COMBINATORIAL PROPERTIES OF MAD FAMILIES
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ABSTRACT. We study some strong combinatorial properties of MAD families.
An ideal 7 is Shelah-Steprans if for every set X C [w]<* there is an element of Z
that either intersects every set in X or contains infinitely many members of it.
We prove that a Borel ideal is Shelah-Steprans if and only if it is Katétov above
the ideal finxfin. We prove that Shelah-Steprans MAD families have strong
indestructibility properties (in particular, they are both Cohen and random
indestructible). We also consider some other strong combinatorial properties
of MAD families. It is proved that it is consistent to have non(M) = Ry and
no Shelah-Steprans families of size ;. We develop a general machinery for
producing models of set theory with non(M) = R in order to prove this result.

1. INTRODUCTION AND PRELIMINARIES

In [23] Katétov introduced a preorder on ideals. The Katétov order is a very
powerful tool for studying ideals over countable sets. For the convenience of the
reader, we will now recall the definition of this order: Let X and Y be two countable
sets, Z, J ideals on X and Y respectively and f : Y — X. We say f is a Katétov-
morphism from (Y,J) to (X,I) if f~1(A) € J for every A € . We say T <g
J (T is Katétov smaller than J or J is Katétov above T) if there is a Katétov-
morphism from (Y, 7) to (X,Z). We say T ~g J (Z is Katétov equivalent to J)
if T <g J and J <k Z. The Katétov-Blass order (denoted by <kp) is defined
in the same way as the Katétov order, but with the additional demand that the
function f must be finite to one. The Katétov order has been applied successfully
in classifying non definable objects such as ultrafilters and MAD families. Just to
mention a couple of examples, an ultrafilter U/ is a P-point if and only if the dual
ideal U* is not Katétov above the ideal finxfin and U is a Ramsey ultrafilter if and
only if U* is not Katétov above the ideal £D. In fact, most of the usual properties of
ultrafilters can be characterized with the Katétov order. In the case of ultrafilters,
the upward cones of definable ideals in the Katétov order play a fundamental role,
while the downward cones of definable ideals are very important in the study of
MAD families. The reader may consult [I9] for a survey on the Katétov order on
Borel ideals.
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Recall that a family A C [w]” is almost disjoint (AD) if the intersection of any
two different elements of A is finite and a MAD family is a maximal almost disjoint
family. If A is an AD family, we denote by Z (A) the ideal generated by A and all
finite sets of w. This paper is part of a larger project (initiated in [20]) whose goal
is to study and classify (the ideals generated by) MAD families using the Katétov
order.

If A is a MAD family, we say that a forcing notion P destroys A if A is no longer
maximal after forcing with P. The destructibility of MAD families has been exten-
sively studied (see [§], [24] and [22]). Nevertheless, many fundamental questions
are still open. For example, the following problems still remain unsolved:

Problem 1.1 (Steprans). Is there a Cohen indestructible MAD family?
Problem 1.2 (Hrusék). Is there a Sacks indestructible MAD family?

The answer to both questions is positive under many additional axioms, but it
is currently unknown if it is possible to build such families on the basis of ZFC
alone. It is easy to see that there is a MAD family that is destroyed by every
forcing adding a new real, so the main interest is to construct MAD families that
are indestructible under certain forcings adding reals. It is known that every forcing
adding a dominating real will destroy every ground model MAD family.

In this article, we study some strong combinatorial properties of MAD families:
Shelah-Steprans, strongly tight and raving (see the next sections for the definitions).
We will prove that Shelah-Steprans MAD families have very strong indestructibility
properties, in fact, they are indestructible by most definable forcings that do not
add dominating reals (see Proposition . The notion of strongly tight is a
strengthening of Cohen indestructibility, yet they may be random destructible.
Raving is a strengthening of both Shelah-Steprans and strong tightness.

If Ais an AD family, we denote by A* the set of all B C w that are almost
disjoint with every element of A. If Z is an ideal, we denote by Z the family
of subsets of w that are not in Z. 7% = {w\ A : A € T} is the dual filter of 7.
We say that a forcing P destroys (or diagonalizes) T if T is no longer tall after
forcing with ]Pﬂ It is easy to see that a forcing P destroys a MAD family A if and
only if it destroys Z (A). The Katétov order is a fundamental tool for studying
the indestructibility of MAD families and ideals. The following notion is needed in
order to connect the Katétov order and the notion of indestructibility:

Definition 1.3. For every a C w<* we define w(a) ={f €w* | I®n(f I n€a)}.
If T is a o-ideal in w* (or 2*) we define the trace ideal tr (Z) of Z (which will be
an ideal in w<¥ or 2<¥) such that a € tr (Z) if and only if w (a) € T.

Note that if a € w<“ then 7 (a) is a G set (furthermore, every Gs set is of
this form). While both ¢r (M) and tr (N) are Borel (where M denotes the ideal
of meager sets of w* and A is the ideal of all null sets), in general, the trace ideals
are not Borel (see [22] for more information). The relevance of the trace ideals in
the study of destructibility is the following result of Hrusdk and Zapletal (see also

[8]):
Proposition 1.4 ([22]). Let T be a o-ideal in w* such that Pz = Borel (w*) /T is

proper and has the continuous reading of name:ﬂ If J is an ideal on w, then the
following are equivalent:

(1) There is a condition B € Pz such that B forces that J is not tall.
(2) There is a € tr (Z)" such that T <g tr(Z) | a.

LAn ideal T is tall if for every X € [w] there is A € T such that AN X is infinite.
2see [4F] for the definition of continuous reading of names.



COMBINATORIAL PROPERTIES OF MAD FAMILIES 3

Usually, we assume ideals are proper and contain all finite sets. However,
there is an exception to this convention, which we will point out (see Subsec-
tion [£.2). For every n € w we define C,, = {(n,m) |m €w} and if f : w — w
let D(f) ={(n,m)|m < f(n)}. The ideal finxfin is the ideal on w x w generated
by {Cn |n€wlU{D(f)|f€w} and @xfin is the ideal on w X w generated by
{D(f) | f € w¥}. Note that finxfin is a tall ideal while () xfin is not. It is well known
that a forcing destroys finxfin if and only if it adds a dominating real. By nwd we
denote the ideal of all nowhere dense subsets of the rational numbers. The density
zero ideal is defined as Z = {A Cw | lim IAQ?' = 0}. Tt is well known that Z is an
analytic P-ideal. The summable ideal is defined as J;/, = {A C w | ZA%H < w}.

ne
It is well known and easy to see that this is an F,-ideal. In fact, F,-ideals and
analytic P-ideals have a canonical representation:

Definition 1.5. We say ¢ : p (w) — RU{o0} is a lower semicontinuous submea-
sure if the following hold:

(1) ¢ (@) =0

(2) p(A) < ¢ (B) whenever A C B.

(3) o (AUB) < @ (A)+ ¢ (B) for every A,B C X.

(4) (lower semicontinuity) if A C w then p (A) =sup{p(ANn)|n € w}.

Given a lower semicontinuous submeasure ¢ we define fin(¢) as those subsets of w
with finite submeasure and Exh (¢) = {A Cw | lim (¢ (A \ n)) = 0} . The following
are two fundamental results:

Proposition 1.6. Let Z be an ideal in w.

(1) (Mazur [28]) Z is an F,-ideal if and only if there is a lower semicontinuous
submeasure @ such that Z = fin(y) .

(2) (Solecki [43]) Z is an analytic P-ideal if and only if there is a lower semicon-
tinuous submeasure ¢ such that T = Exh(p) (in particular, every analytic
P-ideal is Fys).

For the definition of the cardinal invariants used in this paper, the reader may
consult [3].

2. NOTATION

We will use the following notational conventions for iterated forcing in Sections
|§|, and Let (P, <p) and (Q, <) be posets and let 7 : Q — P be a
projection. If G C P is a (V,P)-generic filter, then in V[G] we define the poset
Q/G ={qeQ:7(q) € G} ordered by <g. In V, we let Q/G be a full P-name for
Q/c.

Suppose (P,; Qn:a< ~) is an iteration. If G, is a (V,P,)-generic filter, then
for any o < v, G, denotes {pla : p € G,}, and it is a (V,P,)-generic filter.
Furthermore, if Z is any P,-name, then & is also a Pg-name for every a < 8 < vy
and z [Go] = ¢ [Gg].

If (Py; @a : o < ) is an iteration, then for each o <« the map m,q : Py — Pq
given by myq(p) = pla is a projection. Therefore, if & < v and if G, C P, is a
(V,P,)-generic filter, then there is a (V [Ga],P,/Gq)-generic filter H so that in
V[G,], Gy = G4 * H holds. In fact, this H is equal to G,.

