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Abstract. We introduce and study a notion of Borel order dimension for

Borel quasi orders. It will be shown that this notion is closely related to the
notion of Borel dichromatic number for simple directed graphs. We prove

a dichotomy, which generalizes the G0-dichotomy, for the Borel dichromatic

number of Borel simple directed graphs. By applying this dichotomy to Borel
quasi orders, another dichotomy that characterizes the Borel quasi orders of

uncountable Borel dimension is proved. We obtain further structural infor-

mation about the Borel quasi orders of countable Borel dimension by showing
that they are all Borel linearizable. We then investigate the locally countable

Borel quasi orders in more detail, paying special attention to the Turing de-

grees, and produce models of set theory where the continuum is arbitrarily
large and all locally countable Borel quasi orders are of Borel dimension less

than the continuum. Combining our results here with earlier work shows that

the Borel order dimension of the Turing degrees is usually strictly larger than
its classical order dimension.

1. Introduction

Order dimension is a measure of the complexity of a partial order. It was first
considered by Dushnik and Miller in [6] and it is now well-studied in combinatorics
(e.g. [22], [43], [2], [16]) and in computer science (e.g. [44], [9]). In this paper, we
will consider a Borel analog of this notion for Borel quasi orders and their quotients.
Our work falls into the general framework of Borel combinatorics, where one stud-
ies Borel analogs of classical combinatorial notions (see e.g. [11], [12], [20]). Like
other works in this genre, one of our main aims is to prove a dichotomy theorem
characterizing those Borel quasi orders whose Borel dimension is uncountable. In
such dichotomy theorems, one identifies a collection of canonical basic objects to-
gether with appropriate morphisms, and shows that any object with a sufficiently
complicated structure admits a morphism from one of the basic objects. A major
example is the theorem of Harrington, Kechris, and Louveau [12] characterizing the
non-smooth Borel equivalence relations in terms of the existence of a continuous
reduction from the basic object E0. Another major example is the G0-dichotomy
of Kechris, Solecki, and Todorcevic [20] characterizing the analytic graphs of un-
countable Borel chromatic number in terms of the existence of a continuous graph
homomorphism from the basic object G0.

Our first task here will be to provide a robust definition of the Borel order di-
mension of a Borel quasi order. This concept requires careful definition because,
unlike the classical case, most interesting Borel quasi orders do not admit any
Borel linear extensions. We will first show that an appropriate definition of this
notion connects it to the Borel analog of the concept of dichromatic number of a
digraph. This concept was first defined by Neumann-Lara [33] in the late 1970s
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and has since become important in finite combinatorics, where it is often seen as
the appropriate generalization of the concept of chromatic number to digraphs.
With the relationship between Borel order dimension and Borel dichromatic num-
ber established in Section 2, we are naturally led to seek a dichotomy theorem that
characterizes Borel and analytic digraphs of uncountable Borel dichromatic num-
ber. Two such dichotomies are established in Section 3. We consider two types
of morphisms: continuous digraph homomorphisms as well as those that preserve
certain non-edges, namely continuous digraph homomorphisms that map every in-
duced copy of the directed cycle of length n to another such induced copy. The
latter are known as minimal homomorphisms. The basic objects of our dichotomies
are digraphs generalizing the graph G0 of [20]. But instead of one basic object, we
require a family that is uniformly parametrized by a real, so there are continuum
many basic objects. Our dichotomies characterize the Borel digraphs of uncount-
able Borel dichromatic number in terms of the existence of a continuous minimal
homomorphism from one of the basic objects. In the case of analytic digraphs of
uncountable Borel dichromatic number, we can characterize them by a continuous
homomorphism from one of the basic objects, though we are unable to guarantee
minimality. Further, it is proved in Section 3 that the G0-dichotomy of [20] is a
special case of these dichotomies.

Having obtained a dichotomy for the Borel dichromatic number, we associate
a Borel quasi order with each of its basic objects to obtain another parametrized
family of continuum many basic Borel quasi orders for the third dichotomy of
Section 3. Each basic object of the third dichotomy is a locally countable Borel
quasi order of height 2. We are able to characterize the Borel quasi orders of
uncountable Borel order dimension in terms of the existence of a continuous map
from one of these basic objects that is order preserving and also preserves the
incomparability of certain elements. Additionally, it is shown in Section 3 that
every Borel quasi order whose Borel order dimension is countable admits a Borel
linear extension.

The classical order dimension of locally countable orders, especially the Turing
degrees, was investigated in [15] and [23]. Obtaining Borel analogs of some of
the results from those works was one of the original motivations for this paper.
Using the results in Section 3 and some ideas from the papers [15, 23, 24], we
obtain several results about the Borel order dimension of locally finite and locally
countable Borel quasi orders in Section 4. It was proved in [15] that the classical
order dimension of the Turing degrees is usually strictly smaller than the continuum.
Combining this result with the dichotomy theorems of Section 3 shows that the
classical order dimension of the Turing degrees is usually strictly smaller than its
Borel order dimension. In [23], the classical order dimension of the Turing degrees
was characterized in terms of families of partial orders on the reals that separate
countable sets of reals from points. By using a Borel analog of this notion, we obtain
upper bounds on the Borel order dimension of locally finite and locally countable
Borel quasi orders, in particular, it is shown that all locally finite Borel quasi orders
are of countable Borel order dimension. Finally, by combining a forcing notion from
[24] with Harrington’s generic Gδ forcing, we show that the Borel order dimension of
all locally countable Borel quasi orders can consistently be strictly smaller than the
continuum. It is worth noting that non-trivial interactions between the definable
and non-definable aspects of a concept are also common in the study of Tukey
reducibility, which is another notion of complexity for ordered sets. Important
examples where the definable aspect of the theory informs the non-definable case
and vice versa can be found in [38], [35], [37], [4] among many others. A similar
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confluence of ideas can also be seen in the definable and non-definable cases of the
study of chain conditions in forcing notions, e.g. [42] and [17].

2. Preliminaries

Different authors use the terms “partial order” and “quasi order” differently. We
fix our terminology once and for all with the following definition.

Definition 2.1. We define the following:

(1) ≤ is a quasi order on P if ≤ is a reflexive and transitive relation on P .
P = ⟨P,≤⟩ is said to be a quasi order if ≤ is a quasi order on P .

(2) < is a partial order on P if < is an irreflexive and transitive relation on P .
P = ⟨P,<⟩ is a partial order if < is a partial order on P .

(3) A quasi order ≤ on P is linear or total if for any x, y ∈ P , (x ≤ y ∨ y ≤ x).
P = ⟨P,≤⟩ is a total quasi order or a linear quasi order if ≤ is a total quasi
order on P .

(4) A partial order < on P is linear or total if for any x, y ∈ P , (x < y ∨ y <
x ∨ x = y). P = ⟨P,<⟩ is called a linear order or a total order if < is a
linear order on P .

(5) For a quasi order ≤ on P , E≤ is the equivalence relation on P defined by

p E≤ q ⇐⇒ (p ≤ q ∧ q ≤ p).

(6) For a quasi order ≤, x < y means (x ≤ y ∧ y ≰ x). It is easily checked that
< is a partial order. For a partial order <, x ≦ y means (x < y ∨ x = y).
Then ≦ is a quasi order with E≦ being equality.

(7) For a quasi order ≤ on P , the relation < induces a partial order on P/E≤,
which will also be denoted <. Thus for any x, y ∈ P ,

[x]E≤
< [y]E≤

⇐⇒ x < y.

When there is no risk of ambiguity, we will omit the subscript from [x]E≤
.

The main focus of this paper is on quasi orders and partial orders that are nicely
definable on some Polish space. The final section of the paper will study locally
finite and locally countable examples of such orders, like the Turing degrees.

Definition 2.2. A quasi order P = ⟨P,≤⟩ is called a Borel (analytic) quasi order
if P is a Polish space and ≤ is a Borel (analytic) subset of P × P .

Definition 2.3. A quasi order P = ⟨P,≤⟩ is said to be locally countable (locally
finite) if for every x ∈ P , {y ∈ P : y ≤ x} is countable (finite).

The following notion was first considered by Dushnik and Miller in 1941. Roughly
speaking, it asks how many linear orders are necessary to resolve each incompara-
bility in a partial order in both directions.

Definition 2.4 (Dushnik–Miller [6], 1941). Let P = ⟨P,<⟩ be a partial order.
The order dimension (or simply dimension) of P, denoted odim(P), is the smallest
cardinality of a collection of linear orders on P whose intersection is <.

The use of the word “dimension” is justified by the following theorem proved by
Dushnik and Miller in the same paper where they introduced their concept.

Theorem 2.5 (Dushnik–Miller [6], 1941). For any partial order P, odim(P) is the
minimal cardinal κ such that P embeds into a product of κ many linear orders with
the coordinatewise ordering on the product.

Definition 2.6. Suppose <0 and < are both partial orders on P . We say < extends
<0 if <0 ⊆ <. In other words, < extends <0 if and only if for any x, y ∈ P ,
x <0 y =⇒ x < y.
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The following equivalent characterization of the order dimension of a partial
order can be easily proved by appealing to the fact that Zorn’s lemma allows every
partial order to be extended to a linear order.

Lemma 2.7. For any partial order P, odim(P) is the minimal cardinal κ such that
there exists a sequence ⟨<i : i ∈ κ⟩ of partial orders on P extending < such that

∀x, y ∈ P∃i ∈ κ [y <i x ∨ x < y ∨ x = y] .(1)

As mentioned in the introduction, there has been much interest in the order
dimension of finite partial orders coming from finite combinatorics and computer
science. There has also been growing interest in the order dimension of infinite

partial orders. The order dimension of
〈
[κ]

<ℵ0 ,⊊
〉

was studied in [21]. More

recently, the order dimension of locally countable orders, especially of the Turing
degrees, was investigated in [15, 23]. Although Dushnik and Miller defined their
notion only for partial orders, it is natural to extend their definition to quasi orders
as follows.

Definition 2.8. Let P = ⟨P,≤⟩ be a quasi order. We define the order dimension
(or simply dimension) of P, denoted odim(P), to be odim (⟨P/E≤, <⟩).

Definition 2.9. Suppose ≤0 and ≤ are both quasi orders on P . ≤ is said to extend
≤0 if

(1) x ≤0 y =⇒ x ≤ y and
(2) x E≤0

y ⇐⇒ x E≤ y,

for all x, y ∈ P .
It is easily verified that ≤ extends ≤0 iff

(a) P/E≤0
= P/E≤ and

(b) [x] <0 [y] =⇒ [x] < [y], for all x, y ∈ P .

If ≤ is a linear quasi order which extends ≤0, then we say ≤ linearizes ≤0.

When P = ⟨P,≤0⟩ is a Borel quasi order, the quotient P/E≤0
is almost never

a nicely definable object. Furthermore, by the work of Harrington, Marker, and
Shelah [11] and of Kanovei [18], there is no Borel ≤ that linearizes ≤0 in most
cases. Hence it will be useful to have a characterization of odim(P) only in terms
of quasi orders on P that extend ≤0 in the sense of Definition 2.9. The next lemma
provides such a characterization. Although its proof is simple, we include it for
completeness.

Lemma 2.10. Let P = ⟨P,≤⟩ be a quasi order. Then odim(P) is the minimal car-
dinal κ such that there exists a sequence ⟨≤i : i ∈ κ⟩ of quasi orders on P extending
≤ such that

∀x, y ∈ P∃i ∈ κ [y ≤i x ∨ x ≤ y] .(2)

Proof. Let λ = odim(P). By Lemma 2.7, fix a sequence ⟨<i : i ∈ λ⟩ of partial orders
on P/E≤ extending < and satisfying (1) of Lemma 2.7 for P/E≤ and <. Define ≤i

on P by

x ≤i y ⇐⇒
(
x ≤ y ∨ [x]E≤

<i [y]E≤

)
,

for all x, y ∈ P . Then ≤i is a quasi order on P which extends ≤ and the partial
order induced by ≤i on P/E≤ = P/E≤i

is <i. Now given any x, y ∈ P , there

exists i ∈ λ such that
(
[y]E≤

<i [x]E≤
∨ [x]E≤

< [y]E≤
∨ [x]E≤

= [y]E≤

)
. By the

definitions, this is easily seen to imply (y ≤i x ∨ x ≤ y). Thus ⟨≤i : i ∈ λ⟩ satisfies
(2) of this lemma.
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On the other hand suppose that ⟨≤i : i ∈ κ⟩ is a sequence of quasi orders on P
extending ≤ and satisfying (2) of this lemma. Let <i be the partial order induced
by ≤i on P/E≤ = P/E≤i

. Then <i extends <. Further, suppose

[x]E≤
, [y]E≤

∈ P/E≤.

Let i ∈ κ be so that (y ≤i x ∨ x ≤ y). If (x ≤ y ∧ y ≤ x), then [x]E≤
= [y]E≤

. If

(x ≤ y∧y ≰ x), then [x]E≤
< [y]E≤

. If (x ≰ y∧y ≤i x), then [y]E≤
<i [x]E≤

. Thus

(1) of Lemma 2.7 is satisfied by ⟨<i : i ∈ κ⟩ for P/E≤ and <. ⊣

We next provide a characterization of the order dimension of a quasi order in
terms of the dichromatic number of a certain associated digraph. This apparent
detour will ultimately payoff by guiding us to the correct definition of Borel order
dimension and allowing us to prove a dichotomy theorem that characterizes the
Borel quasi orders of uncountable Borel order dimension.

Definition 2.11. G = ⟨X,R⟩ is called a simple directed graph or a digraph for
short if R ⊆ X ×X and ⟨x, x⟩ /∈ R, for every x ∈ X.

Some authors use the term digraph to allow self edges, but we do not allow this
here.

Definition 2.12. A digraph ⟨X,R⟩ is called a graph if

∀x, y ∈ X [⟨x, y⟩ ∈ R↔ ⟨y, x⟩ ∈ R] .

Definition 2.13. A digraph G = ⟨X,R⟩ is said to be Borel (analytic) if X is a
Polish space and R ⊆ X ×X is Borel (analytic).

Definition 2.14. For a digraph G = ⟨X,R⟩ and a subset Y ⊆ X, an R-path in Y
is a finite non-empty sequence ⟨y0, . . . , yk⟩ of elements of Y such that yiRyi+1, for
all i < k. An R-path ⟨y0, . . . , yk⟩ in Y is an R-cycle in Y if ykRy0. The length of
an R-path is one less than the length of the sequence. In other words, the length of
an R-path ⟨y0, . . . , yk⟩ is k. Observe that for any y ∈ Y , ⟨y⟩ is an R-path of length
0 in Y , but it is not an R-cycle because ⟨y, y⟩ /∈ R. We will write path and cycle
instead of R-path and R-cycle when R is clear from the context.

The next definition associates a digraph with every quasi order. It will be shown
that in all non-trivial cases, the order dimension of a quasi order coincides with the
dichromatic number of its associated digraph. This characterization will point us
to the correct definition of Borel order dimension.

Definition 2.15. Let P = ⟨P,≤⟩ be a quasi order. Define

AP = {⟨x, y⟩ ∈ P × P : y ≰ x}.
For ⟨x0, y0⟩ , ⟨x1, y1⟩ ∈ AP , define

⟨x0, y0⟩ RP ⟨x1, y1⟩ ⇐⇒ y0 ≤ x1.

Note that ⟨AP ,RP⟩ is a digraph. Further, if P is a Borel quasi order, then ⟨AP ,RP⟩
is a Borel digraph.

Lemma 2.16. Suppose that P = ⟨P,≤⟩ is a quasi order and X ⊆ AP . Let Y
be the transitive closure of X in P × P . For any ⟨p, q⟩ ∈ Y , there is a path
⟨⟨x0, y0⟩ , . . . , ⟨xk, yk⟩⟩ in X with p = x0 and q = yk.

Proof. Let ⟨p, q⟩ ∈ Y . Then there are l ≥ 1 and a sequence ⟨r0, . . . , rl⟩ of elements of
P such that p = r0, q = rl, and ⟨ri, ri+1⟩ ∈ X, for all i < l. The proof is by induction
on this l. If l = 1, then ⟨⟨p, q⟩⟩ is the required path in X. Assume the statement for
some l ≥ 1 and let ⟨r0, . . . , rl, rl+1⟩ be a sequence of elements of P such that p = r0,
q = rl+1, and ⟨ri, ri+1⟩ ∈ X, for all i < l+1. By the induction hypothesis, there is a
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path ⟨⟨x0, y0⟩ , . . . , ⟨xk, yk⟩⟩ in X with x0 = r0 = p and yk = rl. Since ⟨rl, rl+1⟩ ∈ X
and yk ≤ rl, ⟨xk, yk⟩RP ⟨rl, rl+1⟩ holds. Thus ⟨⟨x0, y0⟩ , . . . , ⟨xk, yk⟩ , ⟨rl, rl+1⟩⟩ is
the required path in X, completing the induction. ⊣

Lemma 2.17. Suppose that P = ⟨P,≤⟩ is a quasi order and X ⊆ AP . Let Z be
the transitive closure of ≤ ∪ X in P × P . For any ⟨p, q⟩ ∈ Z \ ≤, there is a path
⟨⟨x0, y0⟩ , . . . , ⟨xk, yk⟩⟩ in X with p ≤ x0 and yk ≤ q.

