BOUNDING, SPLITTING, AND ALMOST DISJOINTNESS

JORG BRENDLE AND DILIP RAGHAVAN

ABSTRACT. We investigate some aspects of bounding, splitting, and almost
disjointness. In particular, we investigate the relationship between the bound-
ing number, the closed almost disjointness number, the splitting number, and
the existence of certain kinds of splitting families.

1. INTRODUCTION

The closed (and Borel) almost disjointness number was recently introduced by
Brendle and Khomskii [BK], and has received a lot of attention. We study the
connections between this number and the notions of bounding and splitting in this
paper. We start with some basic definitions. Recall that two infinite subsets a and
b of w are almost disjoint or a.d. if aNb is finite. We say that a family o/ of infinite
subsets of w is almost disjoint or a.d. if its members are pairwise almost disjoint.
A Mazimal Almost Disjoint family, or MAD family is an infinite a.d. family with
the property that Vb € [w]“Ja € o [[a N b| = Vg]. The cardinal invariant a is the
least k such that there is a MAD family of size k. Recall that b is the least size
of a subset of (w*¥,<*) that does not have an upper bound. It is well-known that
b < a. For z,a € P(w), = splits a if [zNa| = |(w\z)Na] = w. F C Pw)
is called a splitting family if Ya € [w]*3z € F [z splits a]. s is the least size of
a splitting family. F C P(w) is called an w-splitting family if for any collection
{an : n € w} C [w]”, there exists z € F such that VYn € w [z splits a,]. s, is the
least size of an w-splitting family.

Brendle and Khomskii [BK] studied the possible descriptive complexities of MAD
families in certain forcing extensions of L. This led them to consider the following
cardinal invariant.

Definition 1. a.oseq is the least x such that there are s closed subsets of [w]®
whose union is a MAD family in [w]”

Obviously, agpseq < a. Brendle and Khomskii showed in [BK] that acoseq be-
haves differently from a by showing that a.pseq = N1 < No = b holds in the Hechler
model. Heuristically, the difference between a and a.j,seq may be seen by consid-
ering how a witness to dcseq = N1 can be destroyed in a forcing extension. If
o = Ua<lea is a witness to acjpsed = wi, where the X, are closed subsets of [w]”
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coded in the ground model, then to destroy .27 it is necessary to add a set b € [w]”
which is almost disjoint from every member of every X, even after these codes
have been reinterpreted in the forcing extension. Interpreting a ground model code
in a forcing extension results in a larger set of reals. This makes increasing a.joseq
harder than increasing a, and this fact was exploited by Brendle and Khomskii in
their above mentioned result.

In Sections 2 and 4 we prove the consistency of b < agjpseq- S0 taken together
with the earlier result of Brendle and Khomskii, this establishes the mutual in-
dependence of b and agjseq. Unsurprisingly, our proofs are closely modeled on
the existing proofs of the consistency of b < a. Historically there have been two
seemingly distinct methods for producing a model of b < a. In the first method,
invented by Shelah in [Shl], the conditions consist of a finite part followed by an
infinite sequence of finite sets equipped with a measure-like structure. In the same
paper, Shelah also used this method to produce the first consistency proof of b < s.
In Section 2, we get a model of b < a.pseq using Shelah’s technique. In the second
method, devised by Brendle in [Br|, an ultrafilter is constructed as an ascending
union of F, filters, and then this ultrafilter is diagonalized by the corresponding
Mathias-Prikry forcing. One of the byproducts of the results in this paper is that
these two techniques are not so different after all. In Section 3 we show that She-
lah’s forcing from [Sh1] is equivalent to a two step iteration of a countably closed
forcing that adds an ultrafilter which is a union of F, filters from the ground model
succeeded by the Mathias-Prikry forcing for this generic ultrafilter. Examining this
proof one quickly realizes that for the Mathias-Prikry forcing occurring in the sec-
ond step of this iteration to have the right properties, it is not necessary for the
ultrafilter to be fully generic with respect to the countably closed forcing occurring
in the first step; it is sufficient for the ultrafilter to meet a certain collection of ¢
many dense sets. With this realization, assuming CH, it is possible to build a suf-
ficiently generic ultrafilter in the ground model itself. In this way, we give a proof
of the consistency of b < agoseq by a finite support iteration of Mathias-Prikry
forcings in Section 4 along the lines of Brendle [Br].

In Section 5 we show that the existence of certain special types of splitting
families implies that a.,seq = w1. The existence of such special splitting families
is closely related to the statement s, = w;. It is unknown whether s, = w;
implies that a.oseq = wi. The result in Section 5 sheds some light on this, and
moreover it strengthens previous results of Raghavan and Shelah [RS], and Brendle
and Khomskii [BK].

Finally in Section 6, we separate the notions of club splitting and tail splitting
(see Definition 31). This answers a question from [GS3].

2. CONSISTENCY OF Ny = b < dgjosed

In this section we show the consistency of b < agjpseq by a creature forcing.
The argument is similar to the one used by Shelah in [Sh1] and [Sh2] to show the
consistency of b < a, though we have to do some extra work to make this argument
work for acoseq- The notation and presentation in this section generally follow
Abraham [Ab].

Before plunging into the details, we make some remarks about the structure of
the proof. The final forcing will be a countable support (CS) iteration of proper
forcings which does not add a dominating real. At any stage, a specific witness to
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Oclosed = w1, call it &7, is dealt with. We first define a proper poset Py which adds
an unsplit real but does not add any dominating reals (and more; see Definition 21
and following discussion). The definition of Py does not depend on <7, and it may
or may not destroy . If it does, then we simply force with Py. If it does not,
we first add w; Cohen reals. In the resulting extension we define a proper poset
P; which depends on 7 and always destroys it. Under the assumption that Py (as
defined in the extension) still does not destroy <, we prove that P; does not add
dominating reals (and more), so that we may force with Py to take care of <.

Definition 2. FIN denotes [w]“ \ {0}. Let 2 C w. A function nor : [#]~* — w is
a said to be a norm on x if:

(1) Vs € [2]¥ [nor(s) >0 = |s| > 1];

(2) Vs, t €[] [s Ct = nor(s) < nor(t)];

(3) for any s, 5,51 € [2]~* and for any n > 0, if nor(s) > n and s = so U s1,

then there exists i € 2 such that nor(s;) > n — 1.
A creature cis a pair (s., nor.) such that s, € FIN and nor, is a norm on s, such that
nor.(s.) > 0. Given creatures ¢ and d, we write ¢ < d to mean max(s.) < min(sy)
and nor.(s.) < norg(sq).
A 0-condition p is a pair (s”,(c? : n € w)) such that:

(4) s* € W™

(5) for each n € w, b is a creature and ¢, < ¢ ;

(6) Vm € sP [m < min (scg”.

Henceforth, sb and nor?, will be used to denote s.» and nor.» respectively. We
may also omit the superscript p if it is clear from the context. For a 0-condition p,
int(p) =, o, s2. Given 0-conditions p and ¢, ¢ < p means:

new-n’

(7) 8% D sP and s7\ sP C int(p);

(8) let ng be least such that Vm > ng[sP, N s? = 0]; there exists an interval
partition (i, : n € w) of [ng,00) (that is, ig = ng and ¥n € w iy, < int1])
such that Vn € w [s% C Unefinini) Sl

(9) for any n € w, for any t C s, if nor?(¢) > 0, then there is m € w such that
nor? (tNsk) > 0.

For 0-conditions p and ¢, we say q<gp if ¢ < p and s? = s?. For n > 0, ¢<,p if
qg<op and for allm <n —1, ¢l =P .

Observe that clause (8) is equivalent to saying that for each n € w, s¢ C
Unmefno,o0) St and max{m € [ng,00) : si N s, # 0} < min{m € [ng,00) :
st 1 Nsbh # 0}. This is sometimes useful for checking clause (8). Also, it is
easy to see that < and <,, are transitive for all n.

Lemma 3. Let (p, : n € w) be a sequence of 0-conditions and let (k, : n € w)
be a sequence of elements of w\ {0} such that Vn € wlk, < kyy1]. Assume that
DPn+1 <k, Pn. Define q as follows. s9 = sP* for alln. For allm € [0, ko), cZ, = cPo.
For each m € [k, kni1), ¢, = chn™. Then q is a 0-condition and for each n € w,
q Sk’n Pn-

Proof. First note that for any n, ¢f. | = ¢ ;. So since ppy1 <p, Pn, cf | =
ar_y =t < gt =l . Tt follows that for all m, ¢f, < ¢}, and so ¢ is a

0-condition.
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To check that ¢ <  pp, note that s? = sP», and that for all m € [0,k,),
¢ = ¢Pr. So it is enough to check clauses (8) and (9) of Definition 2. For clause
(9), simply note that for any m € [k, 00), there is a [ > n such that ¢, = ¢P! and
that p; < p,. For clause (8) simply note that for any m € w, there is a p; < pj,
such that ¢, = cb! and ¢}, | = chh ;. =

Fix (X, : @ < wq) such that:

(1) X, is a non-empty closed subset of [w];

(2) & =Uqew, Xa is a MAD family.
We will be working with forcing extensions of the model in which the codes for the
X, live. We adopt the standing convention that when we write either “X,” or “</”
while working inside such a model we mean the set that is gotten by interpreting
the codes in that model. For each o < wy, let Y, be the closure of X, in P(w).
Note that Y, is compact and that Y, \ X, C [w]=.