Suppose <]P’a;@a :a < ) is an iteration and let @ < v. We may think of
any P,-name as a P,-name for a P,/ é’a—name. Thus, given a P, name &, we use
:c[Ga] to denote a canonical P,-name for a ]P,Y/Co?a—name representing z. If G, is

o

a (V,P,)-generic filter, we will write & [G,] to denote the evaluation of #[G,] by



4 BRENDLE, GUZMAN, HRUSAK, AND RAGHAVAN

Go. Therefore, if G is a (V,P,)-generic filter, then in V [G,], 2 [G,] = & [G.] [G,]
holds.

3. SHELAH-STEPRANS IDEALS

Let Z be an ideal in w. By Z<“ we denote the ideal of subsets X of [w]<¥\ {0}
for which there exists A € Z such that s N A # () for all s € X. Thus (Z<¢)" is
the set of all X C [w]<* \ {#} such that for every A € Z there is s € X such that
sN A = (). The following notion will play a fundamental role in this paper:

Definition 3.1. An ideal T is called Shelah-Steprans if for every X € (I<“’)+
there is Y € [X]“ such that | JY € T.

In other words, an ideal Z is Shelah-Steprans if for every X C [w]<“ \ {0} either
there is A € Z such that sN A # 0 for every s € X or there is B € Z that
contains infinitely many elements of X. This notion, introduced by Raghavan in
[36] for almost disjoint families, is connected to the notion of “strongly separable”
introduced by Shelah and Steprans in [42].

Lemma 3.2. Fvery non-meager ideal is Shelah-Steprans.

Proof. Let T be a non-meager ideal and X € (Z<*)" . Note that since X € (Z<9)*
(and Z contains every finite set) for every n € w there is s € X such that sNn = 0.
In this way we can find Z = {s,, | n € w} C X such that if n # m then s, Ns,, = 0.
We then define M = {4 Cw |V*n (s, € A)} which is clearly a meager set and
thus there must be A € Z such that A ¢ M. Hence there is Y € [X]” such that
Uy CAeT. .

Nevertheless, there are meager ideals that are also Shelah-Steprans as the fol-
lowing result shows:

Lemma 3.3. finxfin is Shelah-Steprans.

Proof. Tt is easy to see that if X € ((finxfin)<¥)* then there must be infinitely
many elements of X that are below the graph of a function, so there must be
Y € [X]¥ such that JY € finxfin. =

We now show that the property of being Shelah-Steprans is upward closed in the
Katétov order:

Lemma 3.4. Let T and J be two ideals on w. If the ideal T is Shelah-Steprans and
T <k J then J is also Shelah-Steprans.

Proof. Let f:w — w be a Katétov-morphism from (w, J) to (w,Z). Letting X €
(7<) we must find Y € [X]* such that |JY € J. Defining X; = {f [s] | s € X},
we will first argue that X; € (I<“’)+. To prove this fact, let A € Z. Since f is
a Katétov-morphism, f=!(A4) € J so there is s € X for which sN f=1(A) = 0
and then f[s] N A = (). Since Z is Shelah-Steprans, there is Y; € [X;]“ such that
UY1 € 7. Finally if Y € [X]* is such that Y7 = {f[s]|s€ Y} then JY € J.

_|

We will need the following game designed by Claude Laflamme: Letting 7 be an
ideal on w, define the game £ (Z) between players | and Il as follows:

[ |... ] An

S Usn et
At round n € w player | plays A, € Z and Il responds with s,, € [w\ 4,]<“. The
player Il wins in case |J s, € ZT. The following is a result of Laflamme.

Il Sn | ..

Proposition 3.5 (Laflamme [26]). Let Z be an ideal on w.
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(1) The following are equivalent:
(a) | has a winning strategy in L (T) .
(b) For every {Fs | s € w<¥} CI*, there is an increasing function f € w*
such that \J (Fpin N f(n)) € ZT.
new
(c) Every countable subset of T* has a pseudointersection in I+.
(d) finxfin <k T.
(2) The following are equivalent:
(a) Il has a winning strategy in L (T) .
(b) There is {X, | n€w}l C (Z<%)" such that for every A € T there is
n € w such that AN X, = 0.

Proof. Everything in the Proposition is either contained in [26] or is trivial, with
the exception of (c¢) implies (b) of 1, which is only mentioned in [26] without proof.
We will provide a brief sketch of the proof of this implication.

Let {Fs | s € w<¥} C I*. Without lost of generality, we may assume that for
every s,t € w<¥, if t C s, then Fy C F;. For every n € w, define:

H, = {Fs|s€n="AVie dom(s)(s(i) <n)}

Note that H,, € Z* for every n € w. By point (c), there is X € ZT a pseudointer-
section of {H,, | n € w}. We now find a sequence (n;),.,, such that for every i € w,
the following holds:

(1) n; < Njgq.

€

We now define the following sets:

Yo = X N (U{[ri,ni+1) | 7 is even})
Y1 = X N (U{[ni, ni+1) | 7 is odd})

Since X € Z7, there is ¢ € 2 such that Y; € ZT. If Yy € ZT, define f € w® where
f(m) = ngmy1 and if Y1 € I, define f by f(m) = nagm41). In either case, it is
easy to see that |J (Fyp N f(m)) €ZT. —|

mew
If 50, ..., 5, are finite non-empty subsets of w, we say a = {ko, ..., kn} € [w]* is
a selector of (s, ..., s,) if k; € s; for every i < n.

Proposition 3.6. IfZ is Shelah-Steprans then Il does not have a winning strategy
in L(T).

Proof. Let T be an ideal for which Il has a winning strategy in £ (Z). We will prove
that Z is not Shelah-Steprans. Let {X, |n €w} C (Z<%)" such that for every
A € T there is n € w such that A does not contain any element of X,,. For every
n € w enumerate X,, = {t! |i € w} and [[ X; = {p}, | i <w}.

j<n

For every n,m € w and a selector a € [w]<* of (t%, ...,t;") we define F,, p q) =

pp (0)U...Upp (n—1)Ua (recall pi € [[ X;). Clearly each Fi, ,, q) is a non-
j<n

empty finite set. Let X be the collection jof all the F(,, . q); we will prove that X
witnesses that Z is not Shelah-Steprans.

We will first prove that X € (Z<¢)" . Letting A € T we first find n € w such that
A does not contain any element of X,,. Since each X; € (I<°J)jL for every j < w
there is m € w such that A is disjoint with p* (0) U...Up™ (n — 1) . Finally, by the
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assumption of X,, we can find a selector b of (t%, e tZL) such that bN' A = @ and
therefore AN Fiy, 0 = 0.

Letting Y € [X]* we will show that B = |JY € Z*. There are two cases to
consider: first assume there is n € w for which there are infinitely many (m, a) such
that F(,, .4 € Y. In this case, B intersects every element of X,,, hence B € It.
Now assume that for every n € w there are only finitely many (m,a) such that
Finm,a) €Y. In this case, there must be infinitely many n € w for which there is
(m,a) such that F{,, ,,, o) € Y, hence B must contain (at least) one element of every
X};. We can then conclude that B € Z+. -

As a consequence we obtain (the equivalence of items 2 and 3 was proved by
Laczkovich and Reclaw in [25]; we include the proof for the convenience of the
reader):

Corollary 3.7. Let T be an ideal on w. The following are equivalent:

(1) T is not Shelah-Steprans.
(2) The Player |l has a winning strategy in L (T).
(3) There is an F, set F C p(w) such that Z C F and Z* N F = (.

Proof. By the previous result, we know that 2 implies 1. We first prove that 1
implies 3. Assume that Z is not Shelah-Steprans, so there is X = {s,, | n € w} €
(Z<“)" such that JY € Z* for every Y € [X]*. We now define the set F =
{W Cw|V>®n(s, €W)}. It is easy to see that F' has the desired properties.

We finally prove that 3 implies 2. Assume there is an increasing sequence of
closed sets (C,, | n € w) such that F = |J C,, contains Z and is disjoint from Z*.

necw

We will now describe a winning strategy for Player Il in £(Z): In the first round,
if Player | plays Ay € T then Player Il finds an initial segment s of w \ Ag such
that (so) = {Z | so C Z} is disjoint from Cy (where s T Z means that sg is an
initial segment of Z). At round round n + 1, if Player | plays A,,+1 € Z then Player
Il finds s,,41 such that ¢t = |J s; is an initial segment of (w\ A,)U | s; (we

i<n+1 j<n+1
may assume |J s; C A,) and (t) is disjoint from C,, 1. It is easy to see that this
j<n+1
is a winning strategy. a

Since every game with Borel payoff is determined, we can give a characterization
of the Borel ideals that are Shelah-Steprans.