Proof. Let Y be the transitive closure of X in P × P . Then Z is the transitive
closure of ≤ ∪ Y in P × P . Let ⟨p, q⟩ ∈ Z \ ≤. Then there are l ≥ 1 and
a sequence ⟨r0, . . . , rl⟩ of elements of P such that p = r0, q = rl, and either
⟨ri, ri+1⟩ ∈ ≤ or ⟨ri, ri+1⟩ ∈ Y , for all i < l. The proof is by induction on this l.
First suppose l = 1. Then since ⟨p, q⟩ /∈ ≤, ⟨p, q⟩ ∈ Y . So by Lemma 2.16, there
is a path ⟨⟨x0, y0⟩ , . . . , ⟨xk, yk⟩⟩ in X with p ≤ p = x0 and yk = q ≤ q. This is as
required. Now assume the statement for some l ≥ 1 and let ⟨r0, . . . , rl, rl+1⟩ be a
sequence of elements of P such that p = r0, q = rl+1, and either ⟨ri, ri+1⟩ ∈ ≤ or
⟨ri, ri+1⟩ ∈ Y , for all i < l + 1. Then ⟨r0, rl⟩ ∈ Z. First suppose that ⟨r0, rl⟩ ∈ ≤.
If ⟨rl, rl+1⟩ ∈ ≤, then p = r0 ≤ rl ≤ rl+1 = q, contradicting ⟨p, q⟩ /∈ ≤. So
⟨rl, rl+1⟩ ∈ Y . By Lemma 2.16, there is a path ⟨⟨x0, y0⟩ , . . . , ⟨xk, yk⟩⟩ in X with
p = r0 ≤ rl = x0 and yk = rl+1 = q ≤ q. This is as needed. Now suppose
that ⟨r0, rl⟩ /∈ ≤. Then the induction hypothesis applies and implies there is a
path ⟨⟨x0, y0⟩ , . . . , ⟨xk, yk⟩⟩ in X with p = r0 ≤ x0 and yk ≤ rl. If ⟨rl, rl+1⟩ ∈ ≤,
then yk ≤ rl ≤ rl+1 = q, and this is as required. So suppose that ⟨rl, rl+1⟩ ∈ Y .
Then by Lemma 2.16, there is a path ⟨⟨w0, z0⟩ , . . . , ⟨wm, zm⟩⟩ in X with rl =
w0 and rl+1 = zm. Since yk ≤ rl = w0, ⟨xk, yk⟩RP ⟨w0, z0⟩ holds. Therefore,
⟨⟨x0, y0⟩ , . . . , ⟨xk, yk⟩⟩⌢⟨⟨w0, z0⟩ , . . . , ⟨wm, zm⟩⟩ is a path in X. Since p ≤ x0 and
zm = rl+1 = q ≤ q, this is as required, completing the induction. ⊣

Lemma 2.18. Suppose that P = ⟨P,≤⟩ is a quasi order and X ⊆ AP . Let ⪯ be
the transitive closure of ≤ ∪ X in P × P . If E≤ ̸= E⪯, then X contains a cycle.

Proof. Note that ⪯ is a quasi order on P with ≤ ⊆ ⪯. Hence E⪯ is an equivalence
relation with E≤ ⊆ E⪯. Suppose p, q ∈ P and that p ⪯ q ⪯ p. Assume first that
p ≰ q and q ≰ p. Then by Lemma 2.17 there exist paths ⟨⟨x0, y0⟩ , . . . , ⟨xk, yk⟩⟩
and ⟨⟨w0, z0⟩ , . . . , ⟨wl, zl⟩⟩ in X with p ≤ x0, yk ≤ q, q ≤ w0 and zl ≤ p. Thus
yk ≤ w0 and zl ≤ x0, and so, ⟨xk, yk⟩RP ⟨w0, z0⟩ and ⟨wl, zl⟩RP ⟨x0, y0⟩ hold. It
follows that ⟨⟨x0, y0⟩ , . . . , ⟨xk, yk⟩⟩⌢⟨⟨w0, z0⟩ , . . . , ⟨wl, zl⟩⟩ is a cycle in X. Next,
suppose that p ≰ q, but q ≤ p. Then there exists a path ⟨⟨x0, y0⟩ , . . . , ⟨xk, yk⟩⟩ in
X with p ≤ x0 and yk ≤ q. Thus yk ≤ q ≤ p ≤ x0, and so ⟨xk, yk⟩RP ⟨x0, y0⟩
holds. It follows that ⟨⟨x0, y0⟩ , . . . , ⟨xk, yk⟩⟩ is a cycle in X. Finally, suppose that
p ≤ q, but q ≰ p. Then there exists a path ⟨⟨w0, z0⟩ , . . . , ⟨wl, zl⟩⟩ in X with q ≤ w0

and zl ≤ p. Thus zl ≤ p ≤ q ≤ w0, and so ⟨wl, zl⟩RP ⟨w0, z0⟩ holds. It follows
that ⟨⟨w0, z0⟩ , . . . , ⟨wl, zl⟩⟩ is a cycle in X. Therefore if X contains no cycles, then
necessarily, p ≤ q ≤ p. This shows E⪯ ⊆ E≤. ⊣

The dichromatic number of a digraph was defined by Neumann-Lara [33] (see
also [7, pp. 17–20]). It has become a well-studied notion in finite combinatorics
(e.g. [34], [13], [32]) with important connections to various other notions in graph
theory. For instance, the well-known conjecture of Erdős and Hajnal about cliques
or anti-cliques in graphs with forbidden subgraphs is known, by [1], to be equivalent
to a statement about the dichromatic number of certain tournaments. Soukup [40]
has studied the dichromatic number of uncountable digraphs. In a recent work,
Higgins [14] has proved a Brooks type theorem for the measurable dichromatic
number of Borel digraphs.
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The next definition collects the various notions of chromatic number and dichro-
matic number that will be considered in this paper together. We define both a
weak notion and a strong notion of Borel dichromatic number. The weak notion
only requires a cover of the digraph by Borel cycle-free subsets, while the strong
notion asks for a Borel mapping into a Polish space such that the preimage of each
point is cycle-free. The difference between the two notions boils down to this: the
weak notion sees cardinals between ℵ0 and 2ℵ0 whereas the strong notion does not.
More precisely, the weak notion can consistently take values between ℵ0 and 2ℵ0

(see Section 4), while the strong notion is equal to 2ℵ0 as soon as it is uncountable.
Nevertheless, there is a very straightforward relationship between these two no-
tions. The weak notion is countable if and only if the strong one is, and in this case
the two notions coincide. The weak notion is uncountable if and only if the strong
one is equal to 2ℵ0 . We will formulate most of our results, including our dichotomy
theorems, in terms of the weaker notion, but given the simple relationship between
the two, the statements of our results would not change if the stronger notion were
substituted everywhere. In the classical case, there is no difference between the
strong notion and the weak one.

Definition 2.19. Let G = ⟨X,R⟩ be a digraph. The dichromatic number of G,
denoted χ⃗(G), is the minimal cardinal κ such that there exists a collection {Xα :
α < κ} such that X =

⋃
α<κXα and for each α < κ, there are no R-cycles in Xα.

For a graph G = ⟨X,R⟩, the chromatic number of G, denoted χ(G), is the minimal
cardinal κ such that there exists a collection {Xα : α < κ} such that X =

⋃
α<κXα

and ∀α < κ∀x, y ∈ Xα [⟨x, y⟩ /∈ R].
If G = ⟨X,R⟩ is an analytic digraph, then the weak Borel dichromatic number

of G, denoted χ⃗w
B (G), is the minimal cardinal κ such that there exists a collection

{Xα : α < κ} of Borel subsets of X such that X =
⋃

α<κXα and for each α < κ,
there are no R-cycles in Xα.

If G = ⟨X,R⟩ is an analytic graph, then the weak Borel chromatic number of G,
denoted χw

B (G), is the minimal cardinal κ such that there exists a collection {Xα :
α < κ} of Borel subsets of X such that X =

⋃
α<κXα, ∀α < β < κ [Xα ∩Xβ = ∅],

and ∀α < κ∀x, y ∈ Xα [⟨x, y⟩ /∈ R].
For an analytic digraph G = ⟨X,R⟩, the Borel dichromatic number of G, denoted

χ⃗B(G), is the minimal κ such that there exist a Polish spaceM and a Borel function
φ : X → M such that |M | = κ and for every m ∈ M , φ−1({m}) does not contain
any R-cycles.

For an analytic graph G = ⟨X,R⟩, the Borel chromatic number of G, denoted
χB(G), is the minimal κ such that there exist a Polish spaceM and a Borel function
φ : X →M such that |M | = κ and ∀x, y ∈ X [φ(x) = φ(y) =⇒ ⟨x, y⟩ /∈ R].

Several remarks are in order. The definitions of χ⃗(G) and χ(G) would not change
if we added the requirement that {Xα : α < κ} be a pairwise disjoint family. Clearly,
χ⃗(G) ≤ χ⃗w

B (G) ≤ χ⃗B(G), for any analytic digraph G and χ(G) ≤ χw
B (G) ≤ χB(G), for

any analytic graph G. For any graph G, χ(G) = χ⃗(G) because not containing
cycles is the same as not containing edges. Clearly, any family of at most ℵ1 many
Borel sets can be refined to a pairwise disjoint family of Borel sets with the same
union. Therefore, for any analytic graph G, if χ⃗w

B (G) ≤ ℵ1, then χ⃗w
B (G) = χw

B (G).
In particular, for any analytic graph G, χ⃗w

B (G) > ℵ0 if and only if χw
B (G) > ℵ0.

Lastly, χ⃗B(G) and χB(G) can only take on these values: finite, ℵ0, or 2ℵ0 . We will
see in Section 4 that χ⃗w

B (G) and χw
B (G) have a much larger spectrum of possible

values. Observe, however, that χ⃗w
B (G) > ℵ0 if and only if χ⃗B(G) = 2ℵ0 , for an

analytic digraph G, and χw
B (G) > ℵ0 if and only if χB(G) = 2ℵ0 , for an analytic

graph G. Furthermore, if χ⃗w
B (G) ≤ ℵ0, then χ⃗w

B (G) = χ⃗B(G), and if χw
B (G) ≤ ℵ0,

then χw
B (G) = χB(G).
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Lemma 2.20. Let P = ⟨P,≤⟩ be a quasi order. Let ⪯ be a quasi order on P that
extends ≤. Define

X(⪯,≤) = {⟨x, y⟩ ∈ P × P : y ≰ x ∧ x ⪯ y}.
Then X(⪯,≤) is a subset of AP that does not contain any cycles.

Proof. It is clear from the definitions that X(⪯,≤) ⊆ AP . Suppose for a contra-
diction that ⟨⟨x0, y0⟩ , . . . , ⟨xk, yk⟩⟩ is a cycle in X(⪯,≤). Then x0 ⪯ y0 ≤ · · · ≤
xk ⪯ yk ≤ x0. It follows that x0 E⪯ y0. Since E⪯ = E≤, x0 E≤ y0. However, this
is a contradiction because y0 ≰ x0. ⊣

Lemma 2.21. Let P = ⟨P,≤⟩ be a quasi order such that |P/E≤| > 1. Then
odim(P) = χ⃗ (⟨AP ,RP⟩).
Proof. Suppose ⟨≤i : i ∈ κ⟩ is a sequence of quasi orders on P extending ≤ such
that (2) of Lemma 2.10 is satisfied. For each i ∈ κ, define Xi = X (≤i,≤). By
Lemma 2.20, Xi ⊆ AP and it does not contain any cycles. Suppose ⟨x, y⟩ ∈ AP .
Then there is i ∈ κ so that x ≤i y, whence ⟨x, y⟩ ∈ Xi. Therefore AP =

⋃
i∈κXi.

It follows that χ⃗ (⟨AP ,RP⟩) ≤ odim(P).
For the other direction, supposeAP =

⋃
i∈κXi, where eachXi contains no cycles.

The hypothesis that |P/E≤| > 1 implies that AP ̸= ∅. Therefore 0 < κ. Define ≤i

to be the transitive closure of ≤ ∪ Xi in P ×P . By Lemma 2.18, each ≤i is a quasi
order on P that extends ≤. Let x, y ∈ P . If x ≤ y, then i = 0 fulfills (2) of Lemma
2.10. If x ≰ y, then ⟨y, x⟩ ∈ AP , whence ⟨y, x⟩ ∈ Xi, for some i ∈ κ. Then y ≤i x
and (2) of Lemma 2.10 is fulfilled by i. It follows that odim(P) ≤ χ⃗ (⟨AP , RP⟩). ⊣

Lemma 2.21 suggests that the Borel order dimension of a Borel quasi order P
ought to be χ⃗w

B (⟨AP ,RP⟩), or χ⃗B(⟨AP ,RP⟩) if a strong version is needed. In fact,
we will now prove that this is exactly what we get if we take the characterization
of odim(P) given by Lemma 2.10 and add the requirement that the witnessing
sequence consist entirely of Borel quasi orders. The proof of this will use Corollary
2.25, which will also play a key role in the proofs of the dichotomies in Section 3.
The proof of Corollary 2.25, in turn, will use Theorem 2.23, which can be found in
Kechris [19].

Definition 2.22. Let X be a Polish space and Φ ⊆ P(X). We say that Φ is
Π1

1 on Σ1
1 if for any Polish space Y and any A ⊆ Y × X which is Σ1

1, the set
AΦ = {y ∈ Y : Ay ∈ Φ} is Π1

1. Here Ay = {x ∈ X : ⟨y, x⟩ ∈ A}, for every y ∈ Y .

Theorem 2.23 (First Reflection Theorem). Let X be a Polish space and let Φ ⊆
P(X) be Π1

1 on Σ1
1. Then for any Σ1

1 set A ∈ Φ, there is a Borel set B ⊆ X such
that A ⊆ B and B ∈ Φ.

Lemma 2.24. Let G = ⟨X,R⟩ be an analytic digraph. Let

Φ = {A ⊆ X : A does not contain a cycle}.

Then Φ is Π1
1 on Σ1

1.

Proof. Let Y be Polish and let A ⊆ Y × X be Σ1
1. Fix Polish spaces M and N

and continuous functions f :M → X ×X and g : N → Y ×X with f ′′M = R and
g′′N = A. For k ∈ ω define

Ck =
{
⟨y, x0, . . . , xk, n0, . . . , nk,m0, . . . ,mk⟩ ∈ Y ×Xk+1 ×Nk+1 ×Mk+1 :(∧

i≤k
g(ni) = ⟨y, xi⟩

)
∧
(∧

i<k
f(mi) = ⟨xi, xi+1⟩

)
∧ f(mk) = ⟨xk, x0⟩

}
.

Clearly Ck is a closed subset of Y ×Xk+1×Nk+1×Mk+1, and so Dk = ProjY (Ck)
is a Σ1

1 subset of Y . Therefore D =
⋃

k∈ωDk is a Σ1
1 subset of Y and E = Y \D

is a Π1
1 subset of Y . It is easily verified that E = {y ∈ Y : Ay ∈ Φ} = AΦ. ⊣
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Corollary 2.25. Let G = ⟨X,R⟩ be an analytic digraph. If A ⊆ X is Σ1
1 and does

not contain cycles, then there exists a Borel set B ⊆ X such that A ⊆ B and B
does not contain cycles.

Lemma 2.26. Suppose P = ⟨P,≤⟩ is a Borel quasi order. If ≤0 is a Σ1
1 quasi

order on P that extends ≤, then there exists a Borel quasi order ≤1 on P that
extends ≤0.

Proof. As noted in Definition 2.15, ⟨AP ,RP⟩ is a Borel digraph. Build sequences
⟨⪯n : n ∈ ω⟩ and ⟨Xn : n ∈ ω⟩ satisfying the following:

(1) ⪯0 is ≤0 and ⪯n is a Σ1
1 quasi order on P extending ≤;

(2) ⪯n+1 extends ⪯n;
(3) Xn ⊆ AP is Borel and does not contain cycles;
(4) X (⪯n,≤) ⊆ Xn and ⪯n+1 is the transitive closure of ≤ ∪ Xn in P × P .

To construct the sequences, let ⪯0 be ≤0. Given ⪯n, by Lemma 2.20, X (⪯n,≤) ⊆
AP and it does not contain cycles. Since ⪯n is Σ1

1 and ≤ is Borel, X (⪯n,≤) is Σ1
1.