Definition 4. Suppose p is a O-condition. Define 4, = {s € [w]* : In €
w [nor,(sNsy) > 0]}. Let F, be the filter on w generated by the set

Cpr={w\a:aCwA-Is€ A,[s Cal}.

All filters on w are assumed to contain the Fréchet filter. Note that C) is a
closed subset of P(w) and so F, is F, in P(w). Note also that for any i € w, if
w\iCapU---Uag and n € w is such that ¢ Ns,, = 0 and nor,(s,) > k + 1, then
for some 0 <[ < k nor,(a; N's,) > 0, whence w \ a; ¢ C,. It follows that F, is a
proper filter. Note that for any s € A, sNint(p) # 0, and so int(p) € Fp.

Consider the forcing extension of V obtained by adding w; Cohen reals. For
each § < wq, let Vs denote the extension by the first § many of these. We assume
that & remains MAD in V,,,.

For any family # C P(w), Z(£) is the ideal on w generated by % together with
the Fréchet ideal. For any ideal Z on w, T+ = P(w) \ Z, and Z* is the dual filter
to Z, that is Z* = {w\ a : @ € Z}. For a filter F on w, F* = (F*)*, where
F*={w\a:a€ F}is the dual ideal to F. For a family Z C P(w), we use F(A)
to denote (Z(%))". A filter F on w is said to be P7 if for any sequence (b, : n € w)
with the property that Vn € w [b, € F* Ab,y1 C by], there exists b € F1 such that
Vn € wlb C* by

Lemma 5. In V,,, let F be any F, filter and suppose that G, the filter generated
by FUF (), is a proper filter. Then G is PT.

Proof. Work in V,,,. Fix (b, : n € w) such that b,+1 C b, and each b, € G*.
Write F = {J,,c, Tn, Where each T, is a compact subset of P(w). Fix § < w; such
that (b, : n € w) € Vs and (the code for) (7, : n € w) € V. In Vs, observe that
for any ag, ..., < wi, any n € w, any (ag,...ag) € Yo, X -+ X Yy, , any ¢ € Ty,
and any m € w, by, NeN(w\ag)N---N(w\ ay) is infinite. Therefore, by a standard
compactness argument, for each ag,...,ar < wi, n,m,l € w, there is a finite set
s C by, \ I such that

(%) Y(ag,...ar) €Yo, X - x Yo, Vee Tp[sNeN(w\ag)N---N(w\ax) #0].

Note that () is absolute between Vs and V. Still in Vs, consider the natural
poset P for adding a pseudo-intersection to (b, : n € w) using finite conditions. P
is forcing equivalent to Cohen forcing. So in Vy,,, there is a set b which is (Vs,P)
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generic. Clearly, Vn € w[b C* b,]. Also, by genericity, for each «q,...,qr < wi,
n,l € w, there is s C b\ [ such that () holds. Thus b € G*. o

Definition 6. For an ultrafilter U, a U-tree is a tree T C w<%“ such that Vs €
T [succy(s) € U] and Vf € [T]Vn € w[f(n) < f(n+1)]. Thus each f € [T] deter-
mines an element of [w]“ in a natural way. We will often confuse these below.

Lemma 7. In'V,,, suppose that F is a F, filter such that G, the filter generated by
FUF (), is proper. Supposeb € GT. Then for each oy, ..., < wy, thereisac €
[b] such that c € G and Y(ag, . .., axr) € Xag XX Xa, [[(a0 U+ Uag) Ne| < w].

Proof. Let &€ be the filter generated by G U {b}, and let Z be £*, the dual ideal.

Consider the forcing with P(w)/Z. By Lemma 5, this forcing does not add any reals

and adds a P-point & D £. Work in VZjl(w)/I. Fix 0 < i < k and let Z(X,,) be the

ideal generated by X,,,. This is analytic. By a theorem of Blass [Bl], there is a U-tree
T such that either [T] C Z(X,,) or [T)NZ(X,,) = 0. AsU is a P-point, without loss
of generality, there is a set ¢; € [b] NU such that Vs € T [sucer(s)="*¢;]. We claim
that Va € X,, [|a N ¢;| < w]. Suppose not. Then it is possible to choose f € [T such
that f € Z(X,,). On the other hand, ¢; € Tt (). As P(w)/Z adds no new reals, &7
is MAD in V5% and so 3%°a € o7 [la N ¢;] = w]. But then it is possible to choose
f € [T] such that 3%°a € & [laN f| = w], whence f ¢ Z(X,,). This contradicts the
choice of T. Now, put ¢ = (y<;<xCi - ¢ € [b] NU. Therefore, c € G*. Also, it is
clear that Y(ag, . ..,ar) € Xag X -+ X Xa, [[(a0U---Uag) Ne| < w]. Since P(w)/T
did not add any reals, ¢ € V,,, and we are done. n

Definition 8. A 0-condition p is said to be a 1-condition if for each a € Z(«/) and
for each k € w, there is n € w such that nor, (s, \ a) > k.

The next lemma is the major new ingredient in the proof. Most of the extra
work needed to deal with a.j,seq rather than a is contained in it.

Lemma 9. Work in V,,. Let p be a 0-condition and let ¢ C w. Then the following
are equivalent:

(1) for every ag,...,ar < w1, there exists a 1-condition q such that ¢ <g p,
Y(ag,...,ax) € Xag XX Xo, [Jint(q) N (agU---Uag)| < w], and int(q) C
:

(2) the filter generated by F, U F (/) U {c} is proper.

Proof. Assume (1), and suppose for a contradiction that there exist by, ...,b € Cp,
QQ, -0 < wi, (ag,...,ar) € Xog X+ X Xq,, and i € w such that ecNint(p) NbyN
NN (w\ag)N---N(w\ag) Ci. Applying (1), find ¢ <y p such that int(q) C ¢,
and int(q) N (ap U --- U ag) is finite. Find n € w such that norg(sl) > [ + 1,
iNsy =0, and (apU---Uag) Nsi = 0. Since s C int(p) Ne, it follows that
s8 C (w\bg)U---U(w\ b). But then, for some 0 < j <[, nor? ((w\ b;) Nsl) > 0.
So there must be m € omega such that nor?, (s?, N (w \ b;) Ns%) > 0, whence
(w\ bj)Nsg € A,. This, however, means that b; ¢ C,, a contradiction.

Next, suppose that F, U F (/) U{c} generates a proper filter. We will prove (1).
Let G denote the filter generated by F, U F(&/) U {c}. First notice the following
things about A,. If s € A, then |s| > 1. Next, if s C ¢, and s € A4, then ¢t € A,.
Finally, if b € G*, then 3s € A, [s C b]. Now, we define the norm induced by A,
nor : [w]~“ — w by the following clauses:
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e nor(s) > 0, for every s € [w]~;

e nor(s) > 1iff s € Ap;

e for n > 1, nor(s) > n iff for every sg, s; such that s = sgU s, there is i € 2

such that nor(s;) > n — 1;

e nor(s) = max{n € w : nor(s) > n}.
It is easy to check that nor is well defined and is a norm on w. Next, we check by
induction on n € w that for any b € G, 3s C b[nor(s) > n]. If n = 0, then there
is nothing to prove. For n = 1, use the previous observation that 3s € A, [s C b].
Suppose that n > 1 and that the claim is true for n—1. Suppose for a contradiction
that it fails for n. In particular, for every k € w, nor(bN k) # n, and so there exist
by, bY such that bk = bf UK, and neither b% nor bY contains a set s such that
nor(s) > n — 1. By a standard Koénig’s Lemma argument, this gives us by, b; such
that b = by Uby and neither by nor by contains a set s with nor(s) > n—1. However,
either by or by is in GT, which contradicts the induction hypothesis.

Now, fix ag,...,ax < wi. As F, is a F, filter and as int(p) N ¢ is positive
for the filter generated by F, U F(</), Lemma 7 applies and implies that there
is a set d € [int(p) N ¢|* which is positive for the filter generated by JF, U F (<),
and Y(ag,...,ax) € Xag X -+ X Xq, [[(agU---Uag) Nd| < w]. Of course, d € G+.
Therefore, for any a € Z(«7), and for any n € w, there is a s C d such that
nor(s) > n and a Ns = 0. Choose § < wy such that p,c,d, and nor are in V.
Now, work in V. Define a poset P as follows. For s € [d]~“\ {0}, let m, denote
min{m € w: sNsP, # 0} and let m® denote max{m € w : s capst, # 0}. P consists
of all o : dom(c) — [d]~ such that:

e dom(o) € w and for each i < dom(o), nor(o(i)) > 0;
e for any i < ¢ + 1 < dom(c), (o(i),nor | o(i)) < (o(i + 1),nor | o(i + 1))
and also m®() < Mg (i+1)-
Foro,7 € P, 7 <o iff 1 D o. Fix Bo,..., 0 < wi, n,m € w. For any (ag,...,a;) €
Y3, x -+ x Y, there is a s C d\ m such that sN(agU---Ua;) = 0 and nor(s) > n.
Again, by a compactness argument, there is a set s C d \ m such that

(x)  VY(ag,...,a1) € Yp, x---xYg It CsllagU---Ua;) Nt =0Anor(t) >n].

