset of

int(p));
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(5) for each i ∈ ω, for each t ⊂
⋃
m∈[0,i)s

q
m, for each u ⊂ sqi , if nor(u) > 0, then

there exists v ⊂ u such that t ∪ v ∈ B(p, f̊ , i);
(6) for each i ∈ ω, each t ⊂

⋃
m∈[0,i)s

q
m, and each v ⊂ sqi such that t ∪ v ∈

B(p, f̊ , i), ∀m ≥ i+ 1

[
sqm ⊂

⋃
n∈
[
ki
(t∪v),∞

)spn
]
;

(7) for each i ∈ ω and 0 ≤ j ≤ i, nor
qj
mj

(
s
qj
mj

)
≥ i.

Before showing how to do this for each i ∈ ω, let us argue that it is enough to do
so. First note that for any j ∈ ω, qj ≤0 p, and so sqj = sp. So since for any i ∈ ω
and l ∈ sqi , there is some 0 ≤ j ≤ i such that l ∈ sqjmj , it follows that for all l∗ ∈ sq,
l∗ < l. Next, for any i ∈ ω, sq0m0

⊂ sqi . So 0 < norq0m0

(
sq0m0

)
≤ nor

(
sq0m0

)
≤ nor(sqi ).

Therefore, if we put cqi = 〈sqi ,nor � sqi 〉, then q = 〈sq, 〈cqi : i ∈ ω〉〉 is a 0-condition,
and q ≤0 p. To check (2), fix n, l ∈ ω. Suppose that m ≥ max{n, l}. Then there
exists mn ∈ ω such that sqnmn ⊂ s

q
m, and norqnmn

(
sqnmn

)
≥ m ≥ l. However, sqnmn ⊂ an

and nor
(
sqnmn

)
≥ norqnmn

(
sqnmn

)
≥ l. This verifies (2).

Using (2), it is easy to check that q is a 1-condition. With the next lemma in
mind, we will verify a slightly stronger statement. Fix X ∈ [ω]

ω
. Define qX =

〈sq, 〈cqi : i ∈ X〉〉. It is clear that qX is a 0-condition and that qX ≤ q. We check
that it is a 1-condition. Fix a ∈ I(A ) and l ∈ ω. Fix n, k ∈ ω such that a∩an ⊂ k.
Choose m ∈ X such that sqm ∩ k = 0 and there exists t ⊂ sqm such that t ⊂ an and
norqm(t) ≥ l. It is clear that t ∩ a = 0, and this checks that qX is a 1-condition.

For (3), fix i ∈ ω, t ⊂
⋃
m∈[0,i)s

q
m, and u ⊂ sqi such that norqi (u) > 0. By

(5), there is a v ⊂ u such that t ∪ v ∈ B(p, f̊ , i). By (6), for each m ≥ i + 1,
sqm ⊂

⋃
n∈
[
ki
(t∪v),∞

)spn. Note that mq
(t∪v) ≤ i < i + 1 and ki(t∪v) > mp

(t∪v) by

definition. Since q ≤0 p, it follows that q(t ∪ v, i+ 1) ≤0 p
(
t ∪ v, ki(t∪v)

)
. Since

there exists x ∈ Vω1 such that p
(
t ∪ v, ki(t∪v)

)

1 f̊(i) = x, this verifies (3).

Finally, we show how to get such m0, . . . ,mi ∈ ω for each i ∈ ω. Fix i ∈ ω,
and assume that sqj for j < i are given to us. First, fix k0 ∈ ω such that for each

0 ≤ n ≤ i and for each k ≥ k0, norqnk (sqnk ) ≥ i and ∀j < i
[
nor(sqj) < norqnk (sqnk )

]
.

Also fix l0 ≥ i such that for all j < i, sqj ⊂
⋃
m∈[0,l0)s

p
m. Recall that p satisfies (†4)

with respect to f̊ . Applying (†4) to l0, find k1 > l0 as in (†4). Next, choose k2 ≥ k1

such that for each j < i, t ⊂
⋃
m∈[0,j)s

q
m, and v ⊂ sqj such that t ∪ v ∈ B(p, f̊ , j),

k2 ≥ kj(t∪v). Finally, recall that for each 0 ≤ n ≤ i, qn ≤0 p. So it is possible to

choose k3 ≥ k0 such that for each 0 ≤ n ≤ i and each k ≥ k3, sqnk ⊂
⋃
n∈[k2,∞)s

p
n.

Now choose m0, . . . ,mi ≥ k3. It is easy to see that (4), (6), and (7) are satisfied. For
(5), fix t ⊂

⋃
m∈[0,i)s

q
m, and u ⊂ sqi with nor(u) > 0. Note that t ⊂

⋃
m∈[0,k1)s

p
m and

that i ≤ l0 < k1. Moreover, sqi ⊂
⋃
n∈[k2,∞)s

p
n. So there exists m ≥ k2 such that

norpm(u∩ spm) > 0. We have that m ≥ k2 ≥ k1, u∩ spm ⊂ spm and norpm(u∩ spm) > 0.

Therefore, by (†4), there is v ⊂ u ∩ spm ⊂ u such that t ∪ v ∈ B(p, f̊ , i), and we are
done. a

Definition 21. A poset P is said to be almost ωω-bounding if for any p ∈ P and

f̊ ∈ VP such that 
 f̊ ∈ ωω, there exist q ≤ p and g ∈ ωω such that for any

X ∈ [ω]
ω

, there exists qX ≤ q such that qX 
 ∃∞n ∈ X
[
f̊(n) ≤ g(n)

]
.
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It is not difficult to see that an almost ωω-bounding poset preserves all σ-directed
unbounded families of monotonic functions in ωω. Shelah proved that a countable
support iteration of proper almost ωω-bounding posets does not add a dominating
real. He also proved that P0 is almost ωω-bounding (consult either [Sh2] or [Ab]).