Theorem 3.8. If7 is a Borel ideal then T is Shelah-Steprans if and only if finx fin
<k Z.

We can extend this theorem under some large cardinal assumptions. Fix a tree
T of height w, f : [T] — p (w) a continuous function (where [T] denotes the set of
branches of T') and W C p (w) . We then define the game G (T, f, ) as follows:
I ... |z, ..
.. Yn | -
At round n € w player | plays x,, and Il responds with y,, with the requirement that
(X0, Y0y -y Ty Yn) € T. Player | wins if f (b) € W where b is the branch constructed
during the game. The following is a well known extension of Martin’s result (see
[45]):
Proposition 3.9 (LC). If W € L(R) then G (T, f,W) is determined (L(R) denotes

the smallest transitive model of ZFC that contains all reals)

Here LC denotes a large cardinal assumption. In this case, it is enough to assume
that there is a proper class of Woodin cardinals. The reader may consult the first
chapter of [45]) for more information. We can conclude the following:
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Theorem 3.10 (LC). (1) Let T € L(R) be an ideal on w. Then T is Shelah-
Steprans if and only if finxfin <g T.
(2) Let J be a o-ideal in w* such that J € L(R) and X € tr(J)%. Then
tr (J) | X is Shelah-Steprans if and only if finxfin <y tr (J) | X.

Proof. To prove the first item, let Y be the set of all sequences (Ao, so, ..., An, $n)
such that 4, € 7 and s,, € [w\ 4,] and max (s;) € A;;; if i < n. Let T be
the tree obtained by closing Y under restrictions. We define f : [T] — p(w)
by f(b) = Ub(@2n+1) where b € [T]. Clearly £(Z) is a game equivalent to

new
G(T, f,2), so the result follows from the previous results. The second item is a

consequence of the first. -
The following result will be useful later, see Lemma |4.5)

Lemma 3.11. Let Z be an ideal on w. The following are equivalent:
(1) T is Shelah-Steprans.
(2) For every {X, | n € w} C (Z<%)" there is B € T such that X, N [B]~* is
infinite for every n € w.

Proof. Clearly 2 implies 1 and if 2 fails then it is easy to see that Player Il has a
winning strategy in £ (Z), so 1 also fails. -

4. STRONG PROPERTIES OF M AD FAMILIES

In this section, we will study some strong combinatorial properties of MAD fami-
lies and we will clarify the relationship between them. The basic notions and impli-
cations will be presented in the more general context of ideals (Subsection, and
for existence, non-existence (see Subsections and [4.5)), and non-implications
(Subsection we will consider the special case of MAD families. We shall also
consider generic MAD families (Subsection [1.2)).

4.1. Combinatorial properties of ideals: definitions and implications. We
start with:

Definition 4.1. Let Z be an ideal on w.

(1) T is tight if for every {X,, | n € w} C IV thereis A € T such that ANX,, #
0 for every n € w.

(2) T is weakly tight if for every {X, |n € w} CI* there is A € T such that
|[AN X,| =w for infinitely many n € w.

(8) T is strongly tight if for every {X,, | n € w} C [w]* such that {n | X,, C* Y}
is finite for every Y € I, there is A € I such that AN X, # ( for every
n e w.

(4) We say a family X = {X,, | n € w} such that X,, C [w]=* is locally finite
according to Z if for every B € I for almost all n € w there is s € X,, such
that sN B = .

(5) I is raving if for every family X = {X,, | n € w} that is locally finite ac-
cording to T there is A € T such that A contains at least one element of
each X,,.

Obviously, strongly tight implies tight, which in turn implies weakly tight. Also,
it is easy to see that raving implies both Shelah-Steprans and strongly tight. Fur-
thermore, by Lemma[3.11] every Shelah-Steprans ideal is tight. We shall see later on
(in particular in Subsection that all these properties are (consistently) distinct,
even for MAD families.

For a MAD family A and a property X of ideals, we say A has property X
whenever the corresponding ideal Z(.A) has property X.
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Tight MAD families are Cohen indestructible. Although Cohen indestructibility
does not imply tightness, it is true that every Cohen indestructible MAD family
has a restriction that is tight (see [20]). Thus, existence-wise, the two properties
are on the same level.

In [30] and [39] it was proved that weakly tight MAD families exist under s < b.

Strongly tight MAD families have the following characterization.

Lemma 4.2. A is strongly tight iff whenever {B,, | n € w} C [w]* is such that
there is {A, | n € w} C A such that

e B, C A, foralln,
o forall A € A, the set {n| A, = A} is finite,

there is A € Z(A) such that AN B, # 0 for all n.

Proof. First assume A is strongly tight. Assume B, is given as in the lemma.
Clearly X,, = B,, satisfies the assumption in the definition of “strongly tight” and
we obtain A € Z(A) as required.

On the other hand, if X,, are given as in the definition of “strongly tight”,
first use the maximality of A to find A, € A such that A, N X, is infinite and
let B, = A, N X,. Whenever possible, choose A, distinct from A;,i < n. The
assumption on the X, then guarantees that every A € A is chosen only finitely
often. The A € Z(.A) given by the lemma is as required. -

Like the Shelah-Steprans property, the properties considered here are upwards
closed in the Katétov order (see Lemma (3.4)).

Lemma 4.3. Assume T and J are ideals on w.
(1) If T <k J and T is tight (weakly tight, raving, resp.), then so is J.
(2) If T <gp J and I is strongly tight, then so is J.
(3) Assume A and B are MAD families. If A is strongly tight and T (A) <k
T (B) then B is strongly tight.

Proof. 1. This is a standard argument. Let f : w — w be a Katétov reduction.
Assume first Z is tight. Take {X,, | n € w} C JT and let Y,, = f[X,]. Clearly
the Y,, belong to Z7, and therefore there is B € Z such that BNY,, # 0 for all n.
Letting A = f~1[B] € J we see that AN X,, # () for all n. The proofs for “weakly
tight” and “raving” are similar.

2. This is also similar.

3. Fix a Katétov-morphism f from (w,Z (B)) to (w,Z (A)) and a family W =
{X,, | n € w} such that for every n € w there is B,, € B such that X,, C B,, and
for every B € B the set {n | B, = B} is finite. Let W; = {X e W | f[X] € [w]*}
and for every X € W; we choose bx € f[X] such that f=! ({bx}) is infinite. We
first claim that the set Y = {bx | X € Wi} is finite. If this was not the case, we
could find A € A such that ANY is infinite. Since f is a Katétov-morphism, we
conclude that f~*(A) € Z(B) and {X e W| f~1 (A)N X € [w]“} is infinite, but
this is a contradiction. Using that Y is finite, it is easy to see that W; must also
be finite.

Letting Wy = W\ Wy, for every X € Wy we choose Ax € Z (A) such that Yx =
Ax N f[X] is infinite. Note that if A € A then the set {X € W5 | A = Ax} must
be finite. Since A is strongly tight we can find A € Z (A) such that ANYy # 0 for
every X € Wj. Since f is a Katétov-morphism, we may conclude that B = f~1 (A)
belongs to Z (B) and BNX # () for every X € Ws. Clearly BU{JW\ has the desired
properties. B

* Kk k
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We next define properties of ideals Z relevant for the investigation of Mathias forcing
M(Z):

Definition 4.4. Let 7 be an ideal in w.

(1) We say T is Canjar if and only if for every {X, | n € w} C (Z<9)" there
are Yy, € [X,]= such that |J Y, € (Z<)7".

new

(2) We say T is Hurewicz if and only if for every {X, | n € w} C (Z<9)" there
are Yy, € [X,]<Y such that |J Y, € (Z<)" for every A € [w]*.
neA

Clearly, every Hurewicz ideal is Canjar. Moreover, every F, ideal is Hurewicz [4],
and every Borel Canjar ideal is F, [I0, [I5], so that for Borel ideals, F,, Canjar,
and Hurewicz agree. In general, the two notions are quite different: Canjar [9] con-
structed Cangar ultrafilters (i.e. ultrafilters whose dual maximal ideals are Canjar)
under CH, while it is easy to see that no maximal ideal can be Hurewicz.