Note that (*) is absolute between V5 and V. Now, for each Sy, ..., 3 < w; and
neEw,

{r € P: 3i < dom(7) [r(i) satisfies (x) with respect to By, ..., S, n]}

is dense in P. Since P is forcing equivalent to Cohen forcing, there is a function
f:w—[d~ in V,, which is (Vs,P)-generic. For each i € w, put ¢! = (f(i),nor |
f(i)). Put g = (s, (¢! : i € w)). It is clear that ¢ is a 0-condition and that ¢ <g p.
It is also clear that int(q) C ¢. By genericity of f, for each Bo,...,5 < w; and
n € w, there is i € w such that s! satisfies () with respect to o, ..., 5 and n. It
follows that ¢ is a 1-condition, and we are done. a

Corollary 10. There are 1-conditions. Moreover, given any l-condition p and
g, - .., 0 < wi, there is a 1-condition ¢ < p such that V(ag,...,ar) € Xgy X -+ X
Xa, [[(apU---Uag) Nint(q)| < w).

Proof. For the second statement, note that if p is a 1-condition, then the filter
generated by F, U F(<7) is proper. Now, apply Lemma 9.
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The first statement is a corollary of the proof of Lemma 9. For example, let
A= MZZ, and let nor, the norm induced by A, be defined as in the proof of
Lemma 9. Let P be defined (with d = w) as in the proof of Lemma 9, leaving
out any mention about m?®*) and My (i+1), Which are irrelevant here. Then an
appropriate generic for P yields a 1-condition. B

From this point on the argument is fairly standard, and follows Shelah [Sh2].

Definition 11. Py = {p : p is a 0-condition}. P; = {p : p is a 1-condition}. The
ordering on both Py and P, is <.

Fix p € Py. Suppose t € [int(p)]~“. Define m? = max{m € w : s, Nt # 0}, with
the convention that m? = —1 when ¢t = 0. For ¢ € [int(p)]~* and n > m?, p(t,n) is
the 0-condition defined as follows. sP(t™) = sP Ut, and for all i € w, cf(t’") =c,.
It is clear that p(¢,n) < p.

The poset Py is proper and does not add dominating reals. Consult either [Sh2]
or [Ab] for a proof of this. We will work towards showing that P; is proper. We first
make some basic observations about the above definitions. Fix p € Py and suppose
q <o p. Suppose t € [int(q)]~*. Then m¢ < mP. Moreover, if k > m?, then
q(t, k) < p(t, k). Also, suppose that p,q € Py with ¢ <, p. Suppose t € [int(q)]~*
and suppose that k > m{ and that [ > my. If for each m > &, s, C U;cp,00)5)>
then q(t, k) <o p(t,1). To avoid unnecessary repetitions, all conditions belong to
P; from this point on unless specified. Also, unless specified, we are working inside
Vi, -

Lemma 12. Let & € V.! such that b1 € Vo,. Fiz p, k € w\ {0}, and t C
Ume[o k)sfn. Then there is p <;, p such that for any q <, D, if there exists r < ¢
such that s" \ sP =t and rl-1@ = x, then q(t, k)lF12 = .

Proof. p is gotten as follows. First suppose that there is a § < p(t, k) and = € V,,,
such that ql-; 2 = z. We may assume that norg (sg) > nor}_, (sz_l). Now define
P, by s? = sP, b =ck, form <k, and ¢, = ¢!, for m > k. If there is no such
q, then simply set p = p. In either case, it is clear that p <j p.

Now, fix ¢ <, p. Note that if the first case happens above, then q(t, k) <q g,
and so ¢(t, k) IF1 2 = 2. Suppose r < ¢ such that s" \ s =t and y € V,,, such
that r IFy & =y. First, we claim that the first case must have happened above.
Suppose not. Then p = p. We may assume that s C Ume[k’oo)s‘}n. But then
r <o p(t, k), which contradicts the supposition that the first case did not occur. So
the first case occurs, and therefore, ¢(t, k) IF1 & = z. Again, we may assume that
50 C Unelt,00)5th- But then r < q(t, k), whence z = y. 4

Lemma 13. Let & € V! such that IF1& € V. Fizp, k € w\ {0}. There exists
p <p p such that

(t1)  for any ¢ <, p and for any t C U sb., if there exists r < q and
me(0,k)

x € Vy,, such that s"\ s* =t and r Ik & = x, then q(t, k) Ik 2 = x.

Proof. Let tg,...,t; enumerate all t C Ume[o)k)sfn. Now construct a sequence
P=P_1k>Dpo k> - k=P = p as follows. For —1 < ¢ < [, suppose p; < p is
given. Note that t;41 C Ume[o k)ySt- So apply Lemma 12 to find p;41 < p; such
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that for any ¢ <j, p;+1, if there are r < ¢ and x € V,,, such that s" \ s? = ¢;1; and
rlk & = x, then q(t;41,k) IF1 £ = . It is clear that p is as needed. -

Lemma 14. Fiz p € Py and f € Vi such that Ik f €“(Vy,). Then there is a
P <o p such that

(to)  for any q <o B, for any t € [int(q)]~*, and for any i € w, there is a
k > m{ such that if there is ar < q and x € V,, such that s" \ s* =t

and r by f(i) =z, then q(t,k) k1 f(i) = a.

Proof. Define functions ¥ : w<¥ — P; and A : w<¥ \ {0} — w \ {0} with the
following properties:

(1) ¥(0) = p and for each 0 € w<¥ and j € w, X(07(j)) <a@—()) 2(0);

(2) for each o € w<¥\ {0}, and for each j € w, A(c™(j)) > A(0); also, for

each 0 € w<¥ and k € w, there is a j € w such that A(c™(j)) > k;
(3) for each 0 € W<, j € w, i < A(c7(j)), (1) holds with p as Z(c™(4)), k
as A(o™(j)), p as ©(o), and & as f(i).

By Lemma 13 it is possible to define such functions ¥ and A. Now, fix g € w*.
The hypotheses of Lemma 3 are satisfied when p,, is taken to be X(g | n) and k,, as
A(g | n+1). Let g4 be the O-condition defined as in Lemma 3. By Lemma 3, for each
n € w, ¢g <aA(gint1) 2(g [ n). Suppose for a moment that there is g € w® such that
qg € P1. We first check that setting g, = p does the job. Suppose ¢ < ¢4. Fix t €
[int(¢)]~* and i € w. Find n € w such that A(g [ n + 1) > max {m{*,i}. Observe
that m{ < A(g | n+1). Thus t C UmE[O,A(g[n+1))Sg:' As qg <a(gint1) (g [ ),
t C Ume[o,A(gmH))SEL(g[n)- We know that (Tl) holds with p as (g [ n+ 1), k
as A(g [ n+1), pas X(g [ n), and & as f(i). Note that q; <a(gin+2) 2(g |
n+ 1), and so g, <At 2(g [ n+ 1). Now, suppose there exists r < ¢ and
z € V,, such that s” \ s* =t and r Iy f(i) = x. Note that s” = s>/ and that
g < q4. Therefore, r < ¢q4 and s™ \ s2In) =t Applying (t,), we conclude that
q9(t, Ag [ n+ 1)) by £(i) = . But since q(t, A(g [ n+ 1)) <q qo(t, Alg [ n+ 1)),
q(t,A(g I n+1)) Ik f(i) =z, and we are done.

Therefore, it is enough to find g € w“ such that ¢, € P;. Find § < w; such that
¥, A € Vs. Work in V. View w<* as a forcing poset with 7 < o iff 7 D 0. Fixo €
w<¥, ag,...,ar < wi, and n,m € w. Then for each (ag,...,ax) € Yo, X --+ X Yy,,
there is i € w and ¢ C 527 with nor> ") (t) > n such that N (mUaoU- - -Uay) = 0.

Again, by a compactness argument, there exists j € w such that
(*)  V(ao,...,ar) €Yqy X -+ x Y, Fi < j

It c s [nor?(a)(t) >nAtN(mUagU---Uag) = O} :
Note that () is absolute between Vs and V. It follows that for any ag,...,ar <
wy and n,m € w, the set

{r € w<¥\ {0} : A(7) — 1 satisfies (x) with respect to 7 | |7| — 1, g, ..., g, n,m}

is dense in w<*. There is a g € V,,, which is (Vs,w<*)-generic. By genericity, for
each «ag,...,ar < wi, and n,m € w, there is a | € w such that A(g [ {1 +1) —1
satisfies (x) with respect to g [ [, ap,...,ax,n,m. Since g <agu41) 2(g 1), it
follows that ¢, € P;. B
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An easy corollary of Lemma 14 is the properness of P;. The details are left to
the reader.

Corollary 15. Py is proper.

We next work towards showing that if Py does not destroy <7, then P; does not
add dominating reals, and more.

Definition 16. Fix f € V¢! such that I fe“(Vy,). Let p € Py satisfy (f,) of
Lemma 14 with respect to f . For each i € w, define

Blp, f,i) = {t e [int(p)]= : Ik > mP3x € V., [p(t, k) Iy f() = x} } .

Note that if f and p are as in Deﬁonition 16, and if ¢ <, p, then ¢ also satisfies
(t,) with respect to f and that B(q, f,4) = [int(¢)]~“ N B(p, f,4), for each i € w.

Lemma 17. Let f and p be as in Definition 16. Fiz k € w \ {0}. There ewists
p <p p such that

(t3) VtC Ume[o oS < RYm >k

Vu C sb, [norfn(u) >0 = FvCu theB(ﬁ,f,i)H.