Lemma 22. Assume that 
0A is MAD. Then P1 is almost ωω-bounding.

Proof. Fix f̊ ∈ VP1
ω1

such that 
1 f̊ ∈ ωω and p ∈ P1. Find q ≤0 p as in Lemma 20.
Define g ∈ ωω as follows. For any k ∈ ω define g(k) = max(Xk), where

Xk =

{
l ∈ ω : ∃t ⊂

⋃
m∈[0,k)

sqm∃v ⊂ s
q
k

[
q(t ∪ v, k + 1) 
1 f̊(k) = l

]}
.

Note that Xk is non-empty and finite, so g(k) is well-defined. Now, fix X ∈ [ω]
ω

and let qX be defined as in the proof of Lemma 20. Then qX ∈ P1 and qX ≤ q.
Fix r ≤ qX and n ∈ ω. Fix k∗ ≥ n such that t = sr \ sq ⊂

⋃
m∈[0,k∗)s

q
m. Choose

i ∈ ω such that sri ⊂
⋃
m∈[k∗,∞)s

q
m. There must be k ∈ X with k ≥ k∗ such that

norqk(sqk ∩ sri ) > 0. It follows that there exists l ∈ Xk and v ⊂ sqk ∩ sri such that

q(t ∪ v, k + 1) 
1 f̊(k) = l. But it is clear that r(v, i + 1) ≤ q(t ∪ v, k + 1). So

r(v, i + 1) ≤ r and r(v, i + 1) 
1 f̊(k) = l ≤ g(k). Since k ∈ X and k ≥ n, we are
done. a

We now have all the lemmas needed to give a proof of

Theorem 23. It is consistent to have ℵ1 = b < aclosed = ℵ2.

Proof. Start with a ground model satisfying CH. Fixing a book-keeping device to
ensure that all names for witnesses to aclosed = ℵ1 are eventually taken care of, do
a CS iteration 〈Pα, Q̊α : α ≤ ω2〉 of proper almost ωω-bounding posets as follows.
At a stage α < ω2 suppose that Pα is given. Let Gα be (V,Pα)-generic. In V [Gα],
let 〈Xα

ξ : ξ < ω1〉 be a sequence of non-empty closed subsets of [ω]
ω

given by the

book-keeping device. If A =
⋃
ξ<ω1

Xα
ξ is not MAD, then let Qα be the trivial

poset. Now assume that A is MAD. Let Cω1
be the poset for adding ω1 Cohen

reals. Let H be (V [Gα] ,Cω1)-generic. If A is not MAD in V [Gα] [H], then in
V [Gα], let Qα = Cω1 . Suppose A is MAD in V [Gα] [H]. In V [Gα] [H], if there
exists p ∈ P0 such that p 
0 A is not MAD, then let R = {q ∈ P0 : q ≤ p}.
If 
0A is MAD, then let R = P1 (defined with respect to A ). In either case,

in V [Gα] let R̊ be a full Cω1
name for R. Let Qα = Cω1

∗ R̊. Note that in all

of these cases 
QαA is not MAD. In V, let Q̊α be a full Pα name for Qα. This
completes the definition of the iteration. If Gω2 is (V,Pω2) generic, then since Pω2

does not add a dominating real, b = ω1 in V [Gω2 ]. Suppose for a contradiction
that 〈Xξ : ξ < ω1〉 is a sequence of non-empty closed subsets of [ω]

ω
such that

A =
⋃
ξ<ω1

Xξ is MAD. For some α < ω2, the book-keeping device ensured that

〈Xξ : ξ < ω1〉 was considered at stage α. So there is a set c ∈ [ω]
ω ∩V [Gα+1] such

that in V [Gα+1], for each ξ < ω1, c is almost disjoint from every element of Xξ. For
any fixed ξ < ω1, this statement is Π1

1 and hence absolute. So in V [Gω2
], for any

ξ < ω1, c is almost disjoint from every element of Xξ. This is a contradiction. a

3. A characterization of P0

In this section we show that the poset P0 defined in Section 2, which was used
by Shelah in [Sh1] to produce the first consistency proof of b < s, can be viewed as
a two step iteration of a countably closed forcing followed by a σ-centered poset.
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Definition 24. Let F = {F : F is a proper Fσ filter on ω}. Recall our convention
that all filters are required to contain the Fréchet filter. We order F by ⊃. It is
clear that F is countably closed and adds an ultrafilter on ω. Let Ů denote the
canonical F-name for the ultrafilter added by F. For any filter U , let M(U) denote
the Mathias-Prikry forcing with U .

In this section we will prove that P0 is forcing equivalent to F ∗ M(Ů). This
is entirely analogous to the characterization of Mathias forcing as first adding a
selective ultrafilter with P(ω)/FIN and then doing Mathias-Prikry forcing with
that selective ultrafilter. Note that P(ω)/FIN is forcing equivalent to the partial
order of all countably generated filters on ω ordered by ⊃. So F is a natural
generalization of P(ω)/FIN. Our first lemma is rather well-known.

Lemma 25. Let F be a proper Fσ filter on ω. There is a non-empty closed set
C ⊂ P(ω) such that C ⊂ F and ∀b ∈ F∃c ∈ C [c ⊂∗ b].