If 7 is an ideal, we denote by M (Z) the Mathias forcing with I, that is, the set
of all pairs (s, A) such that s € [w]~“ and A € Z, ordered by (s, A) < (t, B) if t C s,
B C Aand (s\t)NB =0, where (s, A), (t, B) € M(Z). It is easy to see that M (Z)
destroys the tallness of 7.

We mention the following important results regarding Canjar and Hurewicz
ideals:

e 7 is Canjar if and only if M (Z) does not add a dominating real [21].

e 7 is Hurewicz if and only if M (Z) preserves all unbounded families of the
ground model [I0].

e 7 is Canjar if and only if Z is a Menger subspace of © (w) [10].

e 7 is Hurewicz if and only if Z is a Hurewicz subspace of p (w) [10].

For MAD families we have:

Proposition 4.5. Every Shelah-Steprans MAD family is Hurewicz.

Proof. Let A be a Shelah-Steprans MAD family and {X,, | n € w} C (Z (.A)<w)+.
Note that if B € Z(A) then {X,\[B]™|necw} C (I(A)<w)+. Using the
Lemma we can thus recursively find {B,, | n € w} C T (A) with the following
properties:
(1) If n # m then there is no A € A that has infinite intersection with both
B,, and B,,.
(2) X, N[Bm \ k|<“ is infinite for all n,m, k € w.

For every n € w let Y, € [X,,]~* such that Y, N [B;]~“ # 0 for every i < n. It is

then easy to see that if D € [w]” then |J Y, € (T (A)<°")Jr . =
neD

This implication clearly fails for ideals in general because, for example, finxfin
is Shelah-Steprans, but not Canjar.

* Kk x

We will consider some more properties of ideals:

Definition 4.6. Let J be an ideal.
(1) J is Laflamme if J can not be extended to an F, ideal.
(2) J is not-P if J can not be extended to an analytic P-ideal.
(3) J is finxfin-like if J %k I for every analytic ideal T such that finx fin
£r T.

By results of Solecki, Laczkovich and Rectaw it can be proved that no F,; ideal
is Katétov above finxfin (see [44] and [25]). Since every analytic P-ideal is Fi,5 (see
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[43]), it follows that every finxfin-like ideal is not-P. Furthermore, in [32] it was
proved that every F, ideal is contained in an analytic P-ideal, so every not-P ideal
is Laflamme. By Theorem every Shelah-Steprans ideal is fin xfin—likeﬁ

We have the following:

Lemma 4.7. Let J be an ideal.
(1) J is Laflamme if and only if J £k I for every F,-ideal T.
(2) J is not-Pif and only if J % xp I for every analytic P-ideal .

Proof. Clearly if J £ T for every F,-ideal Z then J is Laflamme. So assume that
J is Laflamme, let Z be an F, ideal, and let f : w — w. We must show that f is
not a Katétov-morphism from (w,Z) to (w, 7). DefineZ = {X | f~! (X) € Z} . Let
¢ be a lower semicontinuous submeasure such that Z = fin(y) . For every n € w we
define C,, = {X | ¢ (f7' (X)) <n}. It is easy to see that each C,, is a closed set
and Z' = |J Cy,. Since J is not contained in Z’ the result follows.
ncw

For the second part, it is clear that if J %_ kB I for every analytic P-ideal Z then
J is not-P. Assume J is not-P, let Z be an analytic P-ideal, and let f : w — w
be finite to one. We must show that f is not a Katétov-morphism from (w,Z)
to (w,J). Let ¢ be a lower semicontinuous submeasure such that Z = Exh(yp).
Define o : p (w) — RU{oo} by o (4) = ¢ (f~' (A)). It is easy to see that o is a
lower semicontinuous submeasure (it is a submeasure by definition and the lower
semicontinuity follows since f is finite to one). Since J is not-P, there is B € J
such that B ¢ Exh (o) which implies that f~!(B) ¢ . 4

Note in this context that we could have defined “finxfin-like” as we did define
“Laflamme” and “not-P”: namely, J is finxfin-like if J € 7 for every analytic ideal
T such that finxfin £ x Z. To see the nontrivial direction of this equivalence, assume
there is an analytic ideal Z such that finxfin ﬁK 7 and J <k 7 as witnessed by
the Katétov reduction f. Define 7’ = {A|f~![A] € Z} and note that J CZ' <y Z,
that finxfin £ 7' and that Z’ is still analytic.

Also notice that all three properties defined here are (trivially) upwards closed
in the Katétov order.

We now investigate the connection between finxfin-likeness and weak tightness.
Define C,, = {(n,m) | m € w}.

Definition 4.8. We define the ideal WT on w X w as follows:
(1) WT | C,, is a copy of finxfin (for everyn € w).
(2) Ae WT iff AnC, e WT | Cy, for all n and AN C, is finite for all but
finitely many n.

Clearly, WT is not weakly tight as witnessed by the C,. Also note that if
B C w x w has infinite intersection with infinitely many columns then B € WT .

Proposition 4.9. WT s strictly Katétov below finx fin.

Proof. Note that the identity mapping witnesses W7T < finxfin. Now, we will show
[l has a winning strategy in £ (WWT) . This is easy, since no C,, belongs to W7 and
therefore Il can play in such a way that the set she constructed at the end intersects
infinitely often all the C,,, so it can not be an element of WT. =

For MAD families we have the following characterization:

Lemma 4.10. If A is a MAD family then A is weakly tight if and only if Z (A)
% WT.

3This uses LC; note that if in the definition of finxfin-like we only quantified over Borel ideals,
then this implication would be true in ZFC by Theorem |3.8
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Proof. We will prove that A is not weakly tight if and only if Z (A4) <x WT. One
direction follows from the fact that WT is not weakly tight and from the upwards
closure of weak tightness in the Katétov order (see Lemma .

So assume A is not weakly tight. So there is a partition X = {X,, |n € w} C
7 (A)T such that if A € A then AN X, is finite for almost all n € w. Since A | X,,
is an AD family, we know A [ X,, <gp finxfin, so for each n € w fix a Katétov-
Blass-morphism h,, : C,, — X,, from (C,,, WT |C,) to (X,, A [ X,) (in fact, it
is well-known that we can choose one to one hy,,). Letting h = | Jh,, we will show
h is a Katétov-morphism from (w X w, WT) to (w,.A). If A € A then we can find
B € X+ and a finite set F C w such that A= |J (AN X,,)UB. Clearly h~!(B) €

ner
WT since h=1 (B) € 0xfin and h=' (AN X,,) = h,;! (AN X,,) which is an element
of WT since h,, is a Katétov-morphism. Therefore h=1 (4) € WT. !

We conclude:
Corollary 4.11. If A is finx fin-like then A is weakly tight.
This implication fails for ideals in general:
Proposition 4.12. There is a finxfin-like ideal that is not weakly tight.

Proof. Let J be any ideal not contained in an analytic ideal (e.g., any maximal
ideal). Define the ideal WT (J) on w x w as follows:
(1) WT(J) I Cy, is a copy of J.
(2) AeWT(J) it ANC, e WT(J) | C, for all n and AN C, is finite for all
but finitely many n.

As for WT we see that the C,, witness that WT () is not weakly tight. Also note
that as in Proposition we see that WT(J) is strictly Katétov below finxfin.
To see that WT (J) is finxfin-like, let Z be an analytic ideal on w x w with finxfin
£x Z. We need to see that WT(J) € Z. Since finxfin €5 Z there is A €
finxfin with A ¢ Z, say A = B U C where B meets only finitely many C,, and
C N Cy, is finite for all n. If C' ¢ Z, we are done because C' € WT(J). So assume
B ¢ T. Thus, for some n, BNC,, ¢ Z and Z | C, is a proper analytic ideal. Then
WT(T) | C, €I | C,, and we are also done. -

* K x

We briefly discuss the connection between the properties introduced so far and
indestructibility by forcing:

Proposition 4.13. Let T be an ideal. Also let J be a o-ideal in w® for which the
forcing Py = Borel (w¥) /J is proper, has the continuous reading of names and
does not add a dominating real (below any condition).

(1) Assume T is finxfin-like and tr(J) is an analytic ideal. Then T is Pg-
indestructible.

(2) (LC) If T is Shelah-Steprans and J € L(R) then T is IPs-indestructible.

(3) In particular, if T is Shelah-Steprans (or just finx fin-like), then T is Cohen,
random, and Sacks indestructible.

(4) If T is a not-P ideal then T is random and Sacks indestructible.

Proof. 1. Let J be a o-ideal in w* such that P is proper and has the continuous
reading of names. If there is B € Ps such that forcing below B destroys Z, then
there is X € tr (J)" such that Z <g tr (J) | X (see Proposition . Since Z is
finxfin-like and tr(J) is analytic, finxfin <k tr (J) [ X follows, and so Ps must
add a dominating real below some condition.