By Corollary 2.25, there exists a Borel set Xn ⊆ AP such that X (⪯n,≤) ⊆ Xn

and Xn does not contain cycles. Let ⪯n+1 be the transitive closure of ≤ ∪ Xn in
P × P . By Lemma 2.18, ⪯n+1 is a quasi order on P extending ≤. Since ≤ and
Xn are Borel sets, ⪯n+1 is Σ1

1. Note that E⪯n+1
= E≤ = E⪯n

. Let x, y ∈ P and
suppose x ⪯n y. If y ≤ x, then x E⪯n

y, whence x E⪯n+1
y and x ⪯n+1 y. If

y ≰ x, then ⟨x, y⟩ ∈ X (⪯n,≤) ⊆ Xn, whence x ⪯n+1 y. Therefore ⪯n+1 extends
⪯n and (1)–(4) are satisfied, finishing the construction.

Define ≤1 =
⋃

n∈ω⪯n. By (1) and (2), ≤1 is a quasi order on P that extends
≤0. Define X =

⋃
n∈ωXn and R = ≤ ∪ X. Then R is Borel. It will be verified

that R = ≤1. If ⟨x, y⟩ ∈ ≤, then ⟨x, y⟩ ∈ ≤0 = ⪯0 ⊆ ≤1. If ⟨x, y⟩ ∈ Xn, for some
n ∈ ω, then ⟨x, y⟩ ∈ ⪯n+1 ⊆ ≤1. This shows R ⊆ ≤1. For the other direction,
consider ⟨x, y⟩ ∈ ⪯n, for some n ∈ ω. If y ≤ x, then y ⪯n x, whence x E⪯n

y, and
so x E≤ y and ⟨x, y⟩ ∈ ≤ ⊆ R. If y ≰ x, then ⟨x, y⟩ ∈ X (⪯n,≤) ⊆ Xn ⊆ X ⊆ R.
Therefore, R = ≤1 and ≤1 is Borel. ⊣

As our official definition of Borel order dimension, we will take the one derived
from Definition 2.8 and Lemma 2.10, and we will show that it agrees with the one
we would expect from Lemma 2.21.

Definition 2.27. Let P = ⟨P,≤⟩ be a Borel quasi order. A partial order ≺ on
P/E≤ is said to be Borel if there is a Borel quasi order ⪯ on P such that E⪯ = E≤
and ≺ is the partial order on P/E⪯ = P/E≤ induced by ⪯.

Definition 2.28. Let P = ⟨P,≤⟩ be a Borel quasi order. The Borel order dimen-
sion (or simply Borel dimension) of P, denoted odimB (P), is the minimal cardinal
κ such that there exists a sequence ⟨<i : i ∈ κ⟩ of Borel partial orders on P/E≤
extending < such that

∀x, y ∈ P∃i ∈ κ [[y] <i [x] ∨ [x] < [y] ∨ [x] = [y]] .(3)

Lemma 2.29. Let P = ⟨P,≤⟩ be a Borel quasi order. Then odimB (P) is the
minimal cardinal κ such that there exists a sequence ⟨≤i : i ∈ κ⟩ of Borel quasi
orders on P extending ≤ such that

∀x, y ∈ P∃i ∈ κ [y ≤i x ∨ x ≤ y] .(4)

Proof. Suppose ⟨<i : i ∈ κ⟩ is a sequence of Borel partial orders on P/E≤ extend-
ing < and satisfying (3) of Definition 2.28. Then for every i ∈ κ, there is a
Borel quasi order ≤i on P so that E≤i

= E≤ and <i is the partial order on
P/E≤i

= P/E≤ induced by ≤i. Each ≤i extends ≤. Given x, y ∈ P , let i ∈ κ
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be such that ([y] <i [x] ∨ [x] < [y] ∨ [x] = [y]). If [y] <i [x], then y ≤i x, while if
([x] < [y] ∨ [x] = [y]), then x ≤ y. Thus (4) holds.

Conversely, suppose ⟨≤i : i ∈ κ⟩ is a sequence of Borel quasi orders on P ex-
tending ≤ and satisfying (4). For each i ∈ κ, define <i to be the partial order on
P/E≤ = P/E≤i

induced by ≤i. Each <i is a Borel partial order on P/E≤. Each
<i extends <. Given x, y ∈ P , there exists i ∈ κ with (y ≤i x ∨ x ≤ y). If [x] ̸= [y],
then ([y] <i [x] ∨ [x] < [y]). Therefore, (3) of Definition 2.28 is satisfied. ⊣

Theorem 2.30. Let P = ⟨P,≤⟩ be a Borel quasi order such that |P/E≤| > 1.
Then odimB (P) = χ⃗w

B (⟨AP ,RP⟩).

Proof. Suppose ⟨≤i : i ∈ κ⟩ is a sequence of Borel quasi orders on P extending ≤
such that (4) of Lemma 2.29 is satisfied. For each i ∈ κ, define Xi = X (≤i,≤).
By the proof of Lemma 2.21, Xi ⊆ AP , Xi does not contain any cycles, and
AP =

⋃
i∈κXi. Further, since both ≤ and ≤i are Borel, Xi is a Borel set. It follows

that χ⃗w
B (⟨AP ,RP⟩) ≤ odimB (P).

For the other direction, suppose AP =
⋃

i∈κXi, where each Xi is Borel and
contains no cycles. The hypothesis that |P/E≤| > 1 implies thatAP ̸= ∅. Therefore
0 < κ. Define ⪯i to be the transitive closure of ≤ ∪ Xi in P ×P . By Lemma 2.18,
each ⪯i is a quasi order on P that extends ≤. Since ≤ and Xi are both Borel, ⪯i

is Σ1
1. By Lemma 2.26, there is a Borel quasi order ≤i on P that extends ⪯i. Let

x, y ∈ P . If x ≤ y, then i = 0 fulfills (4) of Lemma 2.29. If x ≰ y, then ⟨y, x⟩ ∈ AP ,
whence ⟨y, x⟩ ∈ Xi, for some i ∈ κ. Then y ⪯i x and y ≤i x, and (4) of Lemma
2.29 is fulfilled by i. It follows that odimB (P) ≤ χ⃗w

B (⟨AP ,RP⟩). ⊣

In view of Theorem 2.30, we could think of odimB(P) as the weak Borel order
dimension of P. The strong notion would then be defined as χ⃗B(⟨AP ,RP⟩) in the
case when |P/E≤| > 1, and as 0 or 1 in the cases when P/E≤ is empty or a singleton
respectively. Replacing our weaker definition with the stronger notion will not make
any difference to the dichotomy theorems in Section 3.

Definition 2.31. A Borel quasi order P = ⟨P,≤⟩ is said to be Borel linearizable
if there exists a Borel linear quasi order ⪯ on P extending ≤.

Our definition of AP considers all pairs ⟨x, y⟩ where y ≰ x. If we considered
only the induced sub-digraph of ⟨AP ,RP⟩ on the collection of pairs ⟨x, y⟩ where x
and y are incomparable, then we would be off from the Borel dichromatic number
of P by at most 1. We will conclude this section by proving this fact, which will be
useful in the proof of one of the dichotomies to be presented in the next section.

Definition 2.32. Let P = ⟨P,≤⟩ be a Borel quasi order. Define

BP = {⟨x, y⟩ ∈ AP : x ≰ y} ;
SP = RP ∩ (BP × BP) .

It is clear that ⟨BP ,SP⟩ is a Borel digraph.

Lemma 2.33. For any Borel quasi order P = ⟨P,≤⟩, χ⃗w
B (⟨AP ,RP⟩) ≤ 1 +

χ⃗w
B (⟨BP ,SP⟩).

Proof. Let κ = χ⃗w
B (⟨BP ,SP⟩) and let ⟨Yα : α < κ⟩ witness this. Define X0 = AP \

BP . Suppose ⟨⟨p0, q0⟩ , . . . , ⟨pk, qk⟩⟩ is an RP -cycle in X0. Then we have p0 ≤ q0 ≤
· · · ≤ pk ≤ qk ≤ p0, whence q0 ≤ p0, contradicting ⟨p0, q0⟩ ∈ AP . Thus X0 is a
Borel subset of AP without any RP -cycles. For each α < κ, define X1+α = Yα. It is
easy to check that each X1+α is a Borel subset of AP without any RP -cycles. Since
AP = X0 ∪ BP =

⋃
β<1+κXβ , ⟨Xβ : β < 1 + κ⟩ witnesses that χ⃗w

B (⟨AP ,RP⟩) ≤
1 + κ = 1 + χ⃗w

B (⟨BP ,SP⟩). ⊣
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Corollary 2.34. For a Borel quasi order P = ⟨P,≤⟩, if odimB(P) > ℵ0, then
χ⃗w
B (⟨BP ,SP⟩) > ℵ0.

Proof. Since odimB(P) > ℵ0, |P/E≤| > 1, and χ⃗w
B (⟨AP ,RP⟩) > ℵ0. Since by

Lemma 2.33, χ⃗w
B (⟨AP ,RP⟩) ≤ 1 + χ⃗w

B (⟨BP ,SP⟩), χ⃗w
B (⟨BP ,SP⟩) > ℵ0. ⊣

3. Three Dichotomies

This section contains the main results of this paper. These results take the form
of three dichotomy theorems that characterize the Borel and analytic digraphs of
uncountable weak Borel dichromatic number as well as the Borel quasi orders of
uncountable Borel order dimension in terms of a basis. The first two dichotomies
generalize the celebrated G0-dichotomy of Kechris, Solecki, and Todorcevic [20].
Kechris, Solecki, and Todorcevic identified a particular Borel graph, called G0, and
showed that an arbitrary analytic graph G has uncountable weak Borel chromatic
number if and only if there is a continuous graph homomorphism from G0 to G.
The G0-dichotomy has found numerous applications in descriptive set theory (see
Miller [31]) and has inspired an impressive body of work in Borel combinatorics
(e.g. [30], [27], [5], [41]).

The basic object G0 of [20] is an acyclic graph defined on 2ω. The basic objects in
the dichotomies about to be presented will be digraphs defined on finitely branching
trees, where the nodes of height n branch into f(n) successors, for some f ∈ ωω that
satisfies f(n) ≥ 2. Thus instead of one basic object, we get a family of continuum
many basic objects parametrized by a real in a uniform way. In the G0 dichotomy,
the natural morphisms of interest are continuous graph homomorphisms, and it
is known that, in general, one cannot ask for an embedding. In the category of
digraphs, it is natural to consider homomorphisms that map every induced copy of
the directed cycle Cn to an induced copy of Cn (see, for example, [39] and [8]). In
particular, such digraph homomorphisms preserve specific non-edges as well. Our
first dichotomy will show that if G is a Borel digraph with χ⃗w

B (G) > ℵ0, then one can
always ask for a continuous digraph homomorphism from one of our basic objects
to G that preserves all induced copies of Cn.

Definition 3.1. Define F = {f ∈ ωω : ∀k ∈ ω [f(k) ≥ 2]}. For l ∈ ω, define Fl ={
s ∈ ωl : ∀k ∈ l [s(k) ≥ 2]

}
. Define F<ω =

⋃
l<ωFl.

Definition 3.2. Let X be any set. T ⊆ X<ω is called a subtree if T is down-
wards closed. In other words, T ⊆ X<ω is a subtree if and only if ∀t ∈ T∀l′ ≤
dom(t) [t↾l′ ∈ T ]. For a subtree T ⊆ X<ω, the nth level of T , denoted Levn(T ), is
{s ∈ T : dom(s) = n}, for all n ∈ ω. For a subtree T ⊆ X<ω and s ∈ T , define

T ⟨s⟩ = {t ∈ T : s ⊆ t ∨ t ⊆ s} ;
succT (s) = {x : s⌢⟨x⟩ ∈ T} .

For a subtree T ⊆ X<ω, [T ] denotes the collection of all infinite branches through
T . In other words,

[T ] = {f ∈ Xω : ∀l ∈ ω [f↾l ∈ T ]} .

Definition 3.3. For σ ∈ F<ω, define

T[σ] =
∏

k∈dom(σ)

σ(k)

Tσ =
⋃

l≤dom(σ)

∏
k∈l

σ(k)

Note Tσ ⊆ ω≤dom(σ) ⊆ ω<ω is a subtree and T[σ] ⊆ Tσ.
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Definition 3.4. For f ∈ F , define

Tf =
⋃
l∈ω

∏
k∈l

f(k)

Note Tf ⊆ ω<ω is a subtree and that [Tf ] =
∏
k∈ω

f(k).

The definition of the graph G0 of [20] depends on a parameter D, which is a dense
subset of 2<ω that intersects every level exactly once. The choice of D does not
affect the properties of G0, but in our case, the choice of a dense set will determine
the function f , which specifies the extent of the branching at each level. Hence, we
take a general approach and define the following.

Definition 3.5. A function E : F<ω → ω<ω is called a selector if for every σ ∈
F<ω, E(σ) ∈ T[σ]. A selector E is dense if for every f ∈ F , the set {E(f↾l) : l ∈ ω}
is dense in Tf . In other words, a selector E is dense if and only if

∀f ∈ F∀s ∈ Tf∃l ∈ ω [s ⊆ E(f↾l)] .

It is an easy exercise to see that dense selectors exist. We will outline a con-
struction for completeness. Let {sl : l ∈ ω} be an enumeration of ω<ω such that
|sl| ≤ l, for every l ∈ ω. Define E : F<ω → ω<ω as follows. Given σ ∈ F<ω, let
l = |σ|. If sl ∈ Tσ, then E(σ) = τ , where τ ∈ T[σ] is such that τ↾ |sl| = sl and
τ(i) = 0, for all |sl| ≤ i < |σ|. If sl /∈ Tσ, then E(σ) = τ , where τ ∈ T[σ] is such
that τ(i) = 0, for all i < |σ|. To see that this works, suppose f ∈ F and s ∈ Tf .
Then s = sl, for some l ∈ ω. Let σ = f↾l. Since |s| ≤ l and s ∈ Tf , s ∈ Tσ. So, by
definition, s ⊆ E(σ) = E(f↾l).

We now define a Borel digraph G0(E, f) for every selector E and every f ∈ F<ω.
It will be shown that the family {G0(E, f) : f ∈ F and E is a dense selector} char-
acterizes the Borel and analytic digraphs of uncountable weak Borel dichromatic
number. In fact, we will show more. We will show that if G is any analytic digraph
whose weak Borel dichromatic number is uncountable, then for every E there ex-
ist f and a continuous homomorphism Π from G0(E, f) to G, with the additional
feature that Π can be made to preserve copies of Cn when G is Borel. Moreover,
if there exists k so that G does not contain copies of Cn for any n ≥ k, then f is
bounded by the constant function k − 1. Thus, our dichotomy directly generalizes
the G0 dichotomy (see the proof of Corollary 3.28).

Definition 3.6. Let E be a selector and let σ ∈ F<ω. Define RE,σ ⊆ T[σ] ×T[σ] as
follows. Given ⟨s, t⟩ ∈ T[σ]×T[σ], ⟨s, t⟩ ∈ RE,σ if and only if there exist k < dom(σ)
and x ∈ ω<ω such that t(k) = s(k) + 1 mod σ(k), s = E(σ↾k)⌢⟨s(k)⟩⌢x, and
t = E(σ↾k)⌢⟨t(k)⟩⌢x. Define K(E, σ) =

〈
T[σ], RE,σ

〉
. Note that K(E, σ) is a

digraph.
Let E be a selector let f ∈ F . Define RE,f ⊆ [Tf ] × [Tf ] as follows. Given

⟨y, z⟩ ∈ [Tf ] × [Tf ], ⟨y, z⟩ ∈ RE,f if and only if there exist l ∈ ω and x ∈ ωω such
that z(l) = y(l) + 1 mod f(l), y = E(f↾l)⌢⟨y(l)⟩⌢x, and z = E(f↾l)⌢⟨z(l)⟩⌢x.
Define G0(E, f) = ⟨[Tf ] , RE,f ⟩. Note that G0(E, f) is a Borel digraph.

Note that when f(n) > 2, for every n, then ⟨y, x⟩ /∈ RE,f whenever ⟨x, y⟩ ∈ RE,f .
Also, if f is constantly 2, then G0(E, f) is a copy of the graph G0.

Definition 3.7. Recall the following cardinal characteristic known as the covering
number of the meager ideal, or covering of meager for short.

M = {M ⊆ 2ω :M is Borel and meager},

cov(M) = min
{
|F| : F ⊆ M∧ 2ω =

⋃
F
}
.
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Lemma 3.8. For every dense selector E and every f ∈ F , χ⃗w
B (G0(E, f)) ≥

cov(M).