Proof. Write F =
⋃
n∈ωTn, where each Tn is a closed subset of P(ω). Let C =

{b ∪ n : n ∈ ω ∧ b ∈ Tn}. It is clear that ∀b ∈ F∃c ∈ C [c ⊂∗ b] and that C ⊂ F .
Note also that ω ∈ C. We will check that C is closed. Suppose 〈ci : i ∈ ω〉 is a
sequence of elements of C converging to some c ∈ P(ω). For each i ∈ ω fix ni ∈ ω
and bi ∈ Tni such that ci = bi ∪ ni. By passing to a subsequence, we may assume
that the bi converge to some b ∈ P(ω) and that either ∀i ∈ ω [ni < ni+1] or there
is a fixed n ∈ ω such that ∀i ∈ ω [ni = n]. In the first case c = ω, and so c ∈ C. In
the second case, each bi ∈ Tn and so b ∈ Tn. c = b ∪ n, whence c ∈ C. a

Theorem 26. There is a dense embedding of P0 into F ∗M(Ů).

Proof. Most of the tools needed to prove this have already been developed in the
proof of Lemma 9. Fix p ∈ P0. Let Ap, Cp, and Fp be as in Definition 4. As

observed in Section 2, int(p) ∈ Fp. It follows that Fp 
F int(p) ∈ Ů , and so

〈Fp, 〈sp, int(p)〉〉 is a condition in F ∗M(Ů). Define a map φ : P0 → F ∗M(Ů) by
φ(p) = 〈Fp, 〈sp, int(p)〉〉. We will check that φ is a dense embedding.

First suppose that q ≤ p. We must show that φ(q) ≤ φ(p). Note that sq ⊃ sp,
int(q) ⊂ int(p), and that sq \ sp ⊂ int(p). So it suffices to show that Fq ⊃ Fp.
For this, suppose that s ∈ Aq. Then there is n ∈ ω such that norqn(s ∩ sqn) > 0.
As q ≤ p, there must be m ∈ ω such that norpm(s ∩ sqn ∩ spm) > 0. Therefore,
norpm(s ∩ spm) > 0, and so s ∈ Ap. So Aq ⊂ Ap, whence Fq ⊃ Fp.

Next, fix p, q ∈ P0 and suppose that φ(p) and φ(q) are compatible in F∗M(Ů). We
must show that p and q are compatible. Indeed, we will prove something stronger.
Let 〈F , 〈s∗, d〉〉 be an arbitrary tuple where:

(1) F is an Fσ filter containing both Fp and Fq;
(2) s∗ ∈ [ω]

<ω
, s∗ ⊃ sp, s∗ ⊃ sq, s∗ \ sp ⊂ int(p), and s∗ \ sq ⊂ int(q);

(3) d ∈ F and ∀i ∈ s∗∀j ∈ d [i < j];
(4) d ⊂ int(p) ∩ int(q).

We will show that there is r ∈ P0 such that r ≤ p, r ≤ q, and φ(r) ≤ 〈F , 〈s∗, d〉〉.
The argument that φ′′P0 is dense in F ∗M(Ů) is almost identical; so this is enough
to finish the proof. Using Lemma 25, find a non-empty closed set C ⊂ P(ω) such
that C ⊂ F and ∀b ∈ F∃c ∈ C [c ⊂∗ b]. Put

A = {s ∈ [ω]
<ω

: s ∈ Ap ∩Aq ∧ ∀c ∈ C [|s ∩ c| > 1]}.
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We note a few properties of A. It is clear that for each s ∈ A, |s| > 1 and that
if t ⊃ s, then t ∈ A. Next, fix b ∈ F+. For any c ∈ C, b ∩ c ∈ F+. Therefore,
there exist s ∈ Ap and s̄ ∈ Aq such that s ⊂ b ∩ c and s̄ ⊂ b ∩ c. By a compactness
argument, this implies that there is a finite set s ⊂ b such that for each c ∈ C, there
exists t ⊂ s such that t ∈ Ap and t ⊂ b ∩ c, and also there exists t̄ ⊂ s such that
t̄ ∈ Aq and t̄ ⊂ b ∩ c. Recall that for any t ∈ Ap, |t| > 1. Therefore, for any c ∈ C,
|s ∩ c| > 1. Moreover, since C is non-empty, there are t ⊂ s and t̄ ⊂ s with t ∈ Ap
and t̄ ∈ Aq. Therefore, s ∈ Ap ∩ Aq. Thus we have shown that for b ∈ F+, there
exists s ⊂ b such that s ∈ A. Lastly, note that for any c ∈ C, there is no s ∈ A
such that s ⊂ (ω \ c).

Now, let nor : [ω]
<ω → ω be the norm induced by A, defined exactly as in the

proof of Lemma 9. It is easy to check that nor is well-defined and that it is a norm
on ω. Just as in the proof of Lemma 9, it is not hard to show by induction on n
that for any b ∈ F+ there exists s ⊂ b such that nor(s) ≥ n. Define r as follows.
sr = s∗. Let np be the least n ∈ ω such that for all m ≥ n, spm ∩ s∗ = 0, and let

nq be analogously defined for q. Clearly, d ∩
(⋃

m∈[np,∞)s
p
m

)
∩
(⋃

m∈[nq,∞)s
q
m

)
∈

F . So find sr0 ⊂ d ∩
(⋃

m∈[np,∞)s
p
m

)
∩
(⋃

m∈[nq,∞)s
q
m

)
with nor(sr0) > 0. Now,

suppose that srn is given to us with srn ⊂ d ∩
(⋃

m∈[np,∞)s
p
m

)
∩
(⋃

m∈[nq,∞)s
q
m

)
and nor(srn) > 0. Put n∗p = max{m ∈ ω : srn ∩ spm 6= 0} and n∗q = max{m ∈
ω : srn ∩ sqm 6= 0}. Note that np ≤ n∗p and that nq ≤ n∗q . Again, it is clear that

d∩
(⋃

m∈[n∗p+1,∞)s
p
m

)
∩
(⋃

m∈[n∗q+1,∞)s
q
m

)
∈ F . So it is possible to find srn+1 with

nor(srn+1) > nor(srn) such that srn+1 ⊂ d∩
(⋃

m∈[n∗p+1,∞)s
p
m

)
∩
(⋃

m∈[n∗q+1,∞)s
q
m

)
.