2. This is similar, using Theorem [3.10
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Raving

l

Shelah-Steprans  Strongly tight

l

finxfin-like

l

Cohen-indestructible ‘weakly tight

tight

P-MAD,

/ Y:ks—indestructible

Laflamme conv-MAD

3. Noting that the ideals tr(M), tr(N), and tr(ctble) are all Borel, this follows
from the previous items.

4. In [I6] Theorem 3.4] it was proved that tr (N) <x Z. So every not-P ideal is
random indestructible. It is well known that random indestructibility entails Sacks
indestructibility (because tr(ctble) <g tr(N), see also [§]). =

4.2. Generic MAD families. Let Z be a (perhaps improper) tall ideal. We define
Pumab (Z) as the set of all countable AD families contained in Z, ordered by inclusion.
It is easy to see that this is a o-closed forcing adding a MAD family contained in Z,
which we will denote by Agen (Z) . By Puap we denote Pyap (p (w)), which is the
set of all countable AD families ordered by inclusion; we will denote by Ager, the
generic MAD family. We shall use such generic objects later for non-implications

(see Subsection [4.6]).

Definition 4.14. Let T be an ideal. We say that T is nowhere Shelah-Steprans if
no restriction of I is Shelah-Steprans.

It is easy to see that nwd, tr(ctble), tr (N), tr (K,) and every F,-ideal are
nowhere Shelah-Steprans.

Lemma 4.15. Let Z,J be two ideals such that T is nowhere Shelah-Steprans and
J £k L. Let AC J be a countable AD family and let f : (w,T) — (w,Z(A)) be
a Katétov-morphism. Then there is B € J N AL such that f~(B) € I*.

Proof. Let A = {A, |n €w}. We know [ is a Katétov-morphism, so the set
{f7'(An) | n € w} is contained in Z. Since J £ T there is D € J such that
C = f~'(D) € Z". Since I | C is not Shelah-Steprans, there is X € ((Z | C)<w)+
such that no element of Z contains infinitely many elements of X. For each n € w
we choose s, € X such that s, N (f~! (AgU...UA,)) = 0. We then know that
E =Jsn, € ZT. It is easy to see that B = f [E] has the desired properties. |

We conclude:

Corollary 4.16. Let Z,J be ideals such that T is nowhere Shelah-Steprans and
J £k T.
(1) Pmap (J) forces that Agen (J) is not Katétov below I.
(2) The Continuum Hypothesis implies that there is a MAD family A C J such
that T (A) £k .
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In particular, Age,(nwd) is a Cohen destructible MAD family that is Miller and
random indestructible. For more on this type of results, the reader may consult [g].

Proposition 4.17. Pyap forces that Ager, is Taving.

Proof. Let B € Pyap and X = {X,, | n € w} such that B forces that X is locally
finite according to Z (Agen) . Let B = {B,, | n € w} and we define E,, = ByU...UB,
for every n € w. We can then find an interval partition P = {P,, | n € w} of w such
that if ¢ € P,,41 then E,, does not intersect every element of X;. For every i € w
we choose s; € X; as follows: if i € Py let s; be any element of X; and if i € P, 4
we choose s; € X; such that s, N E, = 0. Let A = |J s,; then A € BL and the

new

condition BU{A} € Puap is the extension of B we were looking for. B

Our motivation for studying the forcing Pyap comes from the following results
about generic ultrafilters:

Theorem 4.18 (Todorcevic, see [12]). An ultrafilter U is p (w)\ fin generic over
L(R) if and only if U is Ramsey.

Theorem 4.19 (Chodounsky, Zapletal, see [I1]). Let Z be an Fy-ideal and U an
ultrafilter. U is p (w) \ Z generic over L(R) if and only if TNU = O and for every
closed set C if CNU = O then there is A € U such that ANY €T for everyY € C.

It would be interesting to find a similar characterization of the Pyap generics
over L(R) :

Problem 4.20. Is there a combinatorial characterization of A (or of I (A)) where
A is Pmap generic over L(R)?

A natural candidate would be “raving”, but even this strong property might still
be too weak to capture the full extent of genericity.

4.3. Existence versus non-existence. An important result of Raghavan says:

Theorem 4.21 ([36]). It is consistent that there are no Shelah-Steprans MAD
families.

For strongly tight families, we first prove:
Proposition 4.22. If A is strongly tight then d < |A|.

Proof. Let {A,, | n € w} be a partition of w contained in A and for each n € w let
P, = {A, (i) | i € w} be a partition of A,, in infinite pieces. Given A € 7 (A) we
define a function f4 : w — w given by fa (n) = 0 if AN A, is infinite and in the
other case fa (n) = max{i | AN A, (i) # 0} + 1. We claim that {f4 | A€ Z(A)}
is a dominating family. Assume this is not the case, so there is g : w — w
not dominated by any of the f4. For each n € w define X,, = A, (g(n)) and
X = {X, | n €w}. Since A is strongly tight there must be A € Z (A) such that
AN X, # 0 for every n € w. Pick any m such that f4 (m) < g(m); then AN
Ay, (g (m)) = 0 so that AN X, =0, which is a contradiction. a

We conclude:
Corollary 4.23. There are no strongly tight MAD families in the Cohen model.

Proof. If there were a strongly tight MAD, it would have size continuum, by the
previous proposition. But since it would also be tight, it should have size w; (recall
that tight MAD families are Cohen indestructible). =
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We will later prove that there are Shelah-Steprans MAD families in the Cohen
model, so Shelah-Steprans does not imply strong tightness (see the discussion after
Theorem . As mentioned in the Introduction (Problem , it is still open
whether tight MAD families exist in ZFC.

To provide an example for a class of MAD families existing in ZFC, we make the
following definition:

Definition 4.24. Let T be an ideal and A a MAD family. We say that A is Z-MAD
if T(A) £k T.

It is well known that no MAD family is finxfin-MAD. Clearly A is Laflamme iff
it is Z-MAD for every F,-ideal Z, and if A is Z-MAD for every analytic P-ideal then
A is not-P (Lemma . Also note that being Cohen indestructible is equivalent
to being nwd-MAD (recall that nwd denotes the ideal of nowhere dense sets of the
rational numbers).

We denote by conv the ideal in [0, 1]NQ generated by all sequences converging to
a real number. Since conv <y tr(ctble), every Sacks indestructible MAD family is
conv-MAD. On the other hand, if A is a Pyap(¢r(ctble))-generic MAD family, then
by Corollary A is a Sacks destructible conv-MAD family because tr(ctble) €k
conv. We will now prove that there is a conv-MAD family; this result is based on
the proof of Proposition 2 of [I7]. We need the following lemma:

Lemma 4.25. Let A be an AD family of size less than ¢. If f is a Katétov-morphism
from ([0,1] N Q,conv) to (w,Z (A)) then there is B € AL such that f~'(B) ¢ conv.

Proof. For every A € A let F4 be the set of accumulation points of f=! (A), and
note that each F is finite since f~! (A) can be covered by finitely many converging
sequences. Since [0, 1] can be partitioned into c-many perfect pairwise disjoint sets,
we can find a perfect set C C [0,1] such that C N F4 = @ for every A € A. Let
D C [0,1]NQ be such that C is the set of accumulation points of D and note that
DN f~Y(A) is finite for all A € A. It is easy to see that B = f[D] has the desired
properties. -

We conclude:
Corollary 4.26. There is a conv-MAD family.

The ideal conv is one of the few Borel ideals Z for which we can prove that there
are Z-MAD families.

4.4. Existence under diamond principles. Parametrized diamonds are strong
guessing principles which can be used to construct MAD families with strong com-
binatorial properties. We first recall the principles < (b) and < () from [33].

<& (b)): For every (F, :2% — w®) ., such that each F, is Borel, there is g :
w1 — w* such that for every R € 2“1, the set {a | Fo (R a) * % g(a)}
is stationary.

<& (0)): For every (Fy :2% — w®), ., such that each [, is Borel, there is g :
w1 — w* such that for every R € 21, the set {a | F,, (R | o) <* g ()} is
stationary.

Clearly < (9) implies < (b). In [33] it was proved that < (b) implies that a = w;

and in [I4] it was shown that < (b) implies the existence of a tight MAD family.