Proof. For any f ∈ F , [Tf ] is a perfect Polish space and hence it cannot be covered
by fewer than cov(M) many Borel meager sets. Therefore it suffices to show that if
X ⊆ [Tf ] is Borel and non-meager, then X contains a cycle. Indeed, we will argue
that if X ⊆ [Tf ] is Baire measurable and non-meager, then X contains a cycle.
By Baire measurability, there is a non-empty open subset U ⊆ [Tf ] such that X
is comeager in U . By the hypothesis that E is a dense selector, we may assume
that there exists l ∈ ω so that, letting s = E(f↾l), U = {x ∈ [Tf ] : s ⊆ x}. Define
ψ : U → U by

ψ(s⌢⟨i⟩⌢y) = s⌢⟨i+ 1 mod f(l)⟩⌢y,

for each i and y satisfying i ∈ f(l), y ∈ ωω, and s⌢⟨i⟩⌢y ∈ [Tf ]. Then ψ and
ψ−1 are auto-homeomorphisms of U . For k ∈ ω, define the iterates ψk : U → U
and ψ−k : U → U by induction as usual. In other words, define ψ0 as the identity
function on U , and given ψk and ψ−k, define ψk+1 as ψ◦ψk and ψ−k−1 as ψ−1◦ψ−k.
Then for each k, ψ−k(U ∩ X) is comeager in U . So Y =

⋂
k<f(l)ψ

−k(U ∩X) is

comeager, in particular it is non-empty. Choose x ∈ Y . Then ψk(x) ∈ U ∩X, for
every k < f(l), and by the definitions of ψ and of RE,f , ⟨x, ψ(x), . . . , ψf(l)−1(x)⟩ is
a cycle in X. ⊣

As remarked after Definition 2.19, this implies that χ⃗B (G0(E, f)) = 2ℵ0 , for every
dense selector E and f ∈ F .

Definition 3.9. Let ⟨X,R⟩ be a digraph and Y ⊆ X. A cycle ⟨x0, . . . , xn⟩ in Y is
said to be minimal if

⟨xi, xj⟩ ∈ R ⇐⇒ j = i+ 1 mod n+ 1,

for all i, j < n + 1. Observe that if ⟨x0, . . . , xn⟩ is a minimal cycle, then xi ̸= xj ,
for all i ̸= j.

Observe that a minimal cycle of length n is just an isomorphic copy of the
directed cycle Cn of length n – in other words, the induced digraph on {x0, . . . , xn}
is isomorphic to Cn. We will be interested in homomorphisms of digraphs that
preserve copies of Cn.

Definition 3.10. Let G = ⟨X,R⟩ and H = ⟨Y,E⟩ be digraphs. We will say
that Π is a homomorphism from G to H if Π : X → Y is a function such that
∀ ⟨x, y⟩ ∈ R [⟨Π(x),Π(y)⟩ ∈ E].

We will say that Π is a minimal homomorphism from G to H if Π : X → Y is a
function such that the following hold:

(1) ∀ ⟨x, y⟩ ∈ R [⟨Π(x),Π(y)⟩ ∈ E];
(2) for every minimal R-cycle ⟨z0, . . . , zm⟩ in X and every i, j < m + 1 such

that ⟨zi, zj⟩ /∈ R, ⟨Π(zi),Π(zj)⟩ /∈ E.

A minimal homomorphism is merely a homomorphism which maps every copy of
Cn to a copy of Cn. Such homomorphisms are of interest in the theory of digraphs,
for example, see [39, 8].

The proofs of our dichotomies are based on the same ideas as the proof of the
G0-dichotomy in Miller [31] and in Kechris, Solecki, and Todorcevic [20], but our
notation and presentation will follow Bernshteyn [3].

Notation 3.11. Fix the following notation from now until the end of the proof of
Lemma 3.22. Let ⟨X,R⟩ be a fixed Borel digraph. Then both R and (X ×X) \R
are Σ1

1. Fix Polish spacesM and N as well as continuous functions p :M → X×X
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and q : N → X×X with p′′M = R and q′′N = (X ×X)\R. Fix also a selector E.
These parameters will be suppressed for as long as they remain fixed. In particular,
we will write Rσ instead of RE,σ, for σ ∈ F<ω.

Definition 3.12. For any σ ∈ F<ω, Sσ will denote the Polish space

XT[σ] ×M(T[σ]×T[σ]) ×N(T[σ]×T[σ]).

We will say that ⟨π, φ, ψ⟩ ∈ Sσ is a minimal S-homomorphism if the following hold:

(1) ∀ ⟨s, t⟩ ∈ Rσ [p(φ(⟨s, t⟩)) = ⟨π(s), π(t)⟩];
(2) for every minimal cycle ⟨s0, . . . , sm⟩ in T[σ] and for every i, j < m+ 1 such

that i ̸= j and ⟨si, sj⟩ /∈ Rσ, q(ψ(⟨si, sj⟩)) = ⟨π(si), π(sj)⟩.
Define Hom(σ) = {⟨π, φ, ψ⟩ ∈ Sσ : ⟨π, φ, ψ⟩ is a minimal S-homomorphism}.

Note that Hom(σ) is a closed subset of the Polish space Sσ.

Definition 3.13. For σ ∈ F<ω, H ⊆ Hom(σ), and s ∈ T[σ], H(s) denotes the set
{π(s) : ∃φ∃ψ [⟨π, φ, ψ⟩ ∈ H]} ⊆ X. For ⟨s, t⟩ ∈ T[σ] × T[σ], HM (s, t) denotes the
set {φ(⟨s, t⟩) : ∃π∃ψ [⟨π, φ, ψ⟩ ∈ H]} ⊆M , and HN (s, t) denotes the set {ψ(⟨s, t⟩) :
∃π∃φ [⟨π, φ, ψ⟩ ∈ H]} ⊆ N .

Observe that if H is a Borel subset of Hom(σ), then H(s), HM (s, t), and HN (s, t)
are all Σ1

1.

Definition 3.14. For σ ∈ F<ω, 2 ≤ n < ω, and i < n, define rn,i,σ : Sσ⌢⟨n⟩ →
Sσ as follows. Given ⟨π, φ, ψ⟩ ∈ Sσ⌢⟨n⟩, rn,i,σ(⟨π, φ, ψ⟩) = ⟨π′, φ′, ψ′⟩, where for
each s ∈ T[σ], π

′(s) = π(s⌢⟨i⟩), and for each ⟨s, t⟩ ∈ T[σ] × T[σ], φ
′(⟨s, t⟩) =

φ(⟨s⌢⟨i⟩, t⌢⟨i⟩⟩), and ψ′(⟨s, t⟩) = ψ(⟨s⌢⟨i⟩, t⌢⟨i⟩⟩).
It is clear that each rn,i,σ is continuous.

Definition 3.15. Let σ ∈ F<ω, 2 ≤ n < ω, and H ⊆ Hom(σ). Define

H⊗n = {⟨π, φ, ψ⟩ ∈ Hom(σ⌢⟨n⟩) : ∀i < n [rn,i,σ(⟨π, φ, ψ⟩) ∈ H]} .

If H is Borel, then so is H⊗n because rn,i,σ is continuous, for each i < n.

Definition 3.16. Let σ ∈ F<ω. H ⊆ Hom(σ) is called tiny if there exists s ∈ T[σ]
such that H(s) does not contain any cycles. H ⊆ Hom(σ) is called small if H can
be covered by countably many tiny Borel subsets of Hom(σ). H ⊆ Hom(σ) is called
large if H is not small.

Note that a union of countably many small subsets of Hom(σ) is small. Note also
that if H = ∅, then H is tiny.

Lemma 3.17. If χ⃗w
B (⟨X,R⟩) > ℵ0, then Hom(∅) is large.

Proof. The hypothesis implies that R ̸= ∅. Fix some ⟨x∗, y∗⟩ ∈ R as well as
m ∈M and n ∈ N with p(m) = ⟨x∗, y∗⟩ and q(n) = ⟨x∗, x∗⟩. Note that T[∅] = {∅}
and T[∅] × T[∅] = {⟨∅, ∅⟩}. Thus, for any x ∈ X, if we define ⟨π, φ, ψ⟩ ∈ S∅ by
π(∅) = x, φ(⟨∅, ∅⟩) = m, and ψ(⟨∅, ∅⟩) = n, then ⟨π, φ, ψ⟩ ∈ Hom(∅). Now assume
for a contradiction that there are Borel tiny subsets {Hn : n ∈ ω} of Hom(∅) with
Hom(∅) =

⋃
n∈ωHn. As Hn is tiny, Hn(∅) is a Σ1

1 subset of X that does not contain
any cycles. By Corollary 2.25, find a Borel set Hn(∅) ⊆ Bn ⊆ X such that Bn

does not contain any cycles. For any x ∈ X, there are n ∈ ω and ⟨π, φ, ψ⟩ ∈ Hn

with π(∅) = x, whence x ∈ Hn(∅) ⊆ Bn. Therefore X =
⋃

n∈ωBn, contradicting
χ⃗w
B (⟨X,R⟩) > ℵ0. ⊣

Lemma 3.18. Let σ ∈ F<ω and write s = E(σ) ∈ T[σ]. Suppose H ⊆ Hom(σ) and

⟨x0, . . . , xm⟩ is a minimal cycle in H(s). Then there exists ⟨π, φ, ψ⟩ ∈ H⊗(m+1)

such that π(s⌢⟨i⟩) = xi, for each i < m+ 1.
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Proof. Write n = m+1 and note that since there are no cycles of length 0, m ≥ 1,
and so n ≥ 2. For each i < n, choose ⟨πi, φi, ψi⟩ ∈ H with πi(s) = xi. For
each i, j < n such that i ̸= j, if j = i + 1 mod n, then choose mi ∈ M with
p(mi) = ⟨xi, xj⟩, while if j ̸= i + 1 mod n, then choose ni,j ∈ N with q(ni,j) =
⟨xi, xj⟩. Define π : T[σ⌢⟨n⟩] → X by setting π(u⌢⟨i⟩) = πi(u), for each u ∈ T[σ]
and i < n. Define φ : T[σ⌢⟨n⟩] × T[σ⌢⟨n⟩] → M and ψ : T[σ⌢⟨n⟩] × T[σ⌢⟨n⟩] → N
as follows. Suppose u, t ∈ T[σ] and i, j < n are given. Unless u = t = s and i ̸= j,
set φ(⟨u⌢⟨i⟩, t⌢⟨j⟩⟩) = φi(⟨u, t⟩) and ψ(⟨u⌢⟨i⟩, t⌢⟨j⟩⟩) = ψi(⟨u, t⟩). If u = t = s
and j = i + 1 mod n, then set φ(⟨u⌢⟨i⟩, t⌢⟨j⟩⟩) = mi and ψ(⟨u⌢⟨i⟩, t⌢⟨j⟩⟩) =
ψi(⟨u, t⟩). If u = t = s, i ̸= j, and j ̸= i+ 1 mod n, then set ψ(⟨u⌢⟨i⟩, t⌢⟨j⟩⟩) =
ni,j and φ(⟨u⌢⟨i⟩, t⌢⟨j⟩⟩) = φi(⟨u, t⟩). This concludes the definition of ⟨π, φ, ψ⟩.
Note that by definition, rn,i,σ(⟨π, φ, ψ⟩) = ⟨πi, φi, ψi⟩ ∈ H, for each i < n. Also, for
each i < n, π(s⌢⟨i⟩) = πi(s) = xi. Hence we only need to verify that ⟨π, φ, ψ⟩ ∈
Hom(σ⌢⟨n⟩). Suppose u, t ∈ T[σ], i, j < n, and ⟨u⌢⟨i⟩, t⌢⟨j⟩⟩ ∈ Rσ⌢⟨n⟩. There are
2 cases to consider. The first possibility is that u = t = s and j = i + 1 mod n.
Then p(φ(⟨u⌢⟨i⟩, t⌢⟨j⟩⟩)) = p(mi) = ⟨xi, xj⟩ = ⟨π(u⌢⟨i⟩), π(t⌢⟨j⟩)⟩, as required.
The other possibility is that ⟨u, t⟩ ∈ Rσ and i = j. Then p(φ(⟨u⌢⟨i⟩, t⌢⟨j⟩⟩)) =
p(φi(⟨u, t⟩)) = ⟨πi(u), πi(t)⟩ = ⟨πi(u), πj(t)⟩ = ⟨π(u⌢⟨i⟩), π(t⌢⟨j⟩)⟩, as needed.
Next consider some minimal cycle ⟨u0, . . . , uk⟩ in T[σ⌢⟨n⟩], and fix i, j < k+1 such
that i ̸= j and ⟨ui, uj⟩ /∈ Rσ⌢⟨n⟩. Again there are 2 possibilities to consider. The
first possibility is that there exist i′, j′ < n such that i′ ̸= j′, j′ ̸= i′ + 1 mod n,
and ui = s⌢⟨i′⟩ and uj = s⌢⟨j′⟩. Then q(ψ(⟨ui, uj⟩)) = q(ψ(⟨s⌢⟨i′⟩, s⌢⟨j′⟩⟩)) =
q(ni′,j′) = ⟨xi′ , xj′⟩ = ⟨π(s⌢⟨i′⟩), π(s⌢⟨j′⟩)⟩ = ⟨π(ui), π(uj)⟩, as required. The
other possibility is that for some minimal cycle ⟨t0, . . . , tk⟩ in T[σ] and for some
i′ < n, ul = tl

⌢⟨i′⟩, for every l < k + 1. In this case, ⟨ti, tj⟩ /∈ Rσ and since
⟨πi′ , φi′ , ψi′⟩ ∈ Hom(σ), q(ψ(⟨ui, uj⟩)) = q(ψ(⟨ti⌢⟨i′⟩, tj⌢⟨i′⟩⟩)) = q(ψi′(⟨ti, tj⟩)) =
⟨πi′(ti), πi′(tj)⟩ = ⟨π(ti⌢⟨i′⟩), π(tj⌢⟨i′⟩)⟩ = ⟨π(ui), π(uj)⟩, as required. This veri-
fies that ⟨π, φ, ψ⟩ ∈ Hom(σ⌢⟨n⟩) and concludes the proof. ⊣

Lemma 3.19. Let σ ∈ F<ω, 2 ≤ n < ω, and H ⊆ Hom(σ). The following hold:

(1) for each i < n, for each s ∈ T[σ], H
⊗n(s⌢⟨i⟩) ⊆ H(s), and for each

⟨s, t⟩ ∈ T[σ]×T[σ], H⊗n
M (s⌢⟨i⟩, t⌢⟨i⟩) ⊆ HM (s, t) and H⊗n

N (s⌢⟨i⟩, t⌢⟨i⟩) ⊆
HN (s, t);

(2) if H is tiny, then for every i < n,

H⊗⟨i,n⟩ = {⟨π, φ, ψ⟩ ∈ Hom(σ⌢⟨n⟩) : rn,i,σ(⟨π, φ, ψ⟩) ∈ H}

is tiny;
(3) if H is small, then so is H⊗⟨i,n⟩, for every i < n;
(4) if G ⊆ H, H \G is small, and G⊗n is small, then so is H⊗n.

Proof. For (1): for ⟨π, φ, ψ⟩ ∈ H⊗n and i < n, let ⟨πi, φi, ψi⟩ = rn,i,σ(⟨π, φ, ψ⟩) ∈
H. Then for all s ∈ T[σ], π(s

⌢⟨i⟩) = πi(s) ∈ H(s). Similarly, for all ⟨s, t⟩ ∈ T[σ] ×
T[σ], φ(⟨s⌢⟨i⟩, t⌢⟨i⟩⟩) = φi(⟨s, t⟩) ∈ HM (s, t) and ψ(⟨s⌢⟨i⟩, t⌢⟨i⟩⟩) = ψi(⟨s, t⟩) ∈
HN (s, t). (1) follows from this.

For (2): fix s ∈ T[σ] so that H(s) does not contain any cycles. Then s⌢⟨i⟩ ∈
T[σ⌢⟨n⟩], and if x ∈ H⊗⟨i,n⟩(s⌢⟨i⟩), then for some ⟨π, φ, ψ⟩ ∈ H⊗⟨i,n⟩, x = π(s⌢⟨i⟩).
Since ⟨π′, φ′, ψ′⟩ = rn,i,σ(⟨π, φ, ψ⟩) ∈ H, then x = π(s⌢⟨i⟩) = π′(s) ∈ H(s).

Therefore, H⊗⟨i,n⟩(s⌢⟨i⟩) ⊆ H(s), and so H⊗⟨i,n⟩(s⌢⟨i⟩) does not contain any
cycles. This shows H⊗⟨i,n⟩ is tiny.

For (3): let {Gl : l ∈ ω} be Borel tiny subsets of Hom(σ) so that H ⊆
⋃

l∈ωGl.