<w
Proof. Let A be the set of all u € {Une[k’w)sﬁ] such that:

(1) for some m € w, nor®, (sP, Nu) > 0;
(2) for each t C U, ,e(o,)5h and @ < k, there exists v C u such that tUv €

B(p, f,1).
It is easy to see that for any u € A, |u| > 1 and that if v C w, then w € A.
Let G denote the filter generated by F, U F(</). Note that G is a proper filter.
Fix ¢ € G*. Then the filter generated by G U {c} is proper, and so by Lemma 9,
there is a 1-condition ¢ <g p such that int(q) C ¢. Let ng be least such that for
each n > no, s C U, pe(,00)5h: and norf (s{) > nory_,(sjy_,). Define g such that
s = 59, for each m € [0,k), sI, = s, and for all m € [k,00), s, = s?m_ano.
It is clear that ¢ is a 1-condition and that ¢ <, p. Now, fix t C Ume[O’k)sfn and
i < k. Find r < q(t, k) and = € V, such that 7 Ik f(i) = 2. Let v = s" \ (s* Ut)
and note that since p satisfies (f,), t Uv € B(p, f,i). Find n(t,i) > ng such

that v C U, epngn(ti))Sh- Put n = max {n(t,i) 10 C Unejor)sm N < k}. Let

w

u = Ume[noyn)sg@. Observe that u € [U -
satisfied. Also by the way n is chosen, (2) is satisfied. Therefore u € A. Since
u C int(g) C ¢, we conclude that for any ¢ € G, there is a u € A such that u C c.

Now, let nor : [w]~* — w be the norm induced by A, defined exactly as in the
proof of Lemma 9. Arguing as in Lemma 9, it is easy to prove that for any ¢ € G+
and n € w, there is a s C ¢ with nor(s) > n. Find a § < w; such that p and
nor are in Vs. Working in Vs, define a poset P as follows. For a non-empty set
u € [int(p)] =, m* and m,, are defined as in the proof of Lemma 9. A condition in
P is a function o : dom(c) — [int(p)] = such that:

(3) dom(o) € w and for each i < dom(0), 0(7) C U,,epk,00)5h and nor(o(i)) >

nory_,(sh_1);

melk,o00)5m Since s C u, (1) is
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(4) for each i < i+ 1 < dom(c), (o(i),nor | (7)) < {o(i + 1),nor | (i + 1)),
and m°() < Mg (i+1)-

Foro,7 € P, 7 <o if 7 D o. Given ayp,...,aq < w1, m,n € w, and (ag,...,a;) €
Yo, x -+ x Yy, there is a finite w C int(p) \ m such that v N (apU---Ua;) =0
and nor(u) > n. So by a compactness argument, for each ap,...,q; < wi, and

m,n € w, there is a finite s C int(p) \ m such that
(%) Y(ag,...,a;) €Yo, X - XYy, Fu C sfun(agU---Ua;) =0Anor(u) >n].

Observe that () is absolute between V5 and V,,,. For each ap,...,a; < wy and
n € w, the set

{r € P: Ji < dom(r) [7(4) satisfies (*) with respect to ag,...,a;,n]}

is dense in P. In V,,,, choose f : w — [Ume[k’w)sﬁl} e which is (Vs, P)-generic.
Define p as follows. s? = sP. For each m € [0,k), &, = ¢b,. For m € [k, 00),
P = (f(m —k),nor | f(m —k)). From the genericity of f, it follows that p is a
1-condition. Also, it is clear that p <, p. Now, suppose that ¢t C Ume[o’k)sﬁT and
i < k. Fixm >k and u C s£, with nor(u) > 0. Then u € A, and so there is a
v C u such that tUwv € B(p,f,i). As B(ﬁ,f,i) = [int(p)]~“ N B(p, f,i), it follows
that t Uv € B(p, f,1). N

Note that if p satisfies (1,) with respect to f and it satisfies (t5) with respect to
f and k, then any ¢ <j p also satisfies (t3) with respect to f and k.

Lemma 18. Let p and f be as in Definition 16. There is a p < p such that
(t4) for any i € w, there is k > i such that for any

if nor® (u) > 0,

m>

>
tCU [Ok)m,]<km k, and u C sP,

then there exists v C u such that t Uv € B(p, f,j).

Proof. Define two functions ¥ : w<* — P; and A : w<¥\ {0} — w \ {0} with the
following properties:
(1) £(0) = p and for each 0 € w<* and j € w, X(07(j)) <A~ () 2(0);
(2) for each o € w<¥\ {0}, and for each j € w, A(c™(j)) > A(o); also, for
each ¢ € w<¥ and k € w, there is a j € w such that A(c™(j)) > k;
(3) for each 0 € w<¥ and j € w, X(c™(j)) satisfies (1) with respect to f and
A(o™())-
By Lemma 17 it is possible to find ¥ and A with these properties. Note that for
any 0 € w<¥, ¥(0) <o p. Therefore, X(o) satisfies (f,) with respect to f. So
Lemma 17 does apply to each (o).

For each g € w", let g, be defined exactly as in the proof of Lemma 14. By the
same argument as in Lemma 14, there exists g € w“ such that g, € P;. We argue
that putting p = ¢, works. Fix ¢ € w. Find n € w such that A(g [ n+1) > i
Recall that q; <a(gint1) 2(g [ 7). Moreover, ¢ <a(gint2) X(9 [ n+ 1), and so
49 <a(gin+1) 2(g [n+1). By (3), (g [ n+ 1) satisfies ({3) with respect to f and
A(g [ n+1). Also, ¥(g | n+ 1) satisfies () with respect to f It follows that g,
satisfies (f4) with respect to f and A(g | n+ 1), and we are done. 4
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Lemma 19. Assume that IFoo? is MAD. Let p € Py. There exists {a, : n € w} C
o and {g, : n € w} C Py such that:

(1) Vn < n*[an # an<];
(2) Vn € wlgn <o pAint(g,) C ay].

Proof. Let x be the canonical Py-name for the generic subset of w added by Py. Fix
n € w and suppose that {a; : i <n} C o and {¢; : i <n} C Py are given. We will
show how to get a, and g,. Put a = {J,_,,a;. Then a € Z(&/). Put ¢ = int(p) \ a.
As p is a 1-condition, the filter generated by F, U F(</) U {c} is proper. Apply
Lemma 9 to find a 1-condition p <q p with int(p) C ¢. Since IFoo” is MAD, there
is a O-condition ¢ < p and «a < w; such that ¢ IFg Ja* € X, [Ja* N 2| = w]. Note
that for any r € Py, r IFg & C* int(r). It follows that there can be no r € Py with
r <o g such that Va* € X, [|int(r) N a*| < w]. By Lemma 9, this means that the
filter generated by F,UJF (/) is not proper. Fix by, ...,b; € Cy, af,...aj € &7, and
it €wsuch that bpN---NHN(w\aj)N---N(w\aj)Nint(g) C 3. Fix mo € w such
that for all m > myg, s, Ni = 0, and norg, (s,) > max{l,k} +1. As b; € C, for any
0 < j <1, it follows that for any m > myg there is a j,, with 0 < j,, < k such that
nord, (a3 Nsd,) > (m—mg)+1. So there is an infinite X C [mg,00) and 0 < j < k

such that for each m € X, jn, = j. Put a, = a}. Note that a, Nint(p) # 0, and so
ay # a; for any i < n. Define ¢, as follows. s%» = sP = sP. Choose lg < I} < ---,

with I; € X such that nor} (an N s?) < nor?iJr1 (an N s?Hl). For each i € w, define

ci* = (a, Nsf,norf | (an N Si)> As q < p, it is clear that ¢, <o p <o p. Also,
int(gn) C an, and so g, and a, are as needed. =

Lemma 20. Assume that oo/ is MAD. Let f be as in Definition 16. Suppose
that p € Py satisfies both (T5) and (t,) with respect to f. There exists a 1-condition
q<op and {a, : n € w} C & with the following properties:

(1) for alln < n*, ap # ap~;

(2) for each n,l € w, V*°m € w3t C s& [nord (t) > 1At C ay);

(3) for any k € w, t C U,eo1)5hs and u C sj, if norj(u) > 0, then there

exists v C u and x € V,,, such that q(tUv, k+1) Iy f(k) = z.

Proof. First apply Lemma 19 to p to find {a, : n € w} and {g, : n € w} C Py
satisfying (1) and (2) of Lemma 19. Define A = {s € [w]** : In € wIm €
w [nordr (s N si») > 0]}. Note that for any s € A, |s| > 1 and that if s C ¢, then
t € A. Moreover, for any s € A, there is m € w such that nor?, (s N s?) > 0. Let
nor : [w]~“ — w be the norm on w induced by A, defined as in the proof of Lemma
9. Note that for any n,m € w and s C sir, nor(s) > nori»(s). Next, recalling that
p satisfies (5) with respect to fo, for each i € w and t € B(p, f, i), fix k! > m¥ such

that 3z € V., [p (t, ki) by f(i) = a:]
Now, to get g proceed as follows. s? = sP. For each ¢ € w choose mg,...,m; € w
such that putting s/ = sho U---Usli , the following properties hold:

m;

(4) for each i < i+ 1, max(s) < min(s} ), max{n € w: sh Ns! # 0} <

i

min{n € w: ¥ Ns} ; # 0}, and nor(s{) < nor(sy, ) (recall that for all
J € w, q; <o p; therefore, for any fixed i € w, 53,2;_7. C int(p), for each
0 < j < i; also, s% C s; therefore, s{ is a non-empty finite subset of

int(p)): i
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(5) for each i € w, for each t C U, ¢(g 45, for each u C s, if nor(u) > 0, then

there exists v C u such that t Uv € B(p, f, i);

(6) for each i € w, each t C [J,,¢[0,4)8h, and each v C s{ such that t Uv €
sP s

e[k(th)’oo>
(7) for each i € w and 0 < j <4, norfy, (i) > 1.