This completes the construction of the srn. For each n ∈ ω, put crn = 〈srn,nor � srn〉
and define r = 〈sr, 〈crn : n ∈ ω〉〉. Observe that for any s ∈ [ω]

<ω
, if nor(s) > 0, then

s ∈ A, and so s ∈ Ap∩Aq, and hence there existm,n ∈ ω such that norpm(s∩spm) > 0
and norqn(s ∩ sqn) > 0. It follows that r ≤ p and r ≤ q. It remains to be seen
that φ(r) = 〈Fr, 〈sr, int(r)〉〉 ≤ 〈F , 〈s∗, d〉〉. First suppose that s ∈ Ar. Then by
definition, for some n ∈ ω, norrn(s ∩ srn) > 0. Hence s ∈ A, and so Ar ⊂ A. So for
any c ∈ C, ¬∃s ∈ Ar such that s ⊂ ω \ c. So c ∈ Cr. Thus C ⊂ Cr. It follows that
F ⊂ Fr. Since sr = s∗ and int(r) ⊂ d, it follows that φ(r) ≤ 〈F , 〈s∗, d〉〉. a

We make some remarks on how to get an analogous characterization for P1. Let
A be as in Section 2. Let Vω1

be the extension gotten by adding ω1 Cohen reals.
Then in Vω1

it is possible to prove that P1 (defined relative to A ) densely embeds

into FA ∗M(Ů), where FA = {F : F is a proper Fσ filter on ω and I(A )∩F = 0},
ordered by ⊃, and where Ů is the canonical FA name for the ultrafilter added by
it. The proof of this is nearly identical to the proof of Theorem 26, except that
in the construction of r, the Cohen reals must be used like in the proof of Lemma
9. Now, it is easy to see that both in the case of P0 and in the case of P1, for
the corresponding M(Ů) to have the right properties, it is not necessary for Ů to
be fully generic for F or FA respectively. It is enough to have ultrafilters that are
sufficiently generic for F and FA . We elaborate on this idea in the next section to
give a ccc proof of the consistency of b < aclosed.
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4. A ccc proof

In this section, we provide a ccc proof of the consistency of b < aclosed. Unlike
the proof in Section 2, this proof generalizes to the situation where c is larger than
ω2.

Let κ be a regular uncountable cardinal, assume c = κ, 〈fα : α < κ〉 is a
well-ordered unbounded family in ωω, and 〈Xα : α < λ〉 is a sequence of non-
empty closed subsets of [ω]ω such that A =

⋃
α<λXα is a MAD family. Here

ω1 ≤ λ ≤ κ. Let Vκ be the extension of V by adding κ Cohen reals. Assume that
(the reinterpretation of) A is still MAD in Vκ.

Theorem 27. There is an ultrafilter U extending F(A ) such that M(U) preserves
the unboundedness of 〈fα : α < κ〉 and forces that (the reinterpretation of) A is
not MAD anymore.

Proof. The proof of the theorem follows closely the proof of the analogous result
for a instead of aclosed, [Br, Theorem 3.1]. However, some of the combinatorics
developed for aclosed in Section 2 will be needed as well.

Say F is an F<κ filter if it is the union of < κ many closed subsets of [ω]ω. It is
easy to see that the appropriate generalizations of Lemmas 5 and 7 hold.

Lemma 28. In Vκ, let F be any F<κ filter and suppose that G, the filter generated
by F ∪ F(A ), is a proper filter. Then G is P+.

Lemma 29. In Vκ, suppose that F is a F<κ filter such that G, the filter generated
by F ∪F(A ), is proper. Suppose b ∈ G+. Then for each α0, ..., αk < ω1, there is a
c ∈ [b]ω such that c ∈ G+ and ∀(a0, ..., ak) ∈ Xα0

× ...×Xαk [|(a0∪ ...∪ak)∩ c| < ω].

We distinguish two cases. They correspond to the cases where we force with the
partial orders P0 and P1, respectively, in Section 2, and also to the two cases of the
proof of [Br, Theorem 3.1].

Case 1. In Vκ, there is a F<κ filter F such that F(A ) ⊆ F . This corresponds to
the situation where we force with P0 in Section 2. Since this case is different from
the corresponding case in [Br], we provide details. Recall [Br, p. 192] that a partial
map τ : [ω]<ω × ω → ω is a preterm. If G ⊇ F is a filter and g̊ is an M(G)-name
for a function in ωω, then τ = τ̊g given by τ(s, n) = k iff (s,G) forces “̊g(n) = k”
for some G ∈ G is a preterm, the preterm associated with g̊. Let {τα : α < κ}
enumerate the set of all preterms. Let F0 = F . Recursively build an increasing
chain of F<κ filters Fα, α < κ, such that:

• for all α < λ there is b ∈ Fα+1 such that |b ∩ a| < ω for all a ∈ Xα;
• if τα looks like a name for Fα, then there is β < κ such that for all filters
H extending Fα+1, M(H) forces that fβ 6≤∗ g̊ where τ̊g = τα;

• if τα does not look like a name for Fα, then τα is not a preterm associated
with any M(H)-name g̊, for any filter H extending Fα+1.