Fix i < n. By (2), G
⊗⟨i,n⟩
l ⊆ Hom(σ⌢⟨n⟩) is tiny. Since rn,i,σ is continuous and Gl is

Borel, G
⊗⟨i,n⟩
l is also Borel. If ⟨π, φ, ψ⟩ ∈ H⊗⟨i,n⟩, then ⟨π, φ, ψ⟩ ∈ Hom(σ⌢⟨n⟩) and
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rn,i,σ(⟨π, φ, ψ⟩) ∈ H, whence for some l ∈ ω, rn,i,σ(⟨π, φ, ψ⟩) ∈ Gl and ⟨π, φ, ψ⟩ ∈
G

⊗⟨i,n⟩
l . Therefore, H⊗⟨i,n⟩ ⊆

⋃
l∈ωG

⊗⟨i,n⟩
l , and so H⊗⟨i,n⟩ is small.

For (4): write S = H \ G. By (3), S⊗⟨i,n⟩ is small for every i < n. Therefore
G⊗n ∪

(⋃
i<nS

⊗⟨i,n⟩) is a small subset of Hom(σ⌢⟨n⟩). Suppose ⟨π, φ, ψ⟩ ∈ H⊗n.
Then ⟨π, φ, ψ⟩ ∈ Hom(σ⌢⟨n⟩) and for each i < n, rn,i,σ(⟨π, φ, ψ⟩) ∈ H. If for some

i < n, rn,i,σ(⟨π, φ, ψ⟩) ∈ S, then ⟨π, φ, ψ⟩ ∈ S⊗⟨i,n⟩. Otherwise ⟨π, φ, ψ⟩ ∈ G⊗n.

Therefore, H⊗n ⊆ G⊗n ∪
(⋃

i<nS
⊗⟨i,n⟩). So H⊗n, being a subset of a small set, is

small. ⊣

Lemma 3.20. Let σ ∈ F<ω and write s = E(σ) ∈ T[σ]. Suppose H ⊆ Hom(σ) is

Borel. Let X ⊆ ω \ 2 be so that for every n ∈ X, H⊗n is small. Then there exists
G ⊆ H such that G is Borel, H \ G is small, and for every n ∈ X, G(s) does not
contain a minimal cycle of length n− 1.

Proof. For each n ∈ X, we have that H⊗n ⊆
⋃

l<ωKn,l, where each Kn,l is a Borel
tiny subset of Hom(σ⌢⟨n⟩). For each n ∈ X and l < ω, choose sn,l ∈ T[σ] and in,l < n
so thatKn,l(sn,l

⌢⟨in,l⟩) does not contain any cycles. Recall that sinceKn,l is Borel,
Kn,l(sn,l

⌢⟨in,l⟩) is a Σ1
1 subset of X. So by Corollary 2.25, there exists a Borel set

Kn,l(sn,l
⌢⟨in,l⟩) ⊆ Bn,l ⊆ X such that Bn,l does not contain any cycles. Define

Tn,l = {⟨π′, φ′, ψ′⟩ ∈ Hom(σ) : π′(sn,l) ∈ Bn,l}. Since Bn,l is Borel, Tn,l is Borel,
and since Tn,l(sn,l) ⊆ Bn,l, Tn,l is tiny. Therefore, S =

⋃
{Tn,l : n ∈ X ∧ l < ω}

is Borel and small. Define G = H \ S. Then G ⊆ H, G is Borel, and H \ G ⊆ S,
so H \G is small. Suppose for a contradiction that for some n ∈ X, G(s) contains
a minimal cycle of length n− 1. Using Lemma 3.18, find ⟨π, φ, ψ⟩ ∈ G⊗n ⊆ H⊗n.
Fix l < ω with ⟨π, φ, ψ⟩ ∈ Kn,l, and note that ⟨π′, φ′, ψ′⟩ = rn,in,l,σ(⟨π, φ, ψ⟩) ∈
G. However, π′(sn,l) = π(sn,l

⌢⟨in,l⟩) ∈ Kn,l(sn,l
⌢⟨in,l⟩) ⊆ Bn,l. This implies

⟨π′, φ′, ψ′⟩ ∈ Tn,l ⊆ S, contradicting ⟨π′, φ′, ψ′⟩ ∈ G. ⊣

Corollary 3.21. Let σ ∈ F<ω and let H ⊆ Hom(σ) be Borel and large. Then there
exists 2 ≤ n < ω such that H⊗n is large. Furthermore, if s = E(σ) and 2 ≤ n < ω
is minimal such that H⊗n is large, there exists G ⊆ H such that G is Borel, H \G
is small, G⊗n is large, and G(s) does not contain any cycles of length less than
n− 1.

Proof. Let X = {2 ≤ n < ω : H⊗n is small}. Apply Lemma 3.20 to find G ⊆ H
such that G is Borel, H \G is small, and G(s) does not contain a minimal cycle of
length n−1, for any n ∈ X. G cannot be tiny because H is large and H \G is small.
So G(s) contains a cycle, and hence, a minimal cycle of some length 1 ≤ m < ω.
Hence 2 ≤ n = m+ 1 < ω and n /∈ X, whence H⊗n is large.

Suppose 2 ≤ n < ω is minimal so that H⊗n is large. If G⊗n were small, then
by (4) of Lemma 3.19, H⊗n would also be small, contradicting the choice of n.
So G⊗n is large. Finally, suppose G(s) contains a cycle of some length less than
n − 1. Then it contains a minimal cycle of some length 1 ≤ m < n − 1. Hence
2 ≤ l = m+ 1 < n and l /∈ X, whence H⊗l is large. But this is a contradiction as
l < n. ⊣

Lemma 3.22. Suppose d, d1, and d2 are compatible complete metrics on X, M ,
and N respectively. Suppose σ ∈ F<ω and H ⊆ Hom(σ) is Borel and large. Then
for every ε > 0, there exists G ⊆ H so that G is Borel and large, for every t ∈ T[σ],

diamd(G(t)) < ε, and for every ⟨u, t⟩ ∈ T[σ] × T[σ], diamd1
(GM (u, t)) < ε and

diamd2
(GN (u, t)) < ε.

Proof. This easily follows from the fact the Polish spaces X, M , and N can each be
covered by closed sets of diameter < ε, the fact that the union of countably many
small sets is small, and the fact that the functions ⟨π, φ, ψ⟩ 7→ π(t), ⟨π, φ, ψ⟩ 7→
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φ(⟨u, t⟩), and ⟨π, φ, ψ⟩ 7→ ψ(⟨u, t⟩) are all continuous, for every t ∈ T[σ] and every
⟨u, t⟩ ∈ T[σ] × T[σ]. ⊣

Theorem 3.23. Let ⟨X,R⟩ be any Borel digraph. Exactly one of the following
alternatives holds:

(1) χ⃗w
B (⟨X,R⟩) ≤ ℵ0;

(2) for every selector E, there exists f ∈ F such that both of the following hold:
(a) ∀n,m ∈ ω [E(f↾m) ⊆ E(f↾n) =⇒ f(m) ≤ f(n)];
(b) there is a continuous minimal homomorphism Π from G0(E, f) to

⟨X,R⟩.

Proof. Suppose E is some dense selector and Π : [Tf ] → X is a continuous homo-
morphism. If X =

⋃
l∈ωXl, where each Xl is Borel and contains no cycles, then

[Tf ] =
⋃

l∈ωΠ
−1(Xl), where each Π−1(Xl) is Borel and contains no cycles because

Π is a homomorphism. Since this would contradict Lemma 3.8 and since dense
selectors are easily seen to exist, it follows that (1) and (2) are mutually exclusive.

Now assume that χ⃗w
B (⟨X,R⟩) > ℵ0. Fix M , N , p, q as in Notation 3.11. Fix also

a selector E. As before, these parameters will be suppressed for the remainder of
this proof. Also, fix compatible complete metrics d, d1, and d2 on X, M , and N
respectively. By Lemma 3.17, Hom(∅) is large. Construct by induction f ∈ F and
⟨Hn : n ∈ ω⟩ such that:

(3) Hn ⊆ Hom(σn) is Borel and large, where σn = f↾n, and Hn(sn) does not
contain any cycles of length less than f(n)− 1, where sn = E(σn);

(4) H
⊗f(n)
n is large and Hn+1 ⊆ H

⊗f(n)
n ;

(5) for each t ∈ T[σn], diamd(Hn(t)) < 2−n and for each ⟨u, t⟩ ∈ T[σn] × T[σn],

diamd1
((Hn)M (u, t)) < 2−n and diamd2

((Hn)N (u, t)) < 2−n;
(6) for any m < n, s ∈ T[σm] and x ∈ ω<ω such that s⌢x ∈ T[σn],

Hn(s
⌢x) ⊆ Hm(s),

and for any ⟨s, t⟩ ∈ T[σm] × T[σm] and x ∈ ω<ω such that ⟨s⌢x, t⌢x⟩ ∈
T[σn] × T[σn],

(Hn)M (⟨s⌢x, t⌢x⟩) ⊆ (Hm)M (⟨s, t⟩) and
(Hn)N (⟨s⌢x, t⌢x⟩) ⊆ (Hm)N (⟨s, t⟩).

It is easily seen that such f and ⟨Hn : n ∈ ω⟩ can be inductively constructed starting
from Hom(∅) and applying Lemma 3.22 and Corollary 3.21 at every stage. Item (6)
is satisfied because of Item (1) of Lemma 3.19.

To see that (2)(a) holds, suppose sm ⊆ sn. If m = n, then there is nothing to
show, so assume m < n and let x ∈ ω<ω be such that sn = sm

⌢x. As Hn+1 ̸= ∅,
choose ⟨π, φ, ψ⟩ ∈ Hn+1. Then ⟨π(sn⌢⟨0⟩), . . . , π(sn⌢⟨f(n)− 1⟩)⟩ is a cycle and
each π(sn

⌢⟨i⟩) ∈ Hn+1(sn
⌢⟨i⟩) ⊆ Hn(sn) ⊆ Hm(sm). So there is a cycle of length

f(n)− 1 in Hm(sm), whence f(m)− 1 ≤ f(n)− 1 and f(m) ≤ f(n), as claimed.
For (2)(b), define Π : [Tf ] → X as follows. For z ∈ [Tf ], by (5), (6), and the

completeness of the metric d, there is a unique element in
⋂

n∈ωHn(z↾n). Define

Π(z) to be this unique element of
⋂

n∈ωHn(z↾n). It is clear that Π is continuous.
To see that Π is a homomorphism, suppose ⟨y, z⟩ ∈ Rf . Then for some m ∈ ω,
⟨u, t⟩ ∈ T[σm] × T[σm], and x ∈ ωω, we have that y = u⌢x, z = t⌢x, and ∀n ∈
ω
[
⟨u⌢x↾n, t⌢x↾n⟩ ∈ Rσm+n

]
. By (5), (6), and the completeness of the metric d1,

there exists m ∈M with

{m} =
⋂

n∈ω
(Hm+n)M (u⌢x↾n, t⌢x↾n).
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For each n ∈ ω, choose mn ∈ (Hm+n)M (u⌢x↾n, t⌢x↾n) with d1(m,mn) < 2−m−n

and then choose ⟨π, φ, ψ⟩ ∈ Hm+n such that φ(⟨u⌢x↾n, t⌢x↾n⟩) = mn. Observe
that p(mn) = ⟨π(u⌢x↾n), π(t⌢x↾n)⟩. Observe also that d(π(u⌢x↾n),Π(y)) <
2−m−n and d(π(t⌢x↾n),Π(z)) < 2−m−n because π(u⌢x↾n) ∈ Hm+n(u

⌢x↾n) and
π(t⌢x↾n) ∈ Hm+n(t

⌢x↾n). By the continuity of p, p(m) = ⟨Π(y),Π(z)⟩. And
since p′′M = R, ⟨Π(y),Π(z)⟩ ∈ R as needed. The verification that Π is minimal is
similar. Let ⟨z0, . . . , zm⟩ be a minimal cycle in [Tf ] and suppose i, j < m+ 1 such
that ⟨zi, zj⟩ /∈ Rf . We may assume i ̸= j, for otherwise ⟨Π(zi),Π(zi)⟩ /∈ R by our
definition of a digraph. Then for some l ∈ ω, ⟨u0, . . . , um⟩ in T[σl], and x ∈ ωω, we
have that ∀0 ≤ k ≤ m [zk = uk

⌢x], and for each n ∈ ω, ⟨u0⌢x↾n, . . . , um⌢x↾n⟩
is a minimal cycle in T[σl+n] and ⟨ui⌢x↾n, uj⌢x↾n⟩ /∈ Rσl+n

. By (5), (6), and the
completeness of the metric d2, there exists n ∈ N with

{n} =
⋂

n∈ω
(Hl+n)N (ui⌢x↾n, uj⌢x↾n).

For each n ∈ ω, choose nn ∈ (Hl+n)N (ui
⌢x↾n, uj⌢x↾n) with d2(n,nn) < 2−l−n

and choose ⟨π, φ, ψ⟩ ∈ Hl+n such that ψ(⟨ui⌢x↾n, uj⌢x↾n⟩) = nn. By (2) of Defi-
nition 3.12, q(nn) = ⟨π(ui⌢x↾n), π(uj⌢x↾n)⟩. Observe that d(π(ui

⌢x↾n),Π(zi)) <
2−l−n and d(π(uj

⌢x↾n),Π(zj)) < 2−l−n because π(ui
⌢x↾n) ∈ Hl+n(ui

⌢x↾n) and
π(uj

⌢x↾n) ∈ Hl+n(uj
⌢x↾n). By the continuity of q, q(n) = ⟨Π(zi),Π(zj)⟩. And

since q′′N = (X ×X) \R, ⟨Π(zi),Π(zj)⟩ /∈ R as needed. This verifies all of (2) and
concludes the proof. ⊣

Definition 3.24. A digraph ⟨X,R⟩ is said to be k-uniform if every minimal cycle
in X has length at most k.

Theorem 3.25. Let ⟨X,R⟩ be any analytic digraph. Exactly one of the following
alternatives holds:

(1) χ⃗w
B (⟨X,R⟩) ≤ ℵ0;

(2) for every selector E, there exists f ∈ F such that both of the following hold:
(a) ∀n,m ∈ ω [E(f↾m) ⊆ E(f↾n) =⇒ f(m) ≤ f(n)];
(b) there is a continuous homomorphism Π from G0(E, f) to ⟨X,R⟩.
Furthermore, if ⟨X,R⟩ is k-uniform, then f(n) ≤ k + 1, for every n ∈ ω.

Proof. Just as in the proof of Theorem 3.23, alternatives (1) and (2) are mutually
exclusive by an application of Lemma 3.8 and by the existence of dense selectors.

Now assume that χ⃗w
B (⟨X,R⟩) > ℵ0. Fix a selector E. Repeat the proof of Theo-

rem 3.23 without any reference to N , q, d2, or the minimality of S-homomorphisms.
More explicitly, let M be a Polish space and let p : M → X × X be a continu-
ous function with p′′M = R. For any σ ∈ F<ω, Sσ denotes the Polish space

XT[σ] ×M(T[σ]×T[σ]). A pair ⟨π, φ⟩ ∈ Sσ is an S-homomorphism if

∀ ⟨s, t⟩ ∈ Rσ [p(φ(⟨s, t⟩)) = ⟨π(s), π(t)⟩] .

Define Hom(σ) = {⟨π, φ⟩ ∈ Sσ : ⟨π, φ⟩ is an S-homomorphism}, and as before,
Hom(σ) is a closed subset of Sσ. For σ ∈ F<ω, H ⊆ Hom(σ), and s ∈ T[σ], define
H(s) = {π(s) : ∃φ [⟨π, φ⟩ ∈ H]} ⊆ X. And for ⟨s, t⟩ ∈ T[σ]×T[σ], define HM (s, t) =
{φ(⟨s, t⟩) : ∃π [⟨π, φ⟩ ∈ H]} ⊆ M . If H is a Borel subset of Hom(σ), then H(s) and
HM (s, t) are both Σ1

1. For σ ∈ F<ω, 2 ≤ n < ω, and i < n, define rn,i,σ : Sσ⌢⟨n⟩ →
Sσ so that for every ⟨π, φ⟩ ∈ Sσ⌢⟨n⟩, rn,i,σ(⟨π, φ⟩) = ⟨π′, φ′⟩, where for each s ∈
T[σ], π

′(s) = π(s⌢⟨i⟩), and for each ⟨s, t⟩ ∈ T[σ]×T[σ], φ′(⟨s, t⟩) = φ(⟨s⌢⟨i⟩, t⌢⟨i⟩⟩).
Each rn,i,σ is continuous. For σ ∈ F<ω, 2 ≤ n < ω, and H ⊆ Hom(σ), define

H⊗n = {⟨π, φ⟩ ∈ Hom(σ⌢⟨n⟩) : ∀i < n [rn,i,σ(⟨π, φ⟩) ∈ H]} .
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If H is Borel, then so is H⊗n. Now, the notions of tiny, small, and large can be
defined verbatim as in Definition 3.16. Using the same arguments as in the proofs
of Lemma 3.17 to Lemma 3.22, the following can be proved:

(3) if χ⃗w
B (⟨X,R⟩) > ℵ0, then Hom(∅) is large;

(4) if σ ∈ F<ω, s = E(σ), H ⊆ Hom(σ), and ⟨x0, . . . , xm⟩ is any cycle in
H(s), then there exists ⟨π, φ⟩ ∈ H⊗(m+1) such that π(s⌢⟨i⟩) = xi, for each
i < m+ 1;

(5) if σ ∈ F<ω, s = E(σ), and H ⊆ Hom(σ) is Borel and large, then there exist
2 ≤ n < ω and G ⊆ H such that G is Borel, H \G is small, G⊗n is large,
and G(s) does not contain any cycles of length less than n− 1;

(6) if d and d1 are compatible complete metrics on X and M respectively, σ ∈
F<ω, and H ⊆ Hom(σ) is Borel and large, then for every ε > 0, there exists

G ⊆ H so that G is Borel and large, for every t ∈ T[σ], diamd(G(t)) < ε,

and for every ⟨u, t⟩ ∈ T[σ] × T[σ], diamd1(GM (u, t)) < ε.