Before showing how to do this for each ¢ € w, let us argue that it is enough to do
so. First note that for any j € w, ¢; <o p, and so s% = sP. So since for any ¢ € w
and [ € s, there is some 0 < j < i such that [ € sg,i;j, it follows that for all [* € s9,
I* < 1. Next, for any i € w, s C s!. So 0 < norf (s ) < mor (si ) < nor(s?).
Therefore, if we put ¢! = (s?,nor | s¥), then ¢ = (s?, (¢! : i € w)) is a 0-condition,
and ¢ <y p. To check (2), fix n,l € w. Suppose that m > max{n,l}. Then there
exists my € w such that sl» C si,, and norfy (s?,;bn) > m 2> l. However, si» C ap
and nor (s ) > nordr (sq" ) > 1. This verifies (2).

Using (2), it is eaby to check that ¢ is a 1-condition. With the next lemma in
mind, we will verify a slightly stronger statement. Fix X € [w]”. Define qx =
(s9,(c! i € X)). It is clear that gx is a 0-condition and that ¢gx < ¢g. We check
that it is a 1-condition. Fix a € Z(&/) and | € w. Fix n, k € w such that ana, C k.
Choose m € X such that s¢, Nk = 0 and there exists t C s¢ such that ¢t C a,, and
nord (t) > I. Tt is clear that t Na = 0, and this checks that ¢x is a 1-condition.

For (3), fix i € w, t C U,,ep0,i)8h> and u C s such that norf(u) > 0. By
(5), there is a v C u such that t Uv € B(p, f,i). By (6), for each m > i+ 1,

s C Une[k’th),oo)Sﬁ' Note that m? y <@ <i+1and k(wv) > m( by

(tuv tUv)

(
definition. Since q <q p, it follows that ¢(t Uv,i+1) <y p (t U v,kfth)). Since

there exists x € V,,, such that p (t Uwv k(wv ) I f(z) = x, this verifies (3).
Finally, we show how to get such myg,...,m; € w for each i € w. Fix i € w,
and assume that s? for j < i are given to us. First, fix kg € w such that for each
0 <n < and for each k > ko, nor{" (sf*) > i and Vj < i [nor(s?) < nor{" (si")].
Also fix Iy > i such that for all j < i, s C Unme(o,10) S Recall that p satisfies (t4)
with respect to f. Applying (f,) to lo, find k; > lo as in (f,). Next, choose ky > ki
such that for each j < i,t C | and v C s§ such that t Uv € B(p,]g,j)7
ko > k(th). Finally, recall that for each 0 < n <14, g, <g p. So it is possible to
choose k3 > kg such that for each 0 < n < i and each k > k3, s q” C Une[k2 )5t sP.
Now choose my, ..., m; > k3. It is easy to see that (4), (6), and (7 ) are satisfied. For
(5), fixt C Uep l)sm7 and u C s with nor(u) > 0. Note that ¢ C {J,,c[ox,)5h and
that ¢ < ly < k1. Moreover, s? C Une[kQM)sﬁ. So there exists m > ko such that
nor? (uNsP) > 0. We have that m > kg > ky, unNsP, C s2, and nor?, (uns?,) > 0.

Therefore, by (f,), there is v C u N sP, C u such that t Uv € B(p, ]g,i)7 and we are
done. .

me[0 j)Sm7

Definition 21. A poset P is said to be almost w*-bounding if for any p € P and
f € VP such that IF f € w¥, there exist ¢ < p and g € w® such that for any

X € [w]”, there exists gx < ¢ such that gx I+ 3*n e X [f( ) < g(n)}
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It is not difficult to see that an almost w*-bounding poset preserves all o-directed
unbounded families of monotonic functions in w*. Shelah proved that a countable
support iteration of proper almost w*-bounding posets does not add a dominating
real. He also proved that Py is almost w*“-bounding (consult either [Sh2] or [Ab]).

Lemma 22. Assume that o/ is MAD. Then Py is almost w* -bounding.

Proof. Fix f € Vg’}l such that I f € w¥ and p € P;. Find ¢ < p as in Lemma 20.
Define g € w* as follows. For any k € w define g(k) = max(X}), where

X, = {l cw:3tcC Umem)sgnav Csd gt Uv k+1) Ik f(k) = z”

Note that X}, is non-empty and finite, so g(k) is well-defined. Now, fix X € [w]”
and let gx be defined as in the proof of Lemma 20. Then ¢x € P; and gx < gq.
Fix r < gx and n € w. Fix k* > n such that ¢t = s" \ s7 C Ume[o’k*)sqm. Choose
i € w such that s] C U,,e[k+ 00)St- There must be k € X with k > & such that
norf (sf N'st) > 0. It follows that there exists | € Xj and v C s{ N's} such that
qtUv,k+1) Ik, f(k) = 1. But it is clear that r(v,i+ 1) < q(t Uv,k +1). So
r(v,i4+1) <rand r(v,i+1) Iy f(k) =1 < g(k). Since k € X and k > n, we are
done. |

We now have all the lemmas needed to give a proof of
Theorem 23. It is consistent to have X1 = b < Agjoseq = No.

Proof. Start with a ground model satisfying CH. Fixing a book-keeping device to
ensure that all names for witnesses to a.oseq = N1 are eventually taken care of, do
a CS iteration (Pa,@a : @ < ws) of proper almost w*-bounding posets as follows.
At a stage o < wy suppose that Py, is given. Let G, be (V,P,)-generic. In V [G,],
let (X¢ : & < wi) be a sequence of non-empty closed subsets of [w]“ given by the
book-keeping device. If & = U£<M1X§a is not MAD, then let Q, be the trivial
poset. Now assume that o/ is MAD. Let C,, be the poset for adding w; Cohen
reals. Let H be (V [G,.],C,,)-generic. If & is not MAD in V [G,] [H], then in
V [G,], let Q4 = C,,. Suppose &7 is MAD in V [G,] [H]. In V [G,][H], if there
exists p € Py such that p Iy &7 is not MAD, then let R = {¢ € Py : ¢ < p}.
If koo is MAD, then let R = P; (defined with respect to «7). In either case,
in V[G,] let R be a full C,, name for R. Let Q, = C,, * R. Note that in all
of these cases IFg_ .27 is not MAD. In V, let @a be a full P, name for Q,. This
completes the definition of the iteration. If G, is (V,P,,) generic, then since P,
does not add a dominating real, b = wy in V[G,,,]. Suppose for a contradiction
that (X¢ : £ < wy) is a sequence of non-empty closed subsets of [w]” such that
o = U§<W1X§ is MAD. For some a < ws, the book-keeping device ensured that
(X¢ : € < wy) was considered at stage a. So there is a set ¢ € [w]* NV [Go41] such
that in V [Gq41], for each £ < wyq, cis almost disjoint from every element of X,. For
any fixed ¢ < wy, this statement is II} and hence absolute. So in V [G,,,], for any
£ < wi, cis almost disjoint from every element of X,. This is a contradiction.

3. A CHARACTERIZATION OF PP

In this section we show that the poset Py defined in Section 2, which was used
by Shelah in [Sh1] to produce the first consistency proof of b < s, can be viewed as
a two step iteration of a countably closed forcing followed by a o-centered poset.
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Definition 24. Let F = {F : F is a proper Fj filter on w}. Recall our convention
that all filters are required to contain the Fréchet filter. We order F by D. It is
clear that F is countably closed and adds an ultrafilter on w. Let U denote the
canonical F-name for the ultrafilter added by F. For any filter U, let M(U) denote
the Mathias-Prikry forcing with U.

o

In this section we will prove that Py is forcing equivalent to F « M(Z{). This
is entirely analogous to the characterization of Mathias forcing as first adding a
selective ultrafilter with P(w)/FIN and then doing Mathias-Prikry forcing with
that selective ultrafilter. Note that P(w)/FIN is forcing equivalent to the partial
order of all countably generated filters on w ordered by D. So F is a natural
generalization of P(w)/FIN. Our first lemma is rather well-known.

Lemma 25. Let F be a proper Fj, filter on w. There is a non-empty closed set
C C P(w) such that C C F and Vb € Fic e Clc C* b].

Proof. Write F = |J,,c.,Tn, where each 7,, is a closed subset of P(w). Let C' =
{bUn:n € wAnbeT,}. Itis clear that Vb € Fic € C'[c C* b] and that C' C F.
Note also that w € C. We will check that C is closed. Suppose (¢; : i € w) is a
sequence of elements of C' converging to some ¢ € P(w). For each i € w fix n; € w
and b; € T, such that ¢; = b; Un;. By passing to a subsequence, we may assume
that the b; converge to some b € P(w) and that either Vi € w[n; < n;t1] or there
is a fixed n € w such that Vi € w[n; = n]. In the first case c = w, and so ¢ € C. In
the second case, each b; € 7,, and so b € 7,,. ¢ =bUn, whence c € C. -

o

Theorem 26. There is a dense embedding of Py into F « M(U).