Here we say that τα looks like a name for Fα if for all n, all s ∈ [ω]<ω, and all
c ∈ F+

α , there are t ∈ [ω]<ω and u ⊆ s ∪ t such that (u, n) ∈ dom(τα) and t ⊆ c.
For limit ordinals α we simply let Fα =

⋃
β<α Fβ . So assume α+1 is a successor

ordinal. Suppose τα does not look like a name for Fα. Then there are n, s ∈ [ω]<ω,
and c ∈ F+

α witnessing this. That is, whenever t ⊆ c is finite, then for no u ⊆ s ∪ t
does (u, n) belong to dom(τα). Let F ′α be the filter generated by Fα and c. Then
τα is not a preterm associated with any M(H)-name g̊, for any filter H extending
F ′α, because no condition compatible with (s, c) would decide g̊(n).
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So suppose τα looks like a name for Fα. Assume Fα =
⋃
γ<µKγ where µ < κ

and all Kγ are compact. Fix γ and fix T = {sj : j < `} ⊆ [ω]<ω. Now define
f = fγ,T by

f(n) = min{k : given c ∈ Kγ and bj with c ⊆
⋃
j<` bj

there are j < `, t ⊂ bj , and u ⊆ sj ∪ t with τα(u, n) ≤ k}.

Let us first check that f is well-defined. Fix c ∈ Kγ and bj with c ⊆
⋃
j<` bj . Let j

be minimal such that bj ∈ F+
α . Since τα looks like a name for Fα, there are finite

t ⊆ bj and u ⊆ sj ∪ t such that (u, n) ∈ dom(τα). Choose such t and u so that the
value k({c, bj : j < `}) := τα(u, n) is minimal. Since (2ω)` and Kγ are compact,
it is easy to see that the function sending 〈c, bj : j < `〉 to k({c, bj : j < `}) is
bounded. Hence f is well-defined.

Now choose β such that fβ 6≤∗ fγ,T for all γ < µ and finite T ⊆ [ω]<ω. For
s ∈ [ω]<ω and b ∈ [ω]ω define g = gs,b by

g(n) = min{k : ∃ finite t ⊆ b ∃u ⊆ s ∪ t (τα(u, n) = k)},

in case the set on the right-hand side is non-empty; otherwise put g(n) = ω. Let
F ′α be the filter generated by Fα and all sets of the form {ω \ b : ∃s (gs,b ≥∗ fβ)}.
It is clear that these sets are a union of countably many compact sets.

We first verify that F ′α still is a proper filter. Suppose this were not the case.
Then, for c ∈ Fα and sets bj , j < `, we would have ω\bj ∈ F ′α and c∩

⋂
j<` ω\bj = ∅,

i.e., c ⊆
⋃
j<` bj . Fix γ such that c ∈ Kγ and sj such that gsj ,bj ≥∗ fβ . Set

T = {sj : j < `}. Fix m such that gsj ,bj (n) ≥ fβ(n) for all n ≥ m. By construction
there is n ≥ m such that fγ,T (n) < fβ(n). By definition of fγ,T , there are j < `,
t ⊆ bj , and u ⊆ sj ∪ t with τα(u, n) ≤ fγ,T (n). But then gsj ,bj (n) ≤ fγ,T (n) <
fβ(n) ≤ gsj ,bj (n), a contradiction.

Next we check that F ′α is as required. Let H be any filter extending F ′α, and
let (s, b) ∈M(H). Suppose g̊ is M(H)-name such that τα = τ̊g. Assume there is m
such that (s, b) forces g̊(n) ≥ fβ(n) for all n ≥ m. Then clearly gs,b(n) ≥ fβ(n) for
all n ≥ m. So ω \ b ∈ F ′α ⊆ H, a contradiction.

Finally, by Lemma 29, we may find b ∈ (F ′α)+ such that |b ∩ a| < ω for all
a ∈ Xα. Let Fα+1 be the filter generated by F ′α and b. This completes the
recursive construction and Case 1 of the proof.

Case 2. In Vκ, there is no F<κ filter F such that F(A ) ⊆ F . This corresponds
to the situation when we force with P1 in Section 1. This is the more difficult case.
However, unlike for Case 1, the proof of [Br] can be taken over almost verbatim
in this case. Simply mix applications of Lemma 29 with the recursive construction
expounded in [Br, pp. 192-195].

This completes the proof of the theorem. a

Using finite support iteration we now obtain

Theorem 30. Let κ be a regular uncountable cardinal. It is consistent that b ≤ κ
and aclosed = c = κ+.

5. Tail splitting, club splitting and closed almost disjointness

Definition 31. Let κ be a regular cardinal, and let Ā = 〈aα : α < κ〉 ⊆ [ω]ω. Ā is
tail-splitting if for every b ∈ [ω]ω there is α < κ such that aβ splits b for all β ≥ α.
Ā is club-splitting if for every b ∈ [ω]ω, Cb = {α < κ : aα splits b} contains a club.
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Clearly, a tail-splitting sequence is club-splitting, and the existence of a club-
splitting sequence of length κ implies that sω ≤ κ. Moreover, it is easy to see that
κ ≤ r, where r is the reaping number. In the next section we shall come back to
the question of which of these implications reverse.

Definition 32. Ā = 〈aα,n : α < κ, n < ω〉 is a tail-splitting sequence of partitions
if the aα,n, n ∈ ω, are pairwise disjoint and for all b ∈ [ω]ω there is α such that
aβ,n splits b for all β ≥ α and all n ∈ ω. Similarly, Ā is a club-splitting sequence of
partitions if for all b ∈ [ω]ω, Cb = {α < κ : all aα,n split b} contains a club.

Clearly a tail-splitting sequence of partitions yields a tail-splitting sequence, but
we don’t know whether the converse is true (see Question 48). Similarly for club-
splitting.