Fixing compatible complete metrics d and d1 on X andM respectively, it is possible
to use (3)–(6) to construct f ∈ F and ⟨Hn : n ∈ ω⟩ satisfying:

(7) Hn ⊆ Hom(σn) is Borel and large, where σn = f↾n, and Hn(sn) does not
contain any cycles of length less than f(n)− 1, where sn = E(σn);

(8) H
⊗f(n)
n is large and Hn+1 ⊆ H

⊗f(n)
n ;

(9) for each t ∈ T[σn], diamd(Hn(t)) < 2−n and for each ⟨u, t⟩ ∈ T[σn] × T[σn],

diamd1((Hn)M (u, t)) < 2−n;
(10) for any m < n, s ∈ T[σm] and x ∈ ω<ω such that s⌢x ∈ T[σn],

Hn(s
⌢x) ⊆ Hm(s),

and for any ⟨s, t⟩ ∈ T[σm] × T[σm] and x ∈ ω<ω such that ⟨s⌢x, t⌢x⟩ ∈
T[σn] × T[σn],

(Hn)M (⟨s⌢x, t⌢x⟩) ⊆ (Hm)M (⟨s, t⟩).

Now, the verification of (2)(a) is identical to the corresponding argument in the
proof of Theorem 3.23. Also, the map Π : [Tf ] → X can be defined exactly as in
the proof of Theorem 3.23 and the verification of (2)(b) is similar to the verification
of the first half of (2)(b) of Theorem 3.23. To see the final sentence of (2), assume

that ⟨X,R⟩ is k-uniform. For each n ∈ ω, Hn+1 is a non-empty subset of H
⊗f(n)
n ,

so consider ⟨π, φ⟩ ∈ Hn+1. Then ⟨π(sn⌢⟨0⟩), . . . , π(sn⌢⟨f(n)− 1⟩)⟩ is a cycle of
length f(n)− 1 in Hn(sn). Since Hn(sn) does not contain any cycle of length less
than f(n)− 1, ⟨π(sn⌢⟨0⟩), . . . , π(sn⌢⟨f(n)− 1⟩)⟩ must be a minimal cycle, and so
by k-uniformity, f(n)− 1 ≤ k, as claimed. ⊣

As noted after Definition 2.19, Item (1) of Theorems 3.23 and 3.25 is equivalent to
the condition that χ⃗B (⟨X,R⟩) ≤ ℵ0. We do not know whether the homomorphism
Π can be chosen to be minimal in the case when ⟨X,R⟩ is analytic, but not Borel.

Question 3.26. Suppose ⟨X,R⟩ is an analytic digraph with χ⃗w
B (⟨X,R⟩) > ℵ0.

Is it true that for every selector E, there exist f ∈ F and a continuous minimal
homomorphism Π from G0(E, f) to ⟨X,R⟩?

Next, we will show that the G0 dichotomy of Kechris, Solecki, and Todorcevic is
a consequence of Theorem 3.25.

Definition 3.27. D ⊆ 2<ω is said to be dense if ∀s ∈ 2<ω∃t ∈ D [s ⊆ t].
For D ⊆ 2<ω, G0(D) is the graph ⟨X,R⟩, where X = 2ω and

R = {⟨s⌢⟨i⟩⌢x, s⌢⟨i+ 1 mod 2⟩⌢x⟩ : s ∈ D ∧ i ∈ 2 ∧ x ∈ 2ω} .
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Corollary 3.28 (G0-Dichotomy [20]). Let ⟨X,R⟩ be any analytic graph. Exactly
one of the following alternatives holds:

(1) χw
B (⟨X,R⟩) ≤ ℵ0;

(2) for every D ⊆ 2<ω with the property that ∀n ∈ ω [|D ∩ 2n| = 1], there is a
continuous homomorphism from G0(D) to ⟨X,R⟩.

Proof. The argument of Lemma 3.8 shows that if D ⊆ 2<ω is dense and has the
property that ∀n ∈ ω [|D ∩ 2n| = 1], then χw

B (G0(D)) ≥ cov(M). It follows from
this and from the existence of a dense D ⊆ 2<ω such that ∀n ∈ ω [|D ∩ 2n| = 1]
that the alternatives (1) and (2) are mutually exclusive.

Assume that χw
B (⟨X,R⟩) > ℵ0. This implies χ⃗w

B (⟨X,R⟩) > ℵ0. Fix any D ⊆ 2<ω

so that ∀n ∈ ω [|D ∩ 2n| = 1]. Define a selector E : F<ω → ω<ω as follows. If
σ ∈ F<ω is such that ∀k ∈ dom(σ) [σ(k) = 2], then define E(σ) to be the unique
element of D ∩ 2dom(σ). Otherwise, define E(σ) to be an arbitrary element of
T[σ]. By Theorem 3.25, there exists f ∈ F and a continuous homomorphism from
G0(E, f) to ⟨X,R⟩. Furthermore, since ⟨X,R⟩ is 1-uniform, f(k) ≤ 2 and since
f ∈ F , f(k) = 2, for all k ∈ ω. Therefore G0(E, f) = G0(D) and the conclusion
follows. ⊣

Once again, as mentioned after Definition 2.19, Item (1) of Corollary 3.28 is
equivalent to the assertion that χB (⟨X,R⟩) ≤ ℵ0. Next, we associate a Borel quasi
order with every Borel digraph as follows.

Definition 3.29. Let G = ⟨X,R⟩ be a digraph. Define PG = 2 × X and ≤G =
{⟨⟨i, x⟩ , ⟨j, y⟩⟩ ∈ PG × PG : (⟨i, x⟩ = ⟨j, y⟩) ∨ (i = 0 ∧ j = 1 ∧ ⟨x, y⟩ ∈ R)}. Define
P(G) = ⟨PG ,≤G⟩. It is clear that P(G) is a quasi-order and that E≤G is equality.
Furthermore, if G is a Borel digraph, then P(G) is a Borel quasi order.

Lemma 3.30. Suppose G = ⟨X,R⟩ is a Borel digraph. Then there is a Borel homo-
morphism from G to

〈
AP(G),RP(G)

〉
. In particular, if X ̸= ∅, then odimB(P(G)) ≥

χ⃗w
B (G).

Proof. Define f : X → AP(G) by f(x) = ⟨⟨1, x⟩ , ⟨0, x⟩⟩, for every x ∈ X. Note
that f(x) ∈ AP(G) because ⟨x, x⟩ /∈ R and that f is a Borel map with respect to
any Polish topology on AP(G) which extends the topology on AP(G) inherited from
PG ×PG . Further, for any x, y ∈ X, ⟨x, y⟩ ∈ R if and only if ⟨0, x⟩ ≤G ⟨1, y⟩ if and
only if f(x) RP(G) f(y). It follows that χ⃗w

B

(〈
AP(G),RP(G)

〉)
≥ χ⃗w

B (G). If x ∈ X,
then ⟨0, x⟩ , ⟨1, x⟩ ∈ PG , and [⟨0, x⟩]E≤G

̸= [⟨1, x⟩]E≤G
. Therefore, if X ̸= ∅, then∣∣PG/E≤G

∣∣ > 1, and so by Theorem 2.30, odimB (P(G)) = χ⃗w
B

(〈
AP(G),RP(G)

〉)
≥

χ⃗w
B (G). ⊣

Corollary 3.31. For every dense selector E and for every f ∈ F , we have
odimB (P (G0(E, f))) ≥ cov(M).

We are now ready to state and prove our third and final dichotomy. The basic
objects of this dichotomy are the Borel quasi orders of the form P (G0(E, f)). The
morphisms will be continuous order preserving maps that also preserve the order
incomparability of certain elements. The dichotomy characterizes the Borel quasi
orders of uncountable Borel order dimension in terms of the existence of such a
morphism from one of the basic objects.

Theorem 3.32. For any Borel quasi order P = ⟨P,≤⟩, exactly one of the following
holds:

(1) odimB (P) ≤ ℵ0;
(2) for every selector E, there exist f ∈ F and a continuous φ : 2× [Tf ] → P

such that both of the following hold:
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(a) ∀x, y ∈ [Tf ]
[
⟨0, x⟩≤G0(E,f) ⟨1, y⟩ =⇒ φ(⟨0, x⟩) ≤ φ(⟨1, y⟩)

]
;

(b) for every x ∈ [Tf ], φ(⟨0, x⟩) and φ(⟨1, x⟩) are ≤-incomparable.

Proof. Let us first see that (1) and (2) are mutually exclusive. Assume (2). Fix a
dense selector E. Let f ∈ F and φ : 2× [Tf ] → P be a continuous map satisfying
(2)(a) and (2)(b). Define ψ : [Tf ] → AP by ψ(x) = ⟨φ(⟨1, x⟩), φ(⟨0, x⟩)⟩, for all
x ∈ [Tf ]. Note that ψ(x) ∈ AP because of (2)(b) and that ψ is a Borel map with
respect to any Polish topology on AP which extends the topology on AP inherited
from P × P . Further, if ⟨x, y⟩ ∈ RE,f , then ⟨0, x⟩≤G0(E,f) ⟨1, y⟩, which by (2)(a)
implies φ(⟨0, x⟩) ≤ φ(⟨1, y⟩), which in turn implies ⟨ψ(x), ψ(y)⟩ ∈ RP . By (2)(b),
|P/E≤| > 1. It follows that odimB(P) = χ⃗w

B (⟨AP ,RP⟩) ≥ χ⃗w
B (G0(E, f)) > ℵ0.

Now assume that odimB(P) > ℵ0. By Corollary 2.34, χ⃗w
B (⟨BP ,SP⟩) > ℵ0. Let

E be any selector. Using Theorem 3.23, fix f ∈ F and a continuous minimal
homomorphism Π from G0(E, f) to ⟨BP ,SP⟩. Define φ : 2 × [Tf ] → P as follows.
Given x ∈ [Tf ], Π(x) = ⟨px, qx⟩ ∈ BP . By the definition of BP , px ≰ qx and
qx ≰ px. Define φ(⟨0, x⟩) = qx and φ(⟨1, x⟩) = px. It is easily verified that φ is
continuous and (2)(b) holds by definition. For (2)(a), assume ⟨0, x⟩≤G0(E,f) ⟨1, y⟩.
Then ⟨x, y⟩ ∈ RE,f , whence ⟨Π(x),Π(y)⟩ ∈ SP , whence ⟨Π(x),Π(y)⟩ ∈ RP , whence
qx ≤ py, whence φ(⟨0, x⟩) ≤ φ(⟨1, y⟩), as needed. ⊣

Corollary 3.33. For any Borel quasi order P, odimB(P) ≤ ℵ0 or odimB(P) ≥
cov(M).

Proof. If odimB(P) > ℵ0, then (2) of Theorem 3.32 holds. If (2) of Theorem 3.32
holds, then the argument in the first paragraph of the proof of Theorem 3.32 shows
that odimB(P) ≥ χ⃗w

B (G0(E, f)), for some dense selector E and f ∈ F . By Lemma
3.8, χ⃗w

B (G0(E, f)) ≥ cov(M), whence odimB(P) ≥ cov(M). ⊣

Our next task is to obtain further structural information about Borel quasi orders
of countable Borel order dimension. We will show that every such order has a Borel
linearization. Kanovei [18] proved a dichotomy that characterized the Borel quasi
orders that are Borel linearizable. The basic object of his dichotomy is the following
quasi order.

Definition 3.34. Recall that for x, y ∈ 2ω, xE0y if and only if {n ∈ ω : x(n) ̸=
y(n)} is finite. On 2ω, define the quasi ordering ≤0 by x ≤0 y if and only if x = y,
or x ̸= y and xE0y and for the maximal n ∈ ω such that x(n) ̸= y(n), we have
x(n) < y(n). Clearly, ⟨2ω,≤0⟩ is a Borel quasi order. It is easily verified that E≤0

is equality and elements in distinct E0 classes are incomparable.

Kanovei proved that a Borel quasi order has a Borel linearization if and only if
there is no continuous injection from ⟨2ω,≤0⟩ that is order preserving and maps
E0-inequivalent elements to incomparable ones (see Theorem 3.37 below).

Lemma 3.35. Suppose ⪯ is a Borel quasi order on 2ω extending ≤0. Then ⪯ is a
meager subset of 2ω × 2ω.

Proof. Suppose not. There exist s, t ∈ 2<ω such that |s| = |t| and ⪯ ∩ (U × V )
is comeager in U × V , where U = {z ∈ 2ω : s⌢⟨1⟩ ⊆ z} and V = {z ∈
2ω : t⌢⟨0⟩ ⊆ z}. Define ψ : U × V → U × V by ψ (⟨s⌢⟨1⟩⌢x, t⌢⟨0⟩⌢y⟩) =
⟨s⌢⟨1⟩⌢y, t⌢⟨0⟩⌢x⟩, for every x, y ∈ 2ω. Then ψ is an auto-homeomorphism of
U × V , and hence ⪯ ∩ (U × V ) ∩ ψ−1 (⪯ ∩ (U × V )) is non-empty. Find x, y ∈ 2ω

so that s⌢⟨1⟩⌢x ⪯ t⌢⟨0⟩⌢y and s⌢⟨1⟩⌢y ⪯ t⌢⟨0⟩⌢x. Since |s| = |t|, we
have s⌢⟨1⟩⌢y ⪯ t⌢⟨0⟩⌢x ≤0 s⌢⟨1⟩⌢x ⪯ t⌢⟨0⟩⌢y ≤0 s⌢⟨1⟩⌢y. This means
⟨s⌢⟨1⟩⌢y, t⌢⟨0⟩⌢x⟩ ∈ E⪯ = E≤0

, which is impossible as E≤0
is equality. ⊣

Lemma 3.36. odimB (⟨2ω,≤0⟩) > ℵ0.
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Proof. Suppose ⟨⪯i : i < ω⟩ is a sequence of Borel quasi orders on 2ω extending
≤0. Write M =

⋃
i<ω⪯i and N = {⟨y, x⟩ : ⟨x, y⟩ ∈ M}. By Lemma 3.35, M ∪ N

is a meager subset of 2ω × 2ω. Choose any ⟨y, x⟩ ∈ (2ω × 2ω) \ (M ∪N). Then
x ̸≤0 y, and yet y ̸⪯i x, for any i < ω. Therefore ⟨⪯i : i < ω⟩ cannot witness
odimB (⟨2ω,≤0⟩) ≤ ℵ0. ⊣

Theorem 3.37 (Kanovei [18]). Suppose ⟨P,≤⟩ is a Borel quasi order. Then exactly
one of the following two conditions is satisfied:

(1) ⟨P,≤⟩ is Borel linearizable;
(2) there is a continuous 1-1 map F : 2ω → P satisfying both of the following:

(a) a ≤0 b =⇒ F (a) ≤ F (b);
(b) a�E0 b =⇒ F (a) and F (b) are ≤-incomparable.

Theorem 3.38. Let P = ⟨P,≤⟩ be a Borel quasi order. If odimB(P) ≤ ℵ0, then
P is Borel linearizable.