We will now improve this result:

Theorem 4.27. (1) < (b) implies there is a Shelah-Steprans MAD family.
(2) < (d) implies there is a raving MAD family.
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Proof. For every a < wy fix an enumeration o = {a, | n € w}. We will first show
that < (b) implies there is a Shelah-Steprans MAD family. With a suitable coding,
the coloring C will be defined for pairs t = (A, X;) where A, = (A¢ | { < o) and
X, C [w]=¥. We define C (t) to be the constant 0 function in case A; is not an

almost disjoint family or X; ¢ (Z (At)<w)+ . In the other case, define an increasing
function C'(¢t) : w — w such that if n € w then there is s € X; such that
s CC(t)(n) and sN (A, U...UA,, Un)=0.

Using < (b) let G : w; — w® be a guessing sequence for C. By changing G
if necessary, we may assume that all the G («) are increasing and if o < § then
G () <* G(B). We will now define our MAD family: start by taking {4, | n € w}
a partition of w. Having defined A for all £ < a, we proceed to define A, =
U (G(a) (n)\As, U...UA,,) in case this is an infinite set, otherwise just take

necw

any A, that is almost disjoint from {Ag | 8 < a}. We will see that A is a

Shelah-Steprans MAD family. Let X € (Z (A)<w)+. Consider the branch R =
((Ae | € <w1),X) and pick 8 > w such that C (R | B) * # G (B). It is easy to see
that A contains infinitely many elements of X.

Now we will prove that < (0) implies there is a raving MAD family. With a
suitable coding, the coloring C' will be defined for pairs ¢t = (A, X;) where A; =
(A¢ | € <a) and X; = {X! | n € w} C [w]"¥. We define C (t) to be the constant
0 function in case A; is not an almost disjoint family or X; is not locally finite
according to Z (A;) . We will describe what to do in the other case. For every n € w
define B,, = |J Aa, (hence By = () and let d (n) be the smallest k& > n such that

i<n
if ¢ > k then B,, does not intersect every element of X}. We define an increasing
function C (t) : w — w such that for every n,i € w, if d(n) <i < d(n+1) then
C (t) (n) \ B, contains an element of X!. The rest of the proof is similar as in the
case of & (b). 4

It is known that < (b) holds in the Cohen model (see [33]) so there are Shelah-
Steprans MAD families in this model but as we saw earlier, there is no strongly
tight MAD family, so being Shelah-Steprans does not imply being strongly tight.
We will later see that strong tightness does not imply being Shelah-Steprans.

4.5. Existence under forcing axioms. We will now prove two results: p = ¢,
which is equivalent to MA (o-centered), implies the existence of a Shelah-Steprans
MAD family and of a strongly tight MAD family. In [32] it was proved that Laflamme
MAD families exist under p = ¢. The following is a strengthening:

Proposition 4.28. Ifp = ¢ then every AD family of size less than ¢ can be extended
to a Shelah-Steprans MAD family.

Proof. Let Abe an AD family of size less than c and X = {s,, | n € w} € (Z (A)<w)+ :
We define the forcing P as the set of all p = (t,, F,) where t, € 2<% and F, € [A]=".
If p = (tp, Fp) and q = (t4, F,) then p < ¢ if the following holds:

(1) t, Ctp and Fy C Fp.

(2) In case n € dom (t,) \dom (t,) and A € F, if t, (n) =1 then s, N A = 0.
For any n € w and A € Alet D,, 4 C P be the set of conditions p = (¢,, F,) such
that ¢, ' (1) has size at least n and A € F,. Since X € (T (.A)<L‘))+ each D, 4 is
open dense. Clearly P is o-centered and since A has size less than p we can then
force and find Y € [X]“ such that | JY is almost disjoint with every element of A.

_|

We prove a similar result for strongly tight MAD families:
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Lemma 4.29. Let A be an AD family of size less than p. Let {X, | n € w} be a
family of infinite subsets of w such that for every A € T (A) the set {n| X, C* A}
is finite. Then there is B € At such that BN X, # () for every n € w.

Proof. We may assume that for every n € w there is A,, € A such that X,, C A,
(note that if A € A then the set {n | A,, = A} is finite). Let B = {A, | n € w}
and D = A\ B. We now define the forcing P whose elements are sets of the form
p = (8p, Fp, Gp) with the following properties:
(1) s, € <%, F, € [D]~* and G, € [B]~“.
(2) If i € dom (sp) then s, (i) € X.
For p,q € P we let p < q if the following conditions hold:
(1) sq C sp, Fy C Fp and G, C G,,.
(2) For every i € dom (sp) \ dom (s4) the following holds:
(a) sp (i) ¢ UFg.
(b) If B € G, and A; # B then s, (i) ¢ B.
It is easy to see that P is a o-centered forcing and adds a set almost disjoint with
A that intersects every X,,. Since A has size less than p, the result follows. -

‘We conclude:

Proposition 4.30. Ifp = ¢ then every AD family of size less than ¢ can be extended
to a strongly tight MAD family.

We strongly conjecture the following has a positive answer:
Problem 4.31. Does p = ¢ imply the existence of a raving MAD family?

4.6. Non-implications. Under CH we provide a number of examples for MAD
families satisfying some of the properties of Subsection while failing others.

We will now show that (consistently) strong tightness does not imply being Laflamme
or random indestructible. Recall that the summable ideal is defined as 7/, = {4 C

w | ZA%H < w}. We start with the following lemma:
ne

Lemma 4.32. Let A be a countable AD family contained in the summable ideal.
Let X ={X,, | n € w} C [w]*” such that all X,, are contained in some member of A
and {n | X,, C A} is finite for all A € A. Then there is D € A+ N J1,, such that
DN X, #0 for every n € w.

Proof. Let A= {A,, | n € w}. For each n € w we define F,, = {X; | X; C A,}. We
construct a sequence of finite sets {s, | n € w} C [w]~* such that:

(1) max (s,) < min (sp41) .

(2) Z %J’_?’ < 2'n.]:}»1'

1E€ESy

(3) s, has non empty intersection with every element of F,.

(4) If m < n then s, is disjoint from A,,.
Assume we are at step n, and let r be such that F,, = {X,,,..., X,,.}. Find m
such that Tm < Qn% and s; C m for every ¢ < n. For every i < r we choose

1+
k; > m such that k; € X,,, \ U 4; and let s, = {k; | i <r}. It is easy to see that
j<n
D = | s, has the desired properties. B
new

In [I6] it was proved that random forcing destroys the summable ideal (in fact,
Ji/m <k tr(N)). We therefore conclude, using Lemma [4.2}

Proposition 4.33 (CH). There is a strongly tight MAD family contained in the
summable ideal Jy/y (in particular, it is random destructible and not Laflamme).
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Note that the Pyap(J1/y,)-generic MAD family has all these properties.
* kK

We saw that every finxfin-like MAD family is Cohen indestructible (Proposition[4.13)).
However, we will now show that finxfin-like does not imply tightness (so in partic-
ular, it is a weaker notion than Shelah-Steprans).

Proposition 4.34 (CH). There is a finx fin-like MAD family that is not tight.

Proof. Let {Z, | w < a < w1} be an enumeration of all analytic ideals Z with finxfin
£k T and let {X,, | n € w} be a partition of w into infinite sets. We will recursively
construct an AD family A = {4, | @ <wi} such that for every a the following
conditions hold:

(1) {4, | n € w}is a partition of w refining {X,, | n € w} and every X,, contains
infinitely many of the A,,.

(2) There is £ < a such that A¢ ¢ Z,.

(3) If B € Z(A) then there is n € w such that BN X, is finite.

Note that by the comment after the proof of Lemma [£.7] A will indeed be finxfin-
like while the X, witness the failure of tightness.

Let A, = {A¢ | € < a} and assume A, C Z,. Let o = {a, | n € w} and define
L, = Asy U...UA,, . Define E, = {m||L,NX,| <w} and note that E =
(En)pe, 1s a decreasing sequence of infinite sets. Find a pseudointersection D of
E such that w\ D also contains a pseudointersection of E. Define Top = |J X, and

neD
Ty = U Xn. Since finxfin £, Z, we know that either finxfin £ . Z, | Tp or finxfin
n¢D
%y Lo | Th. First assume finxfin £, Z, | Tp. Then we can choose A, € (Z, | TO)+
that is almost disjoint with Aq [Ty which implies it is AD with A,. We now need to
prove that for every n < w there is X,,, such that (L, U A,) N X, is finite. Since
w \ D contains a pseudointersection of E there is m € E, \ D and then both L,
and A, are almost disjoint with X,,,. The other case is similar. -

* k x

Recall that the density zero ideal is defined as £ = {A C w | lim ‘A;?n‘ =0}. Zis

not Katétov below any F,-ideal. Thus, from Lemma we obtain:

Corollary 4.35. Let A be a countable AD family contained in Z. If T is an F,-
ideal and f : w — w then there is a countable AD family B such that AC B C Z
and there is B € I (B) such that f~1(B) € T*.