We begin with two observations:

Observation 33. In the Hechler model (the model obtained by adding at least ω2

Hechler reals over a model of CH), there is a tail-splitting sequence of partitions of
length ω1.

To see this, notice that the classical proof, of the consistency of s < b, due
to Baumgartner and Dordal [BD], shows that tail-splitting sequences of partitions
from the ground model are preserved in the iterated Hechler extension.

Observation 34. d = ℵ1 implies the existence of a tail-splitting sequence of parti-
tions of length ω1.

Definition 35. Say there is a splitting sequence of partitions over models if there
are M̄ = 〈Mα : α < ω1〉 and Ā = 〈aα,n : α < ω1, n < ω〉 such that:

• M̄ is a strictly increasing continuous sequence of countable models of a
large enough fragment of ZFC;
• for each α, 〈aα,n : n ∈ ω〉 is pairwise disjoint, belongs to Mα+1, and all
aα,n split all members of Mα;
• whenever b ∈ [ω]ω, there are α and a model N of a large enough fragment

of ZFC containing b such that Mα ⊆ N , N ∩M = Mα, and all aα,n split
all members of N .

Here, M =
⋃
α<ω1

Mα.

Lemma 36. The existence of a club-splitting sequence of partitions of length ω1

implies the existence of a splitting sequence of partitions over models.

Proof. Assume B̄ = 〈bα,n : α < ω1, n < ω〉 is a club-splitting sequence of partitions.
Let χ be a large enough regular cardinal. Let M̄ = 〈Mα : α < ω1〉 be such that for
each α < ω1:

(1) B̄ ∈M0, Mα ≺ H(χ), |Mα| = ω, and Mα ∈Mα+1;
(2) if α is a limit, then Mα =

⋃
ξ<αMξ.

For each α < ω1, let δα = Mα ∩ ω1. Define 〈aα,n : n ∈ ω〉 = 〈bδα,n : n ∈ ω〉. For
any α < ω1 and x ∈ [ω]

ω ∩Mα, there is a club C ∈Mα such that for all δ ∈ C and
n ∈ ω, bδ,n splits x. As δα ∈ C, aα,n splits x for all n ∈ ω. Next, if b ∈ [ω]

ω
, then let

N ≺ H(χ) be countable with M̄ ∈ N and b ∈ N . Let γ = N ∩ ω1. It is clear that

N ∩
(⋃

ξ<ω1
Mξ

)
= Mγ and moreover, γ = δγ . Again, for any x ∈ [ω]

ω ∩N there

is a club C ∈ N such that for all δ ∈ C and n ∈ ω, bδ,n splits x. As γ = δγ ∈ C, we
are done. a
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Theorem 37. The existence of a splitting sequence of partitions over models im-
plies aclosed = ℵ1.

Proof. This follows from a straightforward analysis of the proof of [BK, Lemma
3.4]. Since the proof of the latter lemma is rather long and technical, we will not
repeat it here and simply stress the main points. We assume the reader to have a
copy of [BK] at hand.

Assume we are at stage α, and closed sets Aβ ∈ Mα have been constructed so
that

⋃
β<αAβ is an almost disjoint family. (We do not assume that the whole

sequence of the Aβ belongs to Mα; this does not matter.) The Aβ are obtained as
sets of branches through a tree whose levels form a partition of a subset of ω. Now,
from the aα,n, one obtains a sequence CΘ

σ of pairwise disjoint subsets of ω, where
σ ∈ ω<ω and Θ comes from a certain set of finite sequences of finite sequences,
which is used to construct the next set Aα. To obtain the CΘ

σ from the aα,n, one
has to remove finitely many elements (the “excluded points”) as well as a set from
Mα (the set Xσ), see the end of part 1 in the proof of [BK, Lemma 3.4] for details.
Obviously, the resulting CΘ

σ will still split all Y ∈Mα such that Y \Xσ is infinite,
and this is all that’s needed for the rest of the proof to go through. This completes
the construction of the Aα. We need to check they are as required.

Part 2 of the proof of [BK, Lemma 3.4] does not apply, and steps 1 and 2 of
part 3 carry over without any change. The heart of the proof is step 3 of part 3
(the last part of the proof), namely, the argument showing that

⋃
β<ω1

Aβ is indeed
maximal. Take any Y ∈ ωω. Find α and N such that they satisfy the last clause of
Definition 35 for b = Y . Now, as in the proof of [BK, Lemma 3.4], build functions
gj ∈ ωω ∩ N and a decreasing sequence of subsets Yj ∈ N of Y . This is possible
because Mα ⊆ N . (Again, we do not require that the sequences of the gj or Yj
belong to N , but this is not needed.) Assume that Y is almost disjoint from all
elements of Aβ , for β < α. Using the gj and Yj a function h is constructed such
that the branch in Aα associated with h is a subset of Y , i.e. there is a ∈ Aα with
a ⊆ Y . For the construction of h, the splitting properties of the CΘ

σ together with
the fact that any initial segment of h is constructed in N are used. a

Using the theorem, we obtain two results from the literature as corollaries.

Corollary 38 (Brendle and Khomskii, [BK]). In the Hechler model, aclosed = ℵ1.
In particular, b > aclosed is consistent.

Corollary 39 (Raghavan and Shelah, [RS]). d = ℵ1 implies aclosed = ℵ1.

6. Tail splitting: a consistency result

In this section, we show that the existence of a tail-splitting sequence is not the
same as the existence of a club-splitting sequence in the sense of Definition 31.

Theorem 40. It is consistent that there is a club-splitting family of size ℵ1 and
there is no tail-splitting family of size ℵ1. In particular, s = ℵ1.