Proof. Assume for a contradiction that P is not Borel linearizable. By Theorem 3.37
fix a continuous 1-1 map F : 2ω → P satisfying (2)(a) and (2)(b) of Theorem 3.37.
Fix any selector E. By Lemma 3.36 and Theorem 3.32, find f ∈ F and a continuous
φ : 2 × [Tf ] → 2ω such that (2)(a) and (2)(b) of Theorem 3.32 are satisfied with
respect to ≤0. Write ψ = F ◦ φ. Then ψ : 2 × [Tf ] → P is continuous. For
x, y ∈ [Tf ], if ⟨0, x⟩ ≤G0(E,f) ⟨1, y⟩, then φ(⟨0, x⟩) ≤0 φ(⟨1, y⟩), whence ψ(⟨0, x⟩) ≤
ψ(⟨1, y⟩). For any x ∈ [Tf ], φ(⟨0, x⟩) and φ(⟨1, x⟩) are ≤0-incomparable. Note that
if φ(⟨0, x⟩)E0φ(⟨1, x⟩), then, by the definition of≤0, φ(⟨0, x⟩) and φ(⟨1, x⟩) would be
≤0-comparable. Hence φ(⟨0, x⟩)�E0φ(⟨1, x⟩), whence ψ(⟨0, x⟩) and ψ(⟨1, x⟩) are ≤-
incomparable. Thus (2) of Theorem 3.32 holds for P, which means that odimB(P) >
ℵ0, a contradiction. ⊣

By a celebrated theorem of Harrington, Marker, and Shelah [11], Borel lineariz-
ability provides a good deal of structural information about a Borel quasi order. In
fact, if P is Borel linearizable, then P can be embedded into 2α equipped with the
lexicographical ordering, where α is some countable ordinal. In Theorem 3.40 and
Corollary 3.41 below ≤lex denotes the lexicographical ordering on 2α. The result
of Harrington, Marker, and Shelah applies to all the so called thin quasi orders.

Definition 3.39 (Harrington, Marker, and Shelah [11]). P is thin if there is no
perfect set of pairwise incomparable elements.

Theorem 3.40 (Harrington, Marker, and Shelah [11]). If P = ⟨P,≤⟩ is a thin
Borel quasi order, then for some α < ω1, there is a Borel f : P → 2α such that

(1) x ≤ y =⇒ f(x) ≤lex f(y) and
(2) x E≤ y ⇐⇒ f(x) = f(y), for all x, y ∈ P .

Theorem 3.40 has a number of important consequences for Borel quasi orders
and linear orders. Among other things, it implies that there are no Borel real-
izations of certain combinatorial counterexamples such as Suslin trees or Suslin
lattices. See [36] for further details. By combining Theorem 3.38 with Theorem
3.40 we get the following corollary which essentially says that every Borel quasi
order of countable Borel order dimension is Borel embeddable into ⟨2α,≤lex⟩, for
some countable α.

Corollary 3.41. Suppose P = ⟨P,≤⟩ is a Borel quasi order with odimB(P) ≤ ℵ0.
Then for some α < ω1, there is a Borel f : P → 2α such that

(1) x ≤ y =⇒ f(x) ≤lex f(y);
(2) x E≤ y ⇐⇒ f(x) = f(y),

for all x, y ∈ P .
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We will end this section with the following, somewhat ambitious, problem.

Question 3.42. Is there a classification of all the Borel quasi orders of countable
Borel order dimension? How about those of finite or bounded Borel order dimen-
sion?

4. Borel order dimension of locally countable Borel quasi orders

In this section, we will use the dichotomies proved in Section 3 to obtain more
information about locally countable Borel quasi orders. Recall this definition.

Definition 4.1. A quasi order P = ⟨P,≤⟩ is said to be locally countable (locally
finite) if for every x ∈ P , {y ∈ P : y ≤ x} is countable (finite).

Many important naturally occurring examples of Borel quasi orders are locally
countable, for instance, the Turing degrees.

Definition 4.2. For x, y ∈ 2ω, x ≤T y will mean that x is Turing reducible to y.
Define D = ⟨2ω,≤T ⟩.

Observe that if E is a dense selector and f ∈ F , then P(G0(E, f)) is locally
countable. This is because for any z ∈ [Tf ], for each l ∈ ω, there are at most finitely
many y such that z↾l = E(f↾l) = y↾l and y RE,f z. Therefore, {y ∈ [Tf ] : y RE,f z}
is countable, hence {⟨0, y⟩ ∈ PG0(E,f) : ⟨0, y⟩ ≤G0(E,f) ⟨1, z⟩} is countable. So
Theorem 3.32 says that for any Borel quasi order P, if odimB(P) > ℵ0, then this
fact is witnessed by an order-preserving continuous map from some locally countable
Borel quasi order.

The classical order dimension of D was investigated in detail in [15] and in [23].
Kumar and Raghavan [23] showed that D has the largest order dimension among
all locally countable orders of size at most continuum. Higuchi, Lempp, Raghavan,
and Stephan [15] proved that if 2ℵ0 = κ+, where cf(κ) > ω, then odim(D) ≤ κ.
Hence we obtain the following corollary to the results of Section 3 that is worth
explicitly stating.

Corollary 4.3. If PFA holds, then odim(D) = ℵ1 < ℵ2 = odimB(D) = 2ℵ0 .

Proof. Since PFA implies 2ℵ0 = ℵ2, Proposition 4.3 and Theorem 3.11 of [15]
imply that odim(D) = ℵ1. Since odimB(D) ≥ odim(D), Corollary 3.32 implies that
odimB(D) ≥ cov(M). Under PFA, cov(M) = ℵ2 = 2ℵ0 , so the result follows. ⊣

The following notions were crucial for the results in Kumar and Raghavan [23].
They were able to use the notion of separation defined below to provide a purely
combinatorial characterization of odim(D).

Definition 4.4. Let P be a set and λ a cardinal. A family F ⊆ P(P ) separates

points from elements of [P ]
<λ

if for every A ∈ [P ]
<λ

and p ∈ P \ A, there exists
X ∈ F such that p ∈ X and A ∩X = ∅.

A sequence ⟨<i : i ∈ I⟩ of partial orders on P separates points from elements of

[P ]
<λ

if for every A ∈ [P ]
<λ

and p ∈ P \A, there exists i ∈ I so that ∀q ∈ A [q <i p].

We will now show that the notion of separation by Borel sets or by Borel partial
orders can be used to provide upper bounds on odimB(P), where P is any locally
countable Borel quasi order.

Definition 4.5. Let X be a Polish space and λ, κ cardinals. We say that †(X,λ, κ)
holds if there is a sequence ⟨<i : i < κ⟩ of Borel partial orders on X which separates

points from elements of [X]
<λ

.
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Lemma 4.6. Let X be a Polish space and ⪯ a Borel quasi order on X with ⟨X,⪯⟩
being locally countable. Let < be a Borel partial order on X. Then there exists a
Borel quasi order ⊴ on X that extends ⪯ and has the property that for any x, y ∈ X,
if ∀u ⪯ x [u < y], then x ⊴ y.

Proof. Define R = {⟨y, x⟩ ∈ X ×X : ∃u ⪯ x∀v ⪯ y [v < u]}. Define

⊴ = {⟨x, y⟩ ∈ X ×X : ⟨x, y⟩ ∈ ⪯ ∨ ⟨x, y⟩ ∈ R} .
It is an easy exercise to verify that ⊴ is a quasi order on X which is an extension
of ⪯ in the sense of Definition 2.9. If x, y ∈ X are such that ∀u ⪯ x [u < y], then
⟨x, y⟩ ∈ R by definition, whence x ⊴ y. Therefore to complete the proof, it suffices
to verify that ⊴ is a Borel subset of X ×X, and since it is known that ⪯ is a Borel
subset of X ×X, it suffices for this to check that R is Borel.

To this end, write Q = {⟨y, x⟩ ∈ X × X : x ⪯ y}. Q is Borel and by the
hypothesis that ⟨X,⪯⟩ is locally countable, Qy = {x ∈ X : ⟨y, x⟩ ∈ Q} is countable
for every y ∈ X. By the Luzin–Novikov theorem write Q =

⋃
n∈ωQn, where each

Qn is Borel and is the graph of a function. Thus for each n ∈ ω, dom(Qn) is a
Borel subset of X. We write Qn(x) to denote the unique y ∈ X with ⟨x, y⟩ ∈ Qn,
for every n ∈ ω and x ∈ dom(Qn). For n,m ∈ ω, define

Bn,m = {⟨x, y⟩ ∈ dom(Qn)× dom(Qm) : ⟨Qn(x), Qm(y)⟩ ∈ <}.
Bn,m is Borel. For each n,m ∈ ω, define

Cn,m = Bn,m ∪ ((X \ dom(Qn))× dom(Qm)) ,

and note that Cn,m is also Borel. Therefore,
⋃

m∈ω

⋂
n∈ωCn,m is Borel, and it is

easily checked that R =
⋃

m∈ω

⋂
n∈ωCn,m. ⊣

Lemma 4.7. Suppose X is a Polish space, κ is a cardinal, λ ∈ {ℵ0,ℵ1}, and that
†(X,λ, κ) holds. If ⟨X,⪯⟩ is a Borel quasi order with the property that for every
x ∈ X, |{y ∈ X : y ⪯ x}| < λ, then odimB(⟨X,⪯⟩) ≤ κ.

Proof. Note that the hypothesis on ⟨X,⪯⟩ implies that it is locally countable, hence
Lemma 4.6 is applicable. By †(X,λ, κ), fix a sequence ⟨<i : i < κ⟩ of Borel partial
orders on X which separates points from elements of [X]

<λ
. By Lemma 4.6, for

every i < κ, let ⊴i be a Borel quasi order on X that extends ⪯ and has the property
that for any x, y ∈ X, if ∀u ⪯ x [u <i y], then x ⊴i y. Consider x, y ∈ X with y ⪯̸ x.

Then A = {u ∈ X : u ⪯ x} ∈ [X]
<λ

and y ∈ X \ A. Hence there exists i < κ
such that ∀u ∈ A [u <i y], whence x ⊴i y. Therefore, ⟨⊴i : i < κ⟩ is a witness that
odimB(⟨X,⪯⟩) ≤ κ. ⊣

Lemma 4.8. For any Polish space X, †(X,ℵ0,ℵ0) holds.

Proof. Fix a closed F ⊆ ωω and a continuous bijection f : F → X. For s ∈ ω<ω,
let Fs = F ∩ {r ∈ ωω : s ⊆ r}. Since f is 1-1 and continuous, Bs = f ′′Fs is a
Borel subset of X. Define <s = {⟨x, y⟩ ∈ X × X : x /∈ Bs ∧ y ∈ Bs}. Then <s

is Borel and it is easily seen to be a partial order on X. Now suppose A ⊆ X is
finite and y ∈ X \ A. Then f−1(A) ⊆ F is finite and if u ∈ F is unique so that
f(u) = y, then u /∈ f−1(A). Hence there exists s ∈ ω<ω such that u ∈ Fs, but
f−1(A) ∩ Fs = ∅. It follows that y ∈ Bs, but A ∩Bs = ∅, whence ∀x ∈ A [x <s y].
Therefore, ⟨<s : s ∈ ω<ω⟩ witnesses †(X,ℵ0,ℵ0). ⊣

It was pointed out in [15] that a theorem of Kierstead and Milner [21] implies that

for every locally finite partial order ⟨P,<⟩ of size at most 22
ℵ0
, odim (⟨P,<⟩) ≤ ℵ0.

It turns out that the Borel analog of this true as well.

Theorem 4.9. If ⟨X,⪯⟩ is a locally finite Borel quasi order, then odimB (⟨X,⪯⟩) ≤
ℵ0.
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Proof. By combining Lemmas 4.7 and 4.8. ⊣

Corollary 4.10. Every locally finite Borel quasi order has a Borel linearization.

Next we use ideas from [24] to show that the Borel order dimension of every
locally countable Borel quasi order may consistently be any regular cardinal below
the continuum, with the continuum being arbitrarily large. Thus ZFC does not
prove that there is some locally countable Borel quasi order whose Borel order
dimension is equal to 2ℵ0 . In this model, we also get that for some fixed λ ≤ 2ℵ0 ,
χ⃗w
B (G0(E, f)) = λ, for every f ∈ F and dense selector E. Geschke [10] has obtained

consistency results on the weak Borel chromatic number of Borel graphs.
Harrington introduced a c.c.c. forcing for adding a generic Gδ set. Miller [28, 29]

introduced a modification of Harrington’s forcing and used it to obtain consistency
results about Borel hierarchies. A new c.c.c. forcing notion, which is an amalgam of
a forcing from Kumar and Raghavan [24] and the one from Miller [29], is introduced
below. Our forcing generically adds a family of ℵ1 many Gδ sets that separates
countable sets in the ground model from points.

Definition 4.11. For ordinals α, δ, define α[<δ] = {X ⊆ α : otp(X) < δ}.

Definition 4.12. Let κ be a cardinal and δ < ω1 be an indecomposable ordinal.
Define

G ∗
κ,δ =

{
g : g is a function ∧ dom(g) ∈ κ[<δ] ∧ ran(g) ⊆ [ω]

<ℵ0

}
,

Gκ,δ =
{
g ∈ G ∗

κ,δ : ∀n ∈ ω [|{α ∈ dom(g) : n ∈ g(α)}| < ℵ0]
}
.

For g1, g2 ∈ Gκ,δ, define g2 ≤G g1 if and only if dom(g2) ⊇ dom(g1) and ∀α ∈
dom(g1) [g2(α) ⊇ g1(α)]. It is clear that ≤G is a quasi order.

Definition 4.13. Define

F =
{
f : f is a function ∧ dom(f) ∈

[
ω<ω

]<ℵ0 ∧ ran(f) ⊆ [ω]
<ℵ0

}
.

For f1, f2 ∈ F define f2 ≤F f1 if and only if dom(f2) ⊇ dom(f1) and ∀s ∈
dom(f1) [f2(s) ⊇ f1(s)]. Clearly, ≤F is a quasi order.

Definition 4.14. Let E : 2ℵ0 → ωω be a bijection. Let δ < ω1 be indecomposable.

Define RE,δ to be the collection of all ⟨f, g, h⟩ ∈ F × G2ℵ0 ,δ ×
[
2ℵ0

]<ℵ0
satisfying

the following conditions:

(1) h ∩ dom(g) = ∅;
(2) ∀α ∈ dom(g)∀l ∈ ω [E(α)↾l ∈ dom(f) =⇒ g(α) ∩ f(E(α)↾l) = ∅].

Given p = ⟨fp, gp, hp⟩ ∈ RE,δ and q = ⟨fq, gq, hq⟩ ∈ RE,δ, define q ≤R p if and only
if fq ≤F fp, gq ≤G gp, and hq ⊇ hp. Then it is clear that ⟨RE,δ,≤R⟩ is a forcing
notion, and when p = ⟨f, g, h⟩ ∈ RE,δ, we will write fp, gp, and hp to denote f, g,
and h respectively.

Define SE to be the finite support product of the RE,δ as δ ranges over the
countable indecomposable ordinals. In other words, SE is the collection of all p such
that p is a function, dom(p) is a finite subset of {δ < ω1 : δ is indecomposable}, and
∀δ ∈ dom(p) [p(δ) ∈ RE,δ]. And for p, q ∈ SE , q ≤S p if and only if dom(q) ⊇ dom(p)
and ∀δ ∈ dom(p) [q(δ) ≤R p(δ)]. Then ⟨SE ,≤S⟩ is a forcing notion.

Lemma 4.15. Let E : 2ℵ0 → ωω be a bijection. Let δ < ω1 be indecomposable.
Then the following hold:

(1) for each n ∈ ω, Dn = {q ∈ RE,δ : ∃s ∈ dom(fq) [n ∈ f(s)]} is dense;
(2) for each p ∈ RE,δ, β ∈ hp, and n ∈ ω,

Dp,β,n = {r ≤R p : ∃l ∈ ω [E(β)↾l ∈ dom(fr) ∧ n ∈ fr(E(β)↾l)]}
is dense below p;
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(3) for each p ∈ RE,δ and α ∈ dom(gp), Dp,α = {r ≤R p : gr(α) ̸= ∅} is dense
below p.

Proof. For (1): fix p ∈ RE,δ. Then X = {E(α) : α ∈ dom(gp) ∧ n ∈ gp(α)} ⊆ ωω

is finite. Hence it is possible to find s ∈ ω<ω \ dom(fp) such that s ̸⊆ x, for all
x ∈ X. Define fq = fp ∪ {⟨s, {n}⟩}, gq = gp, and hq = hp. To see that (2) of
Definition 4.14 holds, suppose α ∈ dom(gq), l ∈ ω, and that E(α)↾l ∈ dom(fq). If
E(α)↾l ∈ dom(fp), then gq(α) ∩ fq(E(α)↾l) = gp(α) ∩ fp(E(α)↾l) = ∅. Otherwise,
E(α)↾l = s, which means E(α) /∈ X, and so n /∈ gp(α). Hence gq(α)∩fq(E(α)↾l) =
gp(α) ∩ {n} = ∅. Therefore, q ≤R p and q ∈ Dn, as required.