Using a suitable bookkeeping device we conclude:

Proposition 4.36 (CH). There is a Laflamme MAD contained in Z. In particular,
it s mot a not-P MAD family. Additionally this MAD family is strongly tight and
random indestructible.

Indeed, the Ppmap(Z)-generic MAD family has all these properties. To see strong
tightness, use Lemma and Jy,, € Z. Since Z £ tr(N), random indestruc-
tibility follows from Corollary [£.16] We shall come back to this generic object in
the next section (Theorem [5.13).

5. DESTRUCTIBILITY BY FORCING

In [41] Shelah constructed models of 0 < a (see also [5]). In these models, 0 is
bigger than w;. It is an old question of Roitman whether 0 = w; implies a = w;.
Even the following question of the first and last authors is still open:

Problem 5.1 (Brendle, Raghavan). Does b =5 = w; imply a = wy ?
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Constructing models of b < a is much easier than constructing models of 0 < a.
However, all the known models of b = w; < a require diagonalizing an ultrafilter,
which increases the splitting number (see [40], [], [6] and [7]). Problem is
related to the following: Assuming CH, can every MAD family be destroyed by a
proper forcing that does not add dominating or unsplit reals? Recall that Shelah-
Steprans MAD families A are indestructible for many definable forcings that do
not add dominating reals. Perhaps surprisingly, such families can be destroyed by
forcings that do not add dominating reals or unsplit reals. In fact, we will see that
the Mathias forcing associated with Z (,A) has these properties.

5.1. Destroying Hurewicz ideals. Recall that for Hurewicz ideals Z, Mathias
forcing M(Z) preserves unbounded families from the ground model. We now proceed
to strengthen this.

We need the following notions (see [7, Definition 31] for a notion similar to item
2):

Definition 5.2. (1) Let P = {s,|n€w} C (W]~ be a collection of finite
disjoint sets and S € [w]* . We say that S block splits P if both of the sets
{n|sn €S} and {sy | s, NS =0} are infinite.
(2) We say that S = {Ss | @ € w1} C [w]* is a tail block-splitting family if for
every infinite set P of finite disjoint subsets of w there is o < wy such that
S, block splits P for every v > o

It is easy to see that tail block splitting families exist if @ = w; (see also [7]
Observation 34]) and tail block splitting families are splitting families. We say that
a forcing P preserves a tail block-splitting family if it remains tail block-splitting
after forcing with P.

Proposition 5.3. Let T be a Hurewicz ideal. If S ={Ss | @ € w1} C [w]* is a tail
block-splitting family then M (Z) preserves S as a tail block-splitting family.

Proof. Let T be a Hurewicz ideal and S a tail block-splitting family. Let P = {pn |
n € w} be a name for an infinite set of pairwise disjoint finite subsets of w, we
may assume p,, is forced to be disjoint from n. For every s € [w]<w and m € w
we define X, (s) as the set of all ¢+ € [w]~“ such that max(s) < min () and
there are F; , ) € [wW]=“ and B € T such that (sUt, B) IF “p,, = Flom,s) Tt
is easy to see that {X,, (s) | m € w} C (Z<%)" and since 7 is Hurewicz, we may
find Y, (s) € [Xp ()] such that if W € [w]” then |J Y, (s) € (Z<9)". Let
meWw
Zm(s) = U Fuums)- For every s € [w]=” we can then find D (s) € [w]” such
tEY o (s)

that R (s) = {Z, (s) | m € D (s)} is pairwise disjoint.

Since S is tail block-splitting, we can find o such that if v > « then S, block
splits R (s) for every s € [w]=* . We claim that in this case, S, is forced to block split
P. If this was not the case, we could find (s, A) € M (Z) and n € w such that either
(s, A) IF “U{Dm | pm € Sy} S n” or (s, A) IF “U{pm | P NSy, =0} Cn”. Assume
the first case holds (the other one is similar). Since S, block splits R (s), we know
that the set W = {m >n | Z,, (s) C S,} is infinite. Since |J Y;u (s) € (Z<9)7,

meWw

there is m € W and t € Y, (s) such that ¢ N A = (). We know there is B € Z such
that (sUt, B) IF “pr = F(4,m,s)”- Since t N A = (), we have (s Ut, AUB) < (s, A).
But (sUt, AU B) forces that p,, is a subset of Sy, which is a contradiction. We
therefore conclude that S remains being a tail block-splitting family. -
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In particular, if V' is a model of CH and Z is a Hurewicz ideal, then M (Z)
preserves VN[w]” as a splitting family (this result has also been noted by Lyubomyr
Zdomskyy). Since Hurewicz ideals are Canjar ideals, we conclude the following:

Corollary 5.4. If A is Shelah-Steprans then A can be destroyed with a ccc forcing
that does not add dominating nor unsplit reals.

In fact, such forcings can be iterated without adding unsplit reals, as the following
result shows:

Proposition 5.5. Let (P,, Qa | a < 8) be a finite support iteration of ccc forcings.
If P, forces that Q. preserves tail block-splitting families, then Ps preserves tail
block-splitting families.

Proof. We prove the result by induction on §. The cases where § = 0, § is a successor
ordinal or § has uncountable cofinality are trivial, so we assume ¢ is a limit ordinal
of countable cofinality. Fix an increasing sequence (6,),,c,, such that § = (Jd,. Let
S = {S4 | @ € w1} be a tail block-splitting family and let P = {5; | i € w} be a Ps-
name for a collection of finite disjoint sets. For every n € w, we define a Ps_ -name
P (n) = {5 (n) | i € w} as follows:
Assume G,, C Ps is a generic filter. In V[G,] we find a family P(n) =
{si(n) | i € w} with the following properties:
(1) P(n) is a family of pairwise disjoint sets.
(2) For every i € w, there is p € P5/G,, such that p IFp,/q, “4; = s:(n)”
(where Ps/G,, denotes the quotient forcing).
Let $; (n) be a Ps_-name for s; (n). Since Ps, preserves tail block-splitting fam-
ilies, there is a 5, -name ¢, for a countable ordinal such that 1p, forces that if 3

is bigger that ¢, then Sz tail block-splits P (n). Since each Ps, has the countable
chain condition, we can find o < wy such that 1p,, IF “&,, < a” for all n. We claim
that if 5 > «, then Sp is forced to block-split P.

Assume this is not the case, so there are m € w, 8 > «, p € Ps such that either
plbpy “U{si |8 CSs} Cm” orplbp, “\U{s:i |8 NSs=0} Cm”. We will assume
that p lkp, “U{$i | $i € Sg} C m” (the other case is similar). Let n € w such that
p € Ps,, . Since Sg is forced to block-split P (n), we can find ¢ < p and j € w such
that g IFp;  “s; (n) € m A $; (n) € Sg”. Then there is a Ps,-name 7 € Ps such that
qlFps “F € IP’(;/G'” and 7 Ibp, /e 8 (n) = §;7. Therefore, we can find 7 < ¢ in Ps
such that 1 IFp, “$; € m A $; C Sg”, which is a contradiction. =

By iterating the Mathias forcing of all Hurewicz ideals, we obtain:

Theorem 5.6. There is a model in which the following statements hold:
(1) ¢ = Wwsa.
(2) b=s= wi.
(8) No MAD family of size Ry can be extended to a Hurewicz ideal.

We do not know the value of a in the previous model. Naturally, if every MAD
family could be extended to a Hurewicz ideal (at least under CH), then we would
be able to solve the Problem Unfortunately, this may not be the case, as we
will prove in the next section (Theorem .

5.2. Variants of the Shelah-Steprans property. Given two non-empty finite
subsets s, t of w, we write s < t if max (s) < min (¢). We say that B = {s,, | n € w} C
[w]S“\{0} is a block sequence if s, < 5,41 for every n € w. The following are natural
weakenings of being Shelah-Steprans.

Definition 5.7. Let A be a MAD family.
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(1) We say that A is Shelah-Steprans for block sequences if for every block
sequence B = {s, |n€w} € (T (.A)<w)+, there is W € [w]” such that
UsneZ(A.
new

(2) We say that A is w-Shelah-Steprans for block sequences if for every se-
quence (Bp), ., of block sequences with B, € (I (.A)<w)+, there is C' €
Z(A) such that for every n € w there are infinitely many s € X,, such that
s C C.