Assume Ā = 〈aα : α < ω1〉 is club-splitting. Let P be a forcing notion. Say that
P preserves Ā if Ā is still club-splitting in the P-generic extension. It is easy to see
that if (Pα : α < δ) is an fsi of ccc forcing and all Pα (α < δ) preserve Ā, then so
does Pδ.
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Also let H be a filter on ω. We say that (?)Ā,H holds if for every partial function

f : ω → ω with dom(f) ∈ H+ and f−1({n}) ∈ H∗, the set Df = {α < ω1 : f−1(aα)
and f−1(ω \ aα) both belong to H+} contains a club.

Lemma 41. Assume (?)Ā,H holds. Then L(H) preserves Ā.

Proof. Let å be an L(H)-name for an infinite subset of ω. We need to find a club
set C ⊂ ω1 in the ground model such that the trivial condition forces that aα splits
å for all α ∈ C. We can assume that å is thin in the sense that the increasing

enumeration g̊ of å is forced to dominate the generic Laver real ˚̀.
We briefly recall the standard rank analysis of Laver forcing L(H). Let ϕ be a

formula. For any s ∈ ω<ω, say that s forces ϕ if there is a condition with stem s
which forces ϕ. Say that s favors ϕ if s does not force ¬ϕ. Define the rank function
rkϕ by induction:

• rkϕ(s) = 0 iff s forces ϕ;
• rkϕ(s) ≤ α iff there is c ∈ H+ such that rkϕ(ŝ n) < α for all n ∈ c;
• rkϕ(s) = α iff rkϕ(s) ≤ α but rkϕ(s) 6≤ β for β < α.

A standard argument shows that s favors ϕ iff rkϕ(s) < ω1. (Suppose rkϕ(s) is
undefined. Then one constructs a tree T ∈ L(H) with stem s such that for all
nodes t ∈ T extending s, rkϕ(t) is undefined. In particular, no extension of s in T
has rank 0, and therefore T must force ¬ϕ. Thus s does not favor ϕ. Suppose, on
the other hand, that s forces ¬ϕ. We prove by induction on α that rkϕ(s) > α.
This is obvious for α = 0. So assume α > 0. Let T ∈ L(H) be a tree with stem
s witnessing that s forces ¬ϕ. Let c ∈ H be the successor level of s in T . By
induction hypothesis rkϕ(ŝ n) ≥ α for all n ∈ c. By definition of the rank, we see
that rkϕ(s) > α.)

Say that s ∈ ω<ω is good for n if s does not favor g̊(n) = k for any k, but
{m : ŝ m favors g̊(n) = k for some k} is H-positive.

Claim 41.1. If |s| ≤ n and stem(T ) = s, then there is t ∈ T extending s which is
good for n.

Proof. Define a new rank function ρ by stipulating:

• ρ(t) = 0 if t favors g̊(n) = k for some k;
• ρ(t) ≤ α iff there is c ∈ H+ such that ρ(t̂ n) < α for all n ∈ c.

Notice that ρ(s) < ω1. (Otherwise there would be a tree T ′ ∈ L(H) with stem
s such that all nodes of T ′ extending s have undefined rank. Now find t ∈ T ′

extending s and forcing g̊(n) = k for some k. Clearly ρ(t) = 0, a contradiction.)

On the other hand, |s| ≤ n and g̊ ≥ ˚̀imply that ρ(s) ≥ 1 because for each k there

is a tree T ′ with stem s forcing ˚̀(n) > k and, hence, g̊(n) > k. Thus we can find
t ∈ T extending s such that ρ(t) = 1. By definition, this means that t does not
favor g̊(n) = k for any k, and that {m : t̂ m favors g̊(n) = k for some k} belongs to
H+. a

For each node s which is good for n, define a partial function fs,n by letting
dom(fs,n) = {m : ŝ m favors g̊(n) = k for some k} and setting fs,n(m) = k for
some k such that ŝ m favors g̊(n) = k, for m ∈ dom(fs,n). Note that such k
is not necessarily unique, but this does not matter. By definition of goodness,
it is immediate that fs,n satisfies the stipulations in the definition of (?)Ā,H, i.e.
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dom(fs,n) ∈ H+ and f−1
s,n({k}) ∈ H∗ for all k. Now let C be the intersection of all

Dfs,n where s is good for n. We show that C is as required.

Claim 41.2. The trivial condition forces that aα splits å for all α ∈ C.

Proof. Let T be any condition and n0 a natural number. We need to find n, n′ ≥ n0

and T ′ ≤ T such that T ′ forces g̊(n) ∈ aα and g̊(n′) /∈ aα. Since the proofs are
identical, we only produce n. Let s be the stem of T . Choose n ≥ n0, |s|. By the
previous claim, there is t ∈ T extending s which is good for n. Hence ft,n is defined.

Since α ∈ Dft,n , f−1
t,n (aα) belongs to H+. Hence we can find m ∈ dom(ft,n) in the

successor level of t in T such that k := ft,n(m) ∈ aα. Since t̂ m favors g̊(n) = k,
there is a subtree T ′ of T with stem extending t̂ m which forces g̊(n) = k. Therefore
T ′ forces g̊(n) ∈ aα, as required. a

This completes the proof of the lemma. a

Lemma 42. Assume CH. Assume B̄ = 〈bα : α < ω1〉 is tail-splitting. Then there
is {cα : α < ω1} such that cα ⊆ bζα for some ζα ≥ α and the cα generate a P-filter
H such that (?)Ā,H holds.