For (2): fix any q ≤R p. Once again, X = {E(α) : α ∈ dom(gq)∧n ∈ gq(α)} is a
finite set. Further, since β ∈ hp ⊆ hq and hq ∩ dom(gq) = ∅, E(β) /∈ X. Therefore,
there exists l ∈ ω such that E(β)↾l ∈ ω<ω \ dom(fq) and E(β)↾l ̸⊆ x, for all
x ∈ X. Define fr = fq ∪ {⟨E(β)↾l, {n}⟩}, gr = gq, and hr = hq. As before, suppose
α ∈ dom(gr), m ∈ ω, and that E(α)↾m ∈ dom(fr). If E(α)↾m ∈ dom(fq), then
gr(α) ∩ fr(E(α)↾m) = gq(α) ∩ fq(E(α)↾m) = ∅, while if not, then E(β)↾l ⊆ E(α),
whence n /∈ gq(α) and gr(α) ∩ fr(E(α)↾m) = gq(α) ∩ {n} = ∅. Thus r ≤R q and
r ∈ Dp,β,n, as needed.

For (3): fix any q ≤R p. Then
⋃
ran(fq) is a finite subset of ω. Choose n ∈

ω\(
⋃
ran(fq)). Define gr to be the function such that dom(gr) = dom(gq), gr(α) =

gq(α) ∪ {n}, and gr(β) = gq(β), for all β ∈ dom(gq) \ {α}. Note gr ∈ G2ℵ0 ,δ and
gr ≤G gq. Define fr = fq and hr = hq. Note hr ∩ dom(gr) = hq ∩ dom(gq) = ∅.
Suppose β ∈ dom(gr), l ∈ ω, and that E(β)↾l ∈ dom(fr). Then gr(β)∩fr(E(β)↾l) ⊆
(gq(β) ∪ {n})∩ fq(E(β)↾l) = gq(β)∩ fq(E(β)↾l) = ∅ because n /∈ fq(E(β)↾l). Thus
r ≤R q and r ∈ Dp,α, as needed. ⊣

Definition 4.16. Suppose V is a transitive model of a sufficiently large fragment
of ZFC. In V, suppose that E : 2ℵ0 → ωω is a bijection and that δ < ω1 is inde-
composable. Suppose G is a (V,RV

E,δ)-generic filter. In V[G], define the following

sets. For each n ∈ ω, UG,n =
⋃
{[s] : ∃p ∈ G [s ∈ dom(fp) ∧ n ∈ fp(s)]}, where

[s] = {x ∈ ωω : s ⊆ x}, for every s ∈ ω<ω. Define FG =
⋂

n∈ωUG,n. Define
GG = {E(α) : ∃p ∈ G [α ∈ dom(gp)]} and HG = {E(α) : ∃p ∈ G [α ∈ hp]}.

Lemma 4.17. FG is a Gδ set such that HG ⊆ FG and GG ∩ FG = ∅.

Proof. It is clear from the definition that FG is a Gδ set. Suppose p ∈ G, α ∈ hp
and n ∈ ω. By (2) of Lemma 4.15, Dp,α,n is dense below p, and so, there exist
q ∈ G and l ∈ ω with E(α)↾l ∈ dom(fq) and n ∈ fq(E(α)↾l), whence E(α) ∈ UG,n.
As this is for every n ∈ ω, E(α) ∈ FG. This shows HG ⊆ FG. Next, suppose for
a contradiction that p ∈ G, α ∈ dom(gp), and that E(α) ∈ FG. By (3) of Lemma
4.15, there exist q ∈ G and n ∈ ω with q ≤R p and n ∈ gq(α). Since we have
assumed E(α) ∈ FG, there exist r ∈ G and l ∈ ω so that E(α)↾l ∈ dom(fr) and
n ∈ fr(E(α)↾l). Find r∗ ∈ G with r∗ ≤R q, r. Then we have α ∈ dom(gr∗), l ∈ ω,
E(α)↾l ∈ dom(fr∗), and n ∈ gr∗(α) ∩ fr∗(E(α)↾l) = ∅ because r∗ satisfies (2) of
Definition 4.14. This contradiction shows GG ∩ FG = ∅. ⊣

Definition 4.18. Suppose δ < ω1 is indecomposable and that ℵ0 ≤ κ is a cardinal.
Define Qκ,δ to be the collection of all p such that p is a function, dom(p) ∈ κ[<δ],
ran(p) ⊆ 2, and {ξ ∈ dom(p) : p(ξ) = 1} is finite. For p, q ∈ Qκ,δ, define q ≤Q p if
and only if q ⊇ p.

Define Pκ to be the finite support product of the Qκ,δ as δ ranges over the
indecomposable countable ordinals. In other words, Pκ is the collection of all p such
that p is a function, dom(p) is a finite subset of {δ < ω1 : δ is indecomposable}, and
∀δ ∈ dom(p) [p(δ) ∈ Qκ,δ]. For p, q ∈ Pκ, q ≤P p if and only if dom(q) ⊇ dom(p)
and ∀δ ∈ dom(p) [q(δ) ≤Q p(δ)].
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For an indecomposable δ < ω1 and a bijection E : 2ℵ0 → ωω define jδ : RE,δ →
Q2ℵ0 ,δ as follows. Given p ∈ RE,δ, jδ(p) = q, where q is the function such that

dom(q) = dom(gp) ∪ hp, q
−1({1}) = hp, and q−1({0}) = dom(gp). Define j :

SE → P2ℵ0 as follows. Given p ∈ SE , j(p) = q, where q is the function such that
dom(q) = dom(p) and ∀δ ∈ dom(q) [q(δ) = jδ(p(δ))].

The forcings Qκ,δ and Pκ were first defined by Kumar and Raghavan [24]. They
proved that Pκ is c.c.c. for all infinite κ. We will now use this fact to prove that
SE is c.c.c.

Lemma 4.19. Suppose E : 2ℵ0 → ωω is a bijection and δ < ω1 is indecomposable.
For any p, q ∈ RE,δ, if fp = fq and jδ(p) ̸⊥Q jδ(q), then p ̸⊥R q.

Proof. Define gr to be the function such that dom(gr) = dom(gp) ∪ dom(gq), ∀α ∈
dom(gp) \ dom(gq) [gr(α) = gp(α)], ∀α ∈ dom(gq) \ dom(gp) [gr(α) = gq(α)], and
∀α ∈ dom(gp) ∩ dom(gq) [gr(α) = gp(α) ∪ gq(α)]. Note that gr ∈ G2ℵ0 ,δ and that
gr ≤G gp, gq. Define fr = fp = fq and hr = hp∪hq. Since jδ(p) ̸⊥Q jδ(q), it follows
that dom(gp) ∩ hq = ∅ = dom(gq) ∩ hp. Therefore, dom(gr) ∩ hr = ∅. Next, fix
α ∈ dom(gr), l ∈ ω, and assume that E(α)↾l ∈ dom(fr) = dom(fp) = dom(fq).
Then if α ∈ dom(gp), then gp(α) ∩ fp(E(α)↾l) = ∅ and if α ∈ dom(gq), then
gq(α) ∩ fq(E(α)↾l) = ∅. It follows that gr(α) ∩ fr(E(α)↾l) = ∅. Thus we have
verified that r ∈ RE,δ. Since r ≤R p, q, p ̸⊥R q, as claimed. ⊣

Lemma 4.20. SE is c.c.c.

Proof. For a contradiction, assume that ⟨pγ : γ < ω1⟩ is an antichain in SE . Write

I = {δ < ω1 : δ is indecomposable} and Dγ = dom(pγ) ∈ [I]
<ℵ0 . Also, for each γ <

ω1 and each δ ∈ Dγ , write pγ(δ) = ⟨fγ,δ, gγ,δ, hγ,δ⟩ instead of
〈
fpγ(δ), gpγ(δ), hpγ(δ)

〉
for ease of notation. Find A ∈ [ω1]

ℵ1 and D ∈ [I]
<ℵ0 such that ⟨Dγ : γ ∈ A⟩ is a

∆-system with root D. Since FD is a countable set, find ⟨fδ : δ ∈ D⟩ ∈ FD and

B ∈ [A]
ℵ1 such that ∀γ ∈ B∀δ ∈ D [fγ,δ = fδ]. For each γ ∈ B, define qγ = j(pγ) ∈

P2ℵ0 and note that dom(qγ) = dom(pγ) = Dγ and that ∀δ ∈ D [qγ(δ) = jδ(pγ(δ))].
Now consider any γ, γ∗ ∈ B with γ ̸= γ∗. By hypothesis, pγ ⊥S pγ∗ . So there
exists δ ∈ D where pγ(δ) ⊥R pγ∗(δ). Since fγ,δ = fδ = fγ∗,δ, Lemma 4.19 implies
that jδ(pγ(δ)) ⊥Q jδ(pγ∗(δ)), in other words that qγ(δ) ⊥Q qγ∗(δ). Therefore,
qγ ⊥P qγ∗ . Thus we have shown that ⟨qγ : γ ∈ B⟩ is an uncountable antichain in
P2ℵ0 . However, it is proved in [24][Lemma 4.2. (1), pp. 8-9] that Pκ is c.c.c. for all
κ ≥ ω. This contradiction concludes the proof. ⊣

Theorem 4.21. Let V be a transitive model of a sufficiently large fragment of
ZFC. In V, suppose that E : 2ℵ0 → ωω is a bijection. Let G be a (V,SVE )-generic
filter. Then in V[G] there exists a family D of at most ℵ1 many Gδ subsets of ωω

such that for any A ∈ V ∩ [ωω]
<ℵ1 and any x ∈ (V ∩ ωω) \ A, there exists D ∈ D

with x ∈ D and A ∩D = ∅.

Proof. Note that since SE is c.c.c. in V, all cardinals are preserved. For p ∈ SE and
δ ∈ dom(p), write p(δ) = ⟨fp,δ, gp,δ, hp,δ⟩ instead of

〈
fp(δ), gp(δ), hp(δ)

〉
. For each

indecomposable δ < ω1, define G(δ) = {p(δ) : p ∈ G}. Then G(δ) is a (V,RV
E,δ)-

generic filter, and let F
V[G(δ)]
G(δ) , GG(δ), and HG(δ) be as in definition 4.16. By

Lemma 4.17, F
V[G(δ)]
G(δ) is a Gδ subset of (ωω)

V[G(δ)]
such that HG(δ) ⊆ F

V[G(δ)]
G(δ)

and GG(δ) ∩ F
V[G(δ)]
G(δ) = ∅. Define Dδ = F

V[G]
G(δ) . Then Dδ is a Gδ subset of

(ωω)
V[G]

and we claim that the family D = {Dδ : δ < ω1 ∧ δ is indecomposable}
has the required properties. Working in V, fix A ∈ [ωω]

<ℵ1 and x ∈ ωω \ A. Let
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B = E−1(A) ∈
[
2ℵ0

]<ℵ1
and let α ∈ 2ℵ0 be unique such that E(α) = x. Note that

α /∈ B. Define

DA,x = {p ∈ SE : ∃δ ∈ dom(p) [α ∈ hp,δ ∧B ⊆ dom(gp,δ)]} .

We will verify that DA,x is dense in SE . To see this consider p∗ ∈ SE and find
δ < ω1 such that δ is indecomposable, δ /∈ dom(p∗), and otp(B) < δ. Define
fp,δ = ∅. Define gp,δ to be the function such that dom(gp,δ) = B, and ∀β ∈
B [gp,δ(β) = ∅]. Define hp,δ = {α}. Then ⟨fp,δ, gp,δ, hp,δ⟩ ∈ RE,δ. Define p =
p∗ ∪ {⟨δ, ⟨fp,δ, gp,δ, hp,δ⟩⟩}. Then p ∈ DA,x and p ≤S p∗, showing that DA,x is
dense. Since G is (V,SE)-generic, there exists p ∈ G ∩ DA,x. Let δ ∈ dom(p) be
so that α ∈ hp,δ and B ⊆ dom(gp,δ). Then by definition x ∈ HG(δ) and A ⊆ GG(δ),

whence x ∈ F
V[G(δ)]
G(δ) and A ∩ F

V[G(δ)]
G(δ) = ∅. Since this is absolute, x ∈ Dδ and

A ∩Dδ = ∅, as required. ⊣

Theorem 4.22. Suppose V0 is any transitive model of a sufficiently large fragment
of ZFC. In V0, suppose that ℵ1 ≤ λ ≤ κ are cardinals so that λ is regular and
κℵ0 = κ. Then there is a c.c.c. forcing extension in which all of the following hold:

(1) 2ℵ0 = κ;
(2) for every locally countable Borel quasi order P, either odimB(P) ≤ ℵ0 or

odimB(P) = λ;
(3) for every dense selector E and every f ∈ F , χ⃗w

B (G0(E, f)) = λ.

Proof. First, produce a c.c.c. forcing extension V ⊇ V0 so that 2ℵ0 = κ holds in
V (e.g. force with Fn(κ × ω, 2) over V0, see [25][Lemma 5.14]). Now work in V

and define a finite support iteration
〈
Pα; Q̊α : α ≤ λ

〉
of c.c.c. forcings such that

for each α < λ, Q̊α is a full Pα-name such that

⊩Pα
∃E

[
E : 2ℵ0 → ωω is a bijection and Q̊α = SE

]
.

By Lemma 4.20, ⊩Pα
Q̊α is c.c.c., for every α < λ, so Pλ is c.c.c. and all cofinali-

ties and cardinals are preserved. Further, for each α < λ, ⊩Pα

∣∣∣Q̊α

∣∣∣ = 2ℵ0 , so by

standard arguments, ⊩Pλ
2ℵ0 = κ. Therefore, (1) holds.

Suppose G is a (V,Pλ)-generic filter. For α < λ, define G(α) = {p↾α : p ∈
G}. By Theorem 4.21, there is a family Dα of at most ℵ1 many Gδ subsets of

(ωω)
V[G(α+1)]

with the property that for every A ∈ V [G(α)] ∩ [ωω]
<ℵ1 and x ∈

(V [G(α)] ∩ ωω) \ A, there exists D ∈ Dα such that x ∈ DV[G(α+1)] and A ∩
DV[G(α+1)] = ∅. Define D = {DV[G] : ∃α < λ [D ∈ Dα]}. Then D is a family of at

most λmanyGδ subsets of (ω
ω)

V[G]
. If A ∈ V[G]∩[ωω]

<ℵ1 and x ∈ (V[G] ∩ ωω)\A,
then since Pλ is c.c.c. and cf(λ) > ω, there exists α < λ such that A, x ∈ V [G(α)],
whence for some D ∈ Dα, x ∈ DV[G(α+1)] and A ∩ DV[G(α+1)] = ∅. Since this is
absolute, x ∈ DV[G] and A ∩DV[G] = ∅.

Now, working in V[G], let X be an arbitrary Polish space. Fix a closed F ⊆ ωω

and a continuous bijection φ : F → X. For each L ∈ D, BL = φ′′ (F ∩ L) is a Borel
subset of X because φ is 1-1 and continuous. Define

<L = {⟨x, y⟩ ∈ X ×X : x /∈ BL ∧ y ∈ BL} .

Then <L is a Borel partial order onX. If A ∈ [X]
<ℵ1 and u ∈ X\A, then φ−1(A) ⊆

F and
∣∣φ−1(A)

∣∣ < ℵ1. If x ∈ F is unique with φ(x) = u, then x ∈ ωω \φ−1(A), and

so, for some L ∈ D, x ∈ L, but L ∩ φ−1(A) = ∅. It follows that u ∈ BL and that
A ∩ BL = ∅, whence ∀v ∈ A [v <L u]. Thus {<L : L ∈ D} witnesses †(X,ℵ1, λ) in
V[G].
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Now suppose in V[G] that P is a locally countable Borel quasi order with
odimB(P) > ℵ0. By Lemma 4.7, odimB(P) ≤ λ. On the other hand, by Corollary
3.33, odimB(P) ≥ cov(M). Since Pλ is a finite support iteration of non-trivial forc-
ing notions, a well-known argument (see [25][Chapter VIII, Exercise J3, pp. 299])
shows that Cohen reals are added at each stage α < λ with cf(α) = ω. Since λ
is regular and Pλ is c.c.c., it follows that cov(M) ≥ λ holds in V[G]. Therefore,
odimB(P) = λ, as required for (2).

Finally, suppose in V[G] that E is a dense selector and that f ∈ F . It is clear
that P(G0(E, f)) is a locally countable Borel quasi order. By (2) and by Lemma
3.30, χ⃗w

B (G0(E, f)) ≤ odimB(P(G0(E, f))) ≤ λ. On the other hand, by Lemma 3.8,
λ ≤ cov(M) ≤ χ⃗w

B (G0(E, f)). Therefore, χ⃗w
B (G0(E, f)) = λ. This concludes the

proof of the theorem. ⊣

It was mentioned earlier that Kumar and Raghavan [23] showed that D has the
largest order dimension among the locally countable quasi orders of size continuum.
We do not know if the Borel analog of this result is provable in ZFC.

Question 4.23. Is it provable in ZFC that for every locally countable Borel quasi
order P, odimB(P) ≤ odimB(D)?

It is worth pointing out that Lutz [26] has proved that not all Borel quasi orders
are Borel embeddable in D.
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