Note that by Lemma [3.11] every Shelah-Steprans MAD family is w-Shelah-
Steprans for block sequences, and obviously w-Shelah-Steprans for block sequences
implies Shelah-Steprans for block sequences.

One may wonder if Shelah-Steprans and (w-)Shelah-Steprans for block sequences
are different concepts. We are going to prove that Shelah-Steprans and w-Shelah-
Steprans for block sequences might and might not agree. We do not know whether
Shelah-Steprans for block sequences and w-Shelah-Steprans for block sequences are
the same. First we have the following result:

Lemma 5.8. Let A be a MAD family such that |A| < cov(M). If A is Shelah-
Steprans for block sequences, then A is Shelah-Steprans.

Proof. Let A be a MAD family of size less than cov(M) that is Shelah-Steprans
for block sequences. Letting X = {s, [n € w} € (T (.A)<W)Jr , we must show that
there is B € Z (A) such that B contains infinitely many elements of X. We define
the forcing notion P (X) as the set of all p with the following properties:

(1) There is n, € w such that p : n, — X.

(2) If i < j < nyp then max (p (2)) < min (p (§)) .
We order P (X) by inclusion. Since P (X) is countable, it is forcing equivalent to
Cohen forcing. Note that P (X) adds a block sequence contained in X. Furthermore,
since |A| < cov(M), we can find g : w — X such that g[w] is a block sequence
and for every B € Z (A) there is n € w such that g (n) N B = . Since A is Shelah-
Steprans for block sequences, we conclude that there is B € T (A) such that B
contains infinitely many elements of X. a

It is easy to see that MAD families that are w-Shelah-Steprans for block sequences
are tight, so in particular, they are Cohen-indestructible. We thus obtain:

Corollary 5.9. In the Cohen model, every MAD family that is w-Shelah-Steprans
for block sequences is Shelah-Steprans.

We will see now that the conclusion of the corollary is false under the Continuum
Hypothesis (Theorem [5.13).

Given n € w, let R, = [2",2""1) and for every A C w let ¢, (A) = ngfn\_ We
also define the function @uax : [w]* — Q where puax (A) = max {p, (A) | n € w}.

Lemma 5.10. Let X = {s, | n € w} be a block sequence and A a countable AD
family such that A C Z. If there is m > 0 such that % < Pmax (8n) for everyn € w,
then there is B € A+ N Z such that BN s, # 0 for every n € w.

Proof. For every n € w, we choose [, € w such that % < ¢, (sp). Since X is

pairwise disjoint, for every | € w the set {n | l,, =} has size at most m. Let A =
{4,, | n € w} and define B,, = AgU...U A,,. Fix an increasing function [ : w — w
such that for every n,i € w, if f(n) < i then ¢; (B,) < --. We can then find
B = {yn | n € w} such that for every n € w, the following holds:

(1) yn € sp N Ry,

() I £ (k) < L, then y, ¢ B
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It is easy to see that B € A+ and BN s, # () for every n € w. Finally, B € Z since
|BN Ry < m for every | € w. .

We conclude:

Lemma 5.11. Let X = {X,, | n € w} be a countable collection of block sequences
and A € Pyap (2). If AIF “X C (I(Agen(Z))<“’)+” then there is B € Pmap (Z)
such that A C B and there is B € I (B) such that B contains infinitely many
elements of each X,,.

Proof. Let A = {A,, | n € w} and define B, = AgU ... U A,. Given n,k € w, we
define X, (k) = {s € X,, | sN By, = 0} and note that each X, (k) is infinite. We
claim that for every n,m,k € w, m > 0, there are infinitely many s € X,, (k) such
that @max (8) < % Assuming this is not the case, there are n,m,k € w, m > 0 such
that L < ppax (s) for almost all s € X,, (k). Let Y = {s € X, (k) | omax (s) < 5}
and Z = X,, (k) \ Y. By the previous lemma, there is B € A' N Z such that B
intersects every element of Z. It follows that B U By U|JY intersects every element
of X,,. Therefore, AU{B} is an extension of A forcing that X,, is not positive,
which is a contradiction.

Thus we know that for every n,m,k € w, m > 0 there are infinitely many
s € X, (k) such that @max (s) < . By an easy diagonalization argument, we can
find B € A+ N Z such that B contains infinitely many elements of each X,,. —

Let Z (n,m) = {s C Ry, | om (R \ s) < o7 } and define X,, = |J Z (n,m).

mew

It is easy to see that X,, € (I (Z)<w)+ .

Lemma 5.12. Let A € Puap (£) and for every n € w, let Yy, € [Xn]<w. There is
B € A+ N Z such that BN s # () for every s €Y, and n € w.

Proof. Let A ={A, |n€w}and B, = AgU...U A,. We first find an increasing
function f : w — w such that for every n € w, the following conditions hold:

(1) f(n) is of the form 2m»*! for some m,.

(2) If f(n) < then ¢; (By) < 5.

(3) If s€Y, and s C Rj, then j < f (n).

We now define a sequence (t,) such that for every n € w, the following conditions

new
hold:
(1) t, C R,.
(2) If n < f(0) then ¢, (t,) = 1.
(3) If f(k) <n< f(k+1) then t, N By = 0.
(4) If f (k) <n < f(k+1) then ¢, (t,) = 3.
Letting B = | t,, it is easy to see that B has the desired properties. —
new

We thus obtain:

Theorem 5.13. (1) Pmap (Z) forces that Agen (Z) is an w-Shelah-Steprans
MAD family for block sequences that is not Canjar.
(2) The Continuum Hypothesis implies that there is a non Canjar, w-Shelah-
Steprans MAD family for block sequences A such that A C Z. In particular,
A is not Shelah-Steprans.

To see that A is not Shelah-Steprans, either use A C Z or the fact that A is not
Canjar, and recall that every Shelah-Steprans MAD family is Hurewicz (Proposi-
tion and thus Canjar. For other properties of this generic MAD family see the
earlier Proposition
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* Kk

We say that a block sequence B = {s, | n € w} witnesses that A is not Shelah-
Steprans for block sequences if B € (Z(A)<¥)* and there is no W € [w]* such that
Unew sn € Z(A). We will say that B = {s,, | n € w} is an increasing block sequence
if for every n € w, the set {m | |s,,| = n} is finite.

Lemma 5.14. Let A be a MAD family. If a block sequence B = {s, |n € w}
witnesses that A is not Shelah-Steprans for block sequences, then B is an increasing
block sequence.

Proof. Assume this is not the case. So there is m € w such that the set W =
{n | |sp| =m} is infinite. By applying that A is maximal m-many times, we can
find Wy € [W]” and B € Z (A) such that |J s, C B, which is a contradiction.
neWy
We need the following notion:

Definition 5.15. Let B = {s,, | n € w} be an increasing block sequence. We define

the ideal J (B) as the set of all A C w such that lim,, (“T?jl"l) =0.

Note that the density zero ideal has the previous form. Given an increasing block
sequence B = {s, | n € w} and X € [w]”, we define Bx = {s,, | n € X}. Note that
if A is MAD then Z(A) is meager and therefore by Talagrand’s Theorem, there is
an increasing interval partition B = {s,, | n € w} such that there is no W € [w]*
with (e sn € Z(A). We can now prove the following result:

Proposition 5.16. Let A be a MAD family and let B = {s,, | n € w} be such that
there is no W € [w]* with J, ey $n € Z(A). There are X € [w]* and Ag € [A]=
such that .A\Ao - j(Bx) .

Proof. We argue by contradiction, so assume this is not the case.
By QT we denote the set of all positive rational numbers. We will now recursively
define (Ay, Gy Xo) such that for every a < w; the following hold:

acwy
(1) Ap € A, go € QT and X, € [w]”.
(2) If o # B then A, # Ag.

(3) If 8 < o then X, C* Xj5.

(4) If n € X4, then ¢, < AaNsn]

[snl

Let o < w; and assume we have already constructed (Ag, g¢, X¢) f<a We will
see how to find A, g, and X,,. Since {X, | £ < a} is a C*-decreasing sequence, we
may find Y € [w]” such that Y C* X for every £ < a. By our assumption, the set

C = A\ J (By) is uncountable. Note that if A € C, then there is g4 € QT such

that the set {n €Y |qga < %} is infinite. Since C is uncountable, we may find

qo € Q1 such that C; = {A € C |ga = ¢o } is uncountable. We can then find A, € C;

such that A, # A¢ for every ¢ < «. Finally, let X, = {n €Y |ga < %}

Clearly, A,, o and X, have the desired properties.
We can now find W € [w;]*" and ¢