Proof. Let {fα : α < ω1} list all partial finite-to-one functions ω → ω. Recursively
we find ⊆∗-decreasing cα ∈ [ω]ω, ζα ≥ α, continuous increasing γα, and decreasing
club sets Cα such that:

• cα ⊆∗ bζα ,
• γα ∈ Cα,

and for all β < α such that dom(fβ) ∩ cβ is infinite the following hold:

• aγδ splits fβ(cα) (i. e. f−1
β (aγδ)∩ cα and f−1

β (ω \aγδ)∩ cα are both infinite)
for β < δ ≤ α;

• for all γ ∈ Cα, aγ splits the sets fβ(cα).

Basic step: c0 = b0, ζ0 = 0, γ0 = 0.
Successor step: α → α + 1. Since B̄ is tail-splitting, we can find ζα+1 ≥ α + 1

such that bζα+1
splits all sets f−1

β (aγδ) ∩ cα and f−1
β (ω \ aγδ) ∩ cα for β < δ ≤ α,

as well as dom(fα) ∩ cα if the latter set is infinite. In particular, the intersection
of bζα+1 with these sets is infinite. Let cα+1 = cα ∩ bζα+1 . Then aγδ splits fβ(cα+1)

for β < δ < α + 1. Since Ā is club-splitting, there is a club set Cα+1 ⊆ Cα such
that for all γ ∈ Cα+1, aγ splits all sets fβ(cα+1) for β < α, as well as fα(cα+1) in
case dom(fα) ∩ cα is infinite. Now let γα+1 be the least element of Cα+1 greater
than γα.

Limit step: α limit. Let C ′ =
⋂
{Cβ : β < α}. Let γα =

⋃
{γβ : β < α}.

Clearly γα ∈ C ′. So aγα splits all fβ(cδ) where β < δ < α. Construct c′ as a
pseudo-intersection of cδ, δ < α, such that all aγδ still split all fβ(c′) for β < δ ≤ α.

Since B̄ is tail-splitting, we can find ζα ≥ α such that bζα splits all sets f−1
β (aγδ)∩

c′ and f−1
β (ω \ aγδ) ∩ c′ for β < δ ≤ α. Let cα = c′ ∩ bζα . Since Ā is club-splitting,

we can find Cα ⊆ C ′ club with γα ∈ Cα and such that for all γ ∈ Cα, aγ splits the
sets fβ(cα).

This completes the recursive construction. We need to show that the cα are as
required. Clearly, they generate a P-filter H. Let f : ω → ω be a partial function
with dom(f) ∈ H+ and f−1({n}) ∈ H∗ for all n. Since H is a P-filter, the sets
f−1(ω \ n) have a pseudo-intersection A ∈ H. Notice that the restriction of f to A
is finite-to-one. So we may assume without loss of generality that f is finite-to-one.
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Hence there is β such that f = fβ . Since dom(fβ) ∈ H+, dom(fβ) ∩ cβ is clearly
infinite. By construction, for all α > β and all δ > β, aγδ splits fβ(cα). Hence both

f−1
β (aγδ) and f−1

β (ω \aγδ) are H-positive. Thus the club set Df = Dfβ = {γδ : δ >

β} is as required. a

We finally discuss an application of tail-splitting.

Definition 43. The strong polarized partition relation

(
λ
κ

)
→
(
λ
κ

)1,1

2

means

that for every function c : λ × κ → 2 there are A ⊆ λ and B ⊆ κ of size λ and κ,
respectively, such that c�(A×B) is constant.

The following was essentially observed by Garti and Shelah [GS2, Claim 1.3],
though they stated this in somewhat different language.

Observation 44. The following are equivalent:

(1)

(
λ
ω

)
→
(
λ
ω

)1,1

2

;

(2) cf(λ) 6= ω and there does not exist a tail-splitting sequence of length λ.

In particular, Garti and Shelah [GS1, Claim 1.4] observed that s > ℵ1 implies

that

(
ω1

ω

)
→
(
ω1

ω

)1,1

2

holds. As a consequence of Theorem 40, we obtain:

Corollary 45. It is consistent that s = ℵ1 and

(
ω1

ω

)
→
(
ω1

ω

)1,1

2

holds.

This answers [GS3, Question 1.7(a)].

7. Open problems

We conclude with a number of open problems. Perhaps the most interesting is:

Question 46. Does s = ℵ1 (or at least sω = ℵ1) imply aclosed = ℵ1?

While the existence of a tail-splitting sequence of length ω1 is strictly stronger
than the existence of a club-splitting sequence of length ω1 (Theorem 40), we in
fact do not know whether the latter is stronger than sω = ℵ1 or s = ℵ1.

Question 47. Is it consistent that s = ℵ1 (or even sω = ℵ1) and there is no
club-splitting sequence of length ω1?

For the proof of aclosed = ℵ1 we needed a club-splitting sequence of partitions
(Lemma 36 and Theorem 37). It is unclear whether a club-splitting sequence is
enough. In fact, we do not know whether the two notions are equivalent.

Question 48. Does the existence of a tail-splitting sequence of length κ imply the
existence of a tail-splitting sequence of partitions of length κ? Similarly for club-
splitting instead of tail-splitting.

Let aBorel denote the size of the smallest family A a.d. Borel sets such that⋃
A is mad. Clearly, ℵ1 ≤ aBorel ≤ aclosed. We do not know, however, whether the

cardinals are equal.

Question 49 (Brendle and Khomskii [BK, Question 4.7]). Is aBorel = aclosed?
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If this is not the case one could ask

Question 50 (Brendle and Khomskii [BK, Question 4.4]). Is b < aBorel consistent?

Finally we address

Question 51 (see also [BK, Conjecture 4.5]). Is h ≤ aclosed? Or even h ≤ aBorel?
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