Proof. Most of the tools needed to prove this have already been developed in the
proof of Lemma 9. Fix p € Py. Let A,, Cp, and F, be as in Definition 4. As
observed in Section 2, int(p) € F,. It follows that F, IFg int(p) € U, and so
(Fp, (s”,int(p))) is a condition in F * M(U). Define a map ¢ : Py — F x M(U) by
d(p) = (Fp, (sP,int(p))). We will check that ¢ is a dense embedding.

First suppose that ¢ < p. We must show that ¢(q) < ¢(p). Note that s? D sP,
int(¢) C int(p), and that s?\ s? C int(p). So it suffices to show that F;, O Fp.
For this, suppose that s € A,. Then there is n € w such that nor?(s N sZ) > 0.
As g < p, there must be m € w such that nor?, (s N sZ N sP) > 0. Therefore,
nor? (sNsP)>0,and so s € A,. So A, C A,, whence F, D F).

Next, fix p, ¢ € Py and suppose that ¢(p) and ¢(q) are compatible in IE‘*M(Z/{) We
must show that p and ¢ are compatible. Indeed, we will prove something stronger.
Let (F, (s*,d)) be an arbitrary tuple where:

(1) Fis an F, filter containing both F, and Fg;

(2) s* € [w]™, s* D sP, 5" D9, 5%\ sP C int(p), and s* \ 57 C int(q);

(3) de Fand Vi€ s*Vj e dfi < jl;

(4) d C int(p) Nint(q).
We will show that there is r € Py such that r < p, r < ¢, and ¢(r) < (F, (s*,d)).
The argument that ¢"'Py is dense in F « M({{) is almost identical; so this is enough
to finish the proof. Using Lemma 25, find a non-empty closed set C' C P(w) such
that C C F and Vb € F3c € C[c C* b]. Put

A={scw|~¥:s€A,NA;AVceECsNc| > 1]}.
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We note a few properties of A. It is clear that for each s € A, |s| > 1 and that
ift s, thent € A Next, fix b€ F'. For any c € C, bNnc € F'. Therefore,
there exist s € A, and 5 € A, such that s CbNcand 5 C bNc. By a compactness
argument, this implies that there is a finite set s C b such that for each ¢ € C, there
exists ¢ C s such that t € A, and t C bNe¢, and also there exists ¢ C s such that
t € A, and t C bNc. Recall that for any t € Ay, |t| > 1. Therefore, for any ¢ € C,
|s N ¢| > 1. Moreover, since C' is non-empty, there are ¢t C s and ¢ C s with ¢ € A,
and t € A,. Therefore, s € A, N A,. Thus we have shown that for b € F*, there
exists s C b such that s € A. Lastly, note that for any ¢ € C, there is no s € A
such that s C (w\ ¢).

Now, let nor : [w]~* — w be the norm induced by A, defined exactly as in the
proof of Lemma 9. It is easy to check that nor is well-defined and that it is a norm
on w. Just as in the proof of Lemma 9, it is not hard to show by induction on n
that for any b € F* there exists s C b such that nor(s) > n. Define r as follows.
s" = s*. Let n, be the least n € w such that for all m > n, sb, Ns* = 0, and let

ng be analogously defined for ¢. Clearly, d N (Ume[nmw)sfn) N (Ume[nqm)s%) €
F. So find sf C dN (Ume[npyoo)s{)n) N (Ume[nqm)sgn> with nor(sj) > 0. Now,

suppose that s! is given to us with s, C d N (Ume[np,m)s%) N (Ume[nq’m)s%)
and nor(sy,) > 0. Put nj = max{m € w : s, Nsh, # 0} and n; = max{m €

w s, Nsi # 0}. Note that n, < ny and that n, < ny. Again, it is clear that

dn (Ume[n;+l,oo>sfn) N (Ume[nﬁlm)s‘}n) € F. So it is possible to find s;, , ; with

nor(sj, ;) > nor(sy,) such that s}, ; C dN (Ume[n;_s_l’oo)sfn) N (Ume[n;_s_lm)sﬁn).
This completes the construction of the s},. For each n € w, put ¢}, = (s, nor | sh)
and define r = (s”, (¢! : n € w)). Observe that for any s € [w]<*, if nor(s) > 0, then
s € A, and so s € A,NA,, and hence there exist m,n € w such that nor?, (sNs?,) > 0
and nord(s N s) > 0. It follows that » < p and r < ¢. It remains to be seen
that ¢(r) = (Fp, (s7,int(r))) < (F,(s*,d)). First suppose that s € A,. Then by
definition, for some n € w, norj, (s Nsl) > 0. Hence s € A, and so A, C A. So for
any ¢ € C, -3s € A, such that s Cw\ ¢. So ¢ € C;.. Thus C C C,.. It follows that

F C Fr. Since 8" = s* and int(r) C d, it follows that ¢(r) < (F, (s*,d)). o

We make some remarks on how to get an analogous characterization for P;. Let
o/ be as in Section 2. Let V,, be the extension gotten by adding w; Cohen reals.
Then in V,,, it is possible to prove that P; (defined relative to <) densely embeds
into F o, * M(U), where F, = {F : F is a proper F, filter on w and Z(«/)NF = 0},
ordered by D, and where U is the canonical F  name for the ultrafilter added by
it. The proof of this is nearly identical to the proof of Theorem 26, except that
in the construction of r, the Cohen reals must be used like in the proof of Lemma
9. Now, it is easy to see that both in the case of Py and in the case of Py, for
the corresponding M(U) to have the right properties, it is not necessary for U to
be fully generic for F or F,, respectively. It is enough to have ultrafilters that are
sufficiently generic for F and F.,. We elaborate on this idea in the next section to
give a ccc proof of the consistency of b < agjpsed-
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4. A ccc PROOF

In this section, we provide a ccc proof of the consistency of b < dcosea. Unlike
the proof in Section 2, this proof generalizes to the situation where ¢ is larger than
wa.

Let x be a regular uncountable cardinal, assume ¢ = &k, (f, : @ < k) is a
well-ordered unbounded family in w*, and (X, : @ < A) is a sequence of non-
empty closed subsets of [w]“ such that & = |J, ., Xa is a MAD family. Here
w1 < A < k. Let V; be the extension of V by adding x Cohen reals. Assume that
(the reinterpretation of) 7 is still MAD in V.

Theorem 27. There is an ultrafilter U extending F(<7) such that M(U) preserves
the unboundedness of (fo : @ < k) and forces that (the reinterpretation of) <7 is
not MAD anymore.

Proof. The proof of the theorem follows closely the proof of the analogous result
for a instead of aclosed, [Br, Theorem 3.1]. However, some of the combinatorics
developed for agpseq in Section 2 will be needed as well.

Say F is an F, filter if it is the union of < x many closed subsets of [w]. It is
easy to see that the appropriate generalizations of Lemmas 5 and 7 hold.

Lemma 28. In 'V, let F be any F<, filter and suppose that G, the filter generated
by FUF (), is a proper filter. Then G is PT.

Lemma 29. In V,, suppose that F is a F- filter such that G, the filter generated
by FUF (&), is proper. Suppose b € GT. Then for each g, ..., oy, < wy, there is a
¢ € [b]¥ such that c € Gt and V(ag, ..., ax) € Xag X .. X Xoy[[(@oU...Uag) Ne| < w].

We distinguish two cases. They correspond to the cases where we force with the
partial orders Py and Py, respectively, in Section 2, and also to the two cases of the
proof of [Br, Theorem 3.1].

Case 1. In V, there is a F, filter F such that (<) C F. This corresponds to
the situation where we force with Py in Section 2. Since this case is different from
the corresponding case in [Br], we provide details. Recall [Br, p. 192] that a partial
map 7 : [w]<¥ X w — w is a preterm. If G O F is a filter and ¢ is an M(G)-name
for a function in w*, then 7 = 74 given by 7(s,n) = k iff (s, G) forces “g(n) = k”
for some G € G is a preterm, the preterm associated with g. Let {7, : a < K}
enumerate the set of all preterms. Let Fy = F. Recursively build an increasing
chain of F. filters F,, a < k, such that:

e for all @ < A there is b € F,41 such that |bNa| < w for all a € X,;
o if 7, looks like a name for F,, then there is 8 < k such that for all filters
H extending Foy1, M(H) forces that fz £* g where 75 = 74;
e if 7, does not look like a name for F,, then 7, is not a preterm associated
with any M(H)-name g, for any filter H extending Fo41.
Here we say that 7, looks like a name for F, if for all n, all s € [w]<¥, and all
c € F, there are t € [w]<* and u C s Ut such that (u,n) € dom(7,) and t C c.

For limit ordinals « we simply let F, = |J s<a B So assume a4+ 1 is a successor
ordinal. Suppose 7, does not look like a name for F,. Then there are n, s € [w]<¥,
and ¢ € F,I witnessing this. That is, whenever ¢ C c is finite, then for no u C sUt
does (u,n) belong to dom(7,). Let F, be the filter generated by F, and ¢. Then
To 1s not a preterm associated with any M(#H)-name g, for any filter H extending
F!,, because no condition compatible with (s, c) would decide g(n).
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So suppose 7, looks like a name for F,. Assume F, = Uv<u K., where p < K
and all K, are compact. Fix v and fix T = {s; : j < £} C [w]<¥. Now define
f = f'y,T by

f(n) = min{k: given c € K, and b; with ¢ C U, b;
there are j < ¢,t C bj, and u C s; Ut with 74 (u,n) < k}.

Let us first check that f is well-defined. Fix ¢ € K, and b; with ¢ C Uj<e bj. Let j
be minimal such that b; € FI. Since 7, looks like a name for F,, there are finite
t Cb; and u C s; Ut such that (u,n) € dom(7,). Choose such ¢t and u so that the
value k({c,b; : j < £}) := 7o(u,n) is minimal. Since (2¢)¢ and K., are compact,
it is easy to see that the function sending (c,b; : j < €) to k({c,b; : j < £}) is
bounded. Hence f is well-defined.

Now choose 8 such that fg £* f,r for all ¥ < p and finite T C [w]<¥. For
s € [w]<¥ and b € [w]¥ define g = g5 by

g(n) = min{k : 3 finite t C b Ju C sUt (To(u,n) = k)},

in case the set on the right-hand side is non-empty; otherwise put g(n) = w. Let
F!, be the filter generated by F, and all sets of the form {w\ b: 3s (gs» >* f3)}.
It is clear that these sets are a union of countably many compact sets.

We first verify that F., still is a proper filter. Suppose this were not the case.
Then, for ¢ € F and sets b;, j < £, we would have w\b; € F, and eN);_,w\b; =0,
ie., ¢ C Ujd bj. Fix 7 such that ¢ € K, and s; such that g, ,, >* fz. Set
T = {s; : j < {}. Fix m such that g, . (n) > fs(n) for all n > m. By construction
there is n > m such that f, r(n) < fg(n). By definition of f, , there are j < ¢,
t C bj, and u C s; Ut with 7o (u,n) < fyr(n). But then gg, 5, (n) < fyr(n) <
Js(n) < gs;p;(n), a contradiction.

Next we check that F, is as required. Let H be any filter extending F/ , and
let (s,b) € M(#). Suppose g is M(#)-name such that 7, = 7;. Assume there is m
such that (s,b) forces g(n) > fz(n) for all n > m. Then clearly g5 ,(n) > fz(n) for
all n >m. Sow\be F, CH, a contradiction.

Finally, by Lemma 29, we may find b € (F,)" such that |bNa| < w for all
a € X,. Let Foy1 be the filter generated by F., and b. This completes the
recursive construction and Case 1 of the proof.

Case 2. In V,, there is no F,, filter F such that F(&/) C F. This corresponds
to the situation when we force with IP; in Section 1. This is the more difficult case.
However, unlike for Case 1, the proof of [Br| can be taken over almost verbatim
in this case. Simply mix applications of Lemma 29 with the recursive construction
expounded in [Br, pp. 192-195].

This completes the proof of the theorem. -

Using finite support iteration we now obtain

Theorem 30. Let k be a regular uncountable cardinal. It is consistent that b < k

and Aejosed = ¢ = KT

5. TAIL SPLITTING, CLUB SPLITTING AND CLOSED ALMOST DISJOINTNESS

Definition 31. Let  be a regular cardinal, and let A = (a, : a < k) C [w]*. A is
tail-splitting if for every b € [w]“ there is @ < k such that ag splits b for all § > a.
A is club-splitting if for every b € [w]¥, Cp = {a < K : a,, splits b} contains a club.
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Clearly, a tail-splitting sequence is club-splitting, and the existence of a club-
splitting sequence of length « implies that s, < k. Moreover, it is easy to see that
Kk < t, where v is the reaping number. In the next section we shall come back to
the question of which of these implications reverse.

Definition 32. A = (an., : @ < k,n < W) is a tail-splitting sequence of partitions
if the aq.n, n € w, are pairwise disjoint and for all b € [w]¥ there is « such that
ag.n splits b for all B> a and all n € w. Similarly, A is a club-splitting sequence of
partitions if for all b € [w]*, Cy, = {a < K : all aq,y, split b} contains a club.

Clearly a tail-splitting sequence of partitions yields a tail-splitting sequence, but
we don’t know whether the converse is true (see Question 48). Similarly for club-
splitting.

We begin with two observations:

Observation 33. In the Hechler model (the model obtained by adding at least wo
Hechler reals over a model of CH ), there is a tail-splitting sequence of partitions of
length w .

To see this, notice that the classical proof, of the consistency of s < b, due
to Baumgartner and Dordal [BD], shows that tail-splitting sequences of partitions
from the ground model are preserved in the iterated Hechler extension.

Observation 34. 0 = Yy implies the existence of a tail-splitting sequence of parti-
tions of length w1 .

Definition 35. Say there is a splitting sequence of partitions over models if there
are M = (M, : o < wy) and A = (a4, : @ < wy,n < w) such that:
e M is a strictly increasing continuous sequence of countable models of a
large enough fragment of ZFC;
o for cach a, (aq,n : n € w) is pairwise disjoint, belongs to My41, and all
@q,n split all members of M,;
e whenever b € [w]¥, there are @ and a model N of a large enough fragment
of ZFC containing b such that M, € N, NN M = M,, and all a,,y, split
all members of .

Here, M = M,.

Lemma 36. The existence of a club-splitting sequence of partitions of length wy
implies the existence of a splitting sequence of partitions over models.

a<wy

Proof. Assume B = (byp, @ <wi,n <w)isa club-splitting sequence of partitions.
Let x be a large enough regular cardinal. Let M = (M, : @ < w;) be such that for
each a < wq:

(1) B € My, M, < H(x), |My| =w, and M, € M. 1;

(2) if o is a limit, then Mo = U, Me.
For each o < w1, let 64 = My Nwi. Define (ann : n € w) = (b5, n : 1 € w). For
any @ < wy and z € [w]” N M,, there is a club C € M, such that for all § € C and
n € w, bsy splits 2. As b4 € C, aq,p splits x for all n € w. Next, if b € [w]”, then let
N < H(x) be countable with M € N and b € N. Let v = N Nw;. It is clear that

NN (U§<W1M€) = M., and moreover, v = §,. Again, for any = € [w]” N N there
is a club C' € N such that for all § € C and n € w, b5, splits z. Asy =4, € C, we
are done. —



BOUNDING, SPLITTING, AND ALMOST DISJOINTNESS 19

Theorem 37. The existence of a splitting sequence of partitions over models im-
plies Oclosed = Nl'

Proof. This follows from a straightforward analysis of the proof of [BK, Lemma
3.4]. Since the proof of the latter lemma is rather long and technical, we will not
repeat it here and simply stress the main points. We assume the reader to have a
copy of [BK] at hand.

Assume we are at stage o, and closed sets Ag € M, have been constructed so
that UB <o Ap is an almost disjoint family. (We do not assume that the whole
sequence of the Ag belongs to M,; this does not matter.) The Ag are obtained as
sets of branches through a tree whose levels form a partition of a subset of w. Now,
from the a, 5, one obtains a sequence C® of pairwise disjoint subsets of w, where
o € w<¥ and © comes from a certain set of finite sequences of finite sequences,
which is used to construct the next set A,. To obtain the C? from the a,,y, one
has to remove finitely many elements (the “excluded points”) as well as a set from
M, (the set X, ), see the end of part 1 in the proof of [BK, Lemma 3.4] for details.
Obviously, the resulting C© will still split all Y € M, such that Y \ X, is infinite,
and this is all that’s needed for the rest of the proof to go through. This completes
the construction of the A,. We need to check they are as required.

Part 2 of the proof of [BK, Lemma 3.4] does not apply, and steps 1 and 2 of
part 3 carry over without any change. The heart of the proof is step 3 of part 3
(the last part of the proof), namely, the argument showing that f<w, Ap is indeed
maximal. Take any Y € w*. Find o and NN such that they satisfy the last clause of
Definition 35 for b =Y. Now, as in the proof of [BK, Lemma 3.4], build functions
g; € w NN and a decreasing sequence of subsets Y; € N of Y. This is possible
because M, C N. (Again, we do not require that the sequences of the g; or Y;
belong to N, but this is not needed.) Assume that Y is almost disjoint from all
elements of Ag, for 8 < a. Using the g; and Y; a function h is constructed such
that the branch in A, associated with h is a subset of Y, i.e. there is a € A, with
a C Y. For the construction of h, the splitting properties of the C© together with
the fact that any initial segment of h is constructed in N are used. B

Using the theorem, we obtain two results from the literature as corollaries.

Corollary 38 (Brendle and Khomskii, [BK]). In the Hechler model, aclosed = N1-
In particular, b > Gclosed 98 consistent.

Corollary 39 (Raghavan and Shelah, [RS]). 0 = Ny implies aciosed = N1-

6. TAIL SPLITTING: A CONSISTENCY RESULT

In this section, we show that the existence of a tail-splitting sequence is not the
same as the existence of a club-splitting sequence in the sense of Definition 31.

Theorem 40. It is consistent that there is a club-splitting family of size Xy and
there is no tail-splitting family of size V1. In particular, s = Ny.

Assume 14_1_: @a : a < wy) is club-splitting. Let P be a forcing notion. Say that
P preserves A if A is still club-splitting in the P-generic extension. It is easy to see
that if (P, : @ < §) is an fsi of ccc forcing and all P, (o < §) preserve A, then so
does Ps.
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Also let H be a filter on w. We say that (x) 5 4, holds if for every partial function
[:w— w with dom(f) € HT and f~*({n}) € H*, the set Dy = {a < wy : [~ (aa)
and f~!(w\ as) both belong to H*} contains a club.

Lemma 41. Assume () 54, holds. Then L(}) preserves A.

Proof. Let a be an L(#H)-name for an infinite subset of w. We need to find a club
set C' C w1 in the ground model such that the trivial condition forces that a,, splits
a for all « € C. We can assume that @ is thin in the sense that the increasing
enumeration g of @ is forced to dominate the generic Laver real .

We briefly recall the standard rank analysis of Laver forcing IL(H). Let ¢ be a
formula. For any s € w<¥, say that s forces ¢ if there is a condition with stem s
which forces . Say that s favors ¢ if s does not force —p. Define the rank function
rk, by induction:

o rk,(s) =0 iff s forces ;
e 1k, (s) < o iff there is ¢ € HT such that rk,(s"n) < « for all n € ¢;
o rtk,(s) = aiff rky(s) < a but rky(s) £ B for f < a.

A standard argument shows that s favors ¢ iff rk,(s) < wi. (Suppose rk,(s) is
undefined. Then one constructs a tree T € L(H) with stem s such that for all
nodes t € T extending s, rk,(t) is undefined. In particular, no extension of s in T’
has rank 0, and therefore T" must force —p. Thus s does not favor ¢. Suppose, on
the other hand, that s forces —¢. We prove by induction on « that rky(s) > a.
This is obvious for & = 0. So assume a > 0. Let T' € L(H) be a tree with stem
s witnessing that s forces —p. Let ¢ € H be the successor level of s in 7. By
induction hypothesis rk,(s'n) > a for all n € ¢. By definition of the rank, we see
that 1k, (s) > a.)

Say that s € w<¥ is good for m if s does not favor g(n) = k for any k, but
{m : s"m favors g(n) = k for some k} is H-positive.

Claim 41.1. If |s| < n and stem(T) = s, then there is ¢ € T extending s which is
good for n.

Proof. Define a new rank function p by stipulating:

e p(t) = 0if ¢ favors g(n) = k for some k;

e p(t) < « iff there is ¢ € HT such that p(t'n) < a for all n € c.
Notice that p(s) < wy. (Otherwise there would be a tree 7" € L(H) with stem
s such that all nodes of T” extending s have undefined rank. Now find t € T’
extending s and forcing g(n) = k for some k. Clearly p(t) = 0, a contradiction.)
On the other hand, |s| <n and § > ¢ imply that p(s) > 1 because for each k there
is a tree T with stem s forcing #(n) > k and, hence, §(n) > k. Thus we can find
t € T extending s such that p(t) = 1. By definition, this means that ¢ does not
favor g(n) = k for any k, and that {m : t"m favors g(n) = k for some k} belongs to
HT. 4

For each node s which is good for n, define a partial function f, by letting
dom(fsn) = {m : s"m favors g(n) = k for some k} and setting fs,(m) = k for
some k such that s"m favors g(n) = k, for m € dom(fs ). Note that such k
is not necessarily unique, but this does not matter. By definition of goodness,
it is immediate that fs , satisfies the stipulations in the definition of (x)z 4, i.e.
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dom(fsn) € H' and f)({k}) € H* for all k. Now let C' be the intersection of all
Dy, , where s is good for n. We show that C' is as required.

Claim 41.2. The trivial condition forces that a,, splits a for all « € C.

Proof. Let T be any condition and ng a natural number. We need to find n,n’ > ng
and 7" < T such that T” forces g(n) € a, and g(n') ¢ a,. Since the proofs are
identical, we only produce n. Let s be the stem of T. Choose n > nyg, |s|. By the
previous claim, there is ¢ € T extending s which is good for n. Hence f; ,, is defined.
Since o € Dy, ., ft;}(aa) belongs to H*. Hence we can find m € dom(f;,,) in the
successor level of ¢ in T such that k := f; ,(m) € a,. Since t'm favors g(n) = k,
there is a subtree T” of T with stem extending ¢*m which forces g(n) = k. Therefore
T’ forces g(n) € aq, as required. -

This completes the proof of the lemma. —

Lemma 42. Assume CH. Assume B = (b, : o < w1) is tail-splitting. Then there
is {ca @ <wi} such that co C be, for some (o > o and the c, generate a P-filter
H such that (%) 5,4 holds.

Proof. Let {fo : @ < wy} list all partial finite-to-one functions w — w. Recursively
we find C*-decreasing c,, € [w]¥, 4 > @, continuous increasing v, and decreasing
club sets C,, such that:

® Cq g* bCa7

® Ya € Cq,
and for all 8 < « such that dom(fg) N cg is infinite the following hold:

o a., splits fz(ca) (i €. fﬁ_l(a%) Nece and fﬂ_l(w\aw) N ¢, are both infinite)

for 5 <4 < ay

o for all v € C,, a, splits the sets fz(cq).

Basic step: ¢g = by, (o =0, 70 = 0.

Successor step: a — a + 1. Since B is tail-splitting, we can find (qqq > a4 1
such that b¢,_,, splits all sets fﬁ_l(a%) Ncq and fﬂ_l(w \ @y) Neg for B <6 < a,
as well as dom(f,) N ¢y if the latter set is infinite. In particular, the intersection
of be. ., with these sets is infinite. Let cqoq1 = ca Nbg, . Then a,, splits fz(cat1)
for B < 6 < o+ 1. Since A is club-splitting, there is a club set Coy1 C C,, such
that for all v € Cqy1, a, splits all sets fz(cat1) for § < a, as well as fo(cat1) in
case dom(f,) N ¢y is infinite. Now let v,4+1 be the least element of C,41 greater
than v,.

Limit step: « limit. Let C' = N{Cs : 8 < a}. Let v, = U{ys : 8 < a}.
Clearly 7o € C'. So a,, splits all fg(c;) where 8 < 6 < a. Construct ¢’ as a
pseudo-intersection of ¢5, § < a, such that all a., still split all fz(c) for 8 < < a.

Since B is tail-splitting, we can find {, > « such that b¢, splits all sets f[;l(a%)ﬂ
¢ and fgl(w \ay,)Nc for B<§<a. Let cy = Nbe,. Since A is club-splitting,
we can find C, C C’ club with v, € C, and such that for all v € Cy, a,, splits the
sets fg(ca)-

This completes the recursive construction. We need to show that the ¢, are as
required. Clearly, they generate a P-filter H. Let f : w — w be a partial function
with dom(f) € H* and f~1({n}) € H* for all n. Since H is a P-filter, the sets
/7' (w\ n) have a pseudo-intersection A € H. Notice that the restriction of f to A
is finite-to-one. So we may assume without loss of generality that f is finite-to-one.
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Hence there is 3 such that f = fz. Since dom(fs) € HT, dom(fg) Ncp is clearly
infinite. By construction, for all @ > 8 and all § > S, a, splits f3(co). Hence both
fgl(a%) and fﬁfl(w\a%) are H-positive. Thus the club set Dy = Dy, = {75 : d >
B} is as required. -

We finally discuss an application of tail-splitting.

1,1
Definition 43. The strong polarized partition relation ( 2 ) — 2 > means
2
that for every function ¢ : A\ x kK — 2 there are A C X and B C k of size A and &,

respectively, such that ¢[(A x B) is constant.

The following was essentially observed by Garti and Shelah [GS2, Claim 1.3],
though they stated this in somewhat different language.

Observation 44. The following are equivalent:

0 (2)-(1)

(2) c¢f(N) # w and there does not exist a tail-splitting sequence of length \.
In particular, Garti and Shelah [GS1, Claim 1.4] observed that s > Ry implies

1,1
that ( Zl ) — ( Zl ) holds. As a consequence of Theorem 40, we obtain:
2

1,1

)

Corollary 45. It is consistent that s = Ny and ( Zl ) — < zl ) holds.
2

This answers [GS3, Question 1.7(a)].

7. OPEN PROBLEMS
We conclude with a number of open problems. Perhaps the most interesting is:
Question 46. Does s = Ny (or at least s, = N1 ) imply Aclosed = N1 7

While the existence of a tail-splitting sequence of length w; is strictly stronger
than the existence of a club-splitting sequence of length w; (Theorem 40), we in
fact do not know whether the latter is stronger than s, = N; or s = Ny.

Question 47. Is it consistent that s = Ny (or even s, = Ry) and there is no
club-splitting sequence of length wy ?

For the proof of aclpseq = N1 we needed a club-splitting sequence of partitions
(Lemma 36 and Theorem 37). It is unclear whether a club-splitting sequence is
enough. In fact, we do not know whether the two notions are equivalent.

Question 48. Does the existence of a tail-splitting sequence of length k imply the
existence of a tail-splitting sequence of partitions of length k2 Similarly for club-
splitting instead of tail-splitting.

Let aporel denote the size of the smallest family o/ a.d. Borel sets such that
U« is mad. Clearly, 81 < aporel < Gelosed- We do not know, however, whether the
cardinals are equal.

Question 49 (Brendle and Khomskii [BK, Question 4.7]). Is agorel = Aclosed ¢
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If this is not the case one could ask

Question 50 (Brendle and Khomskii [BK, Question 4.4]). Is b < apere consistent?

Finally we address

Question 51 (see also [BK, Conjecture 4.5]). Is h < acjosed ¢ Or even h < aporel 7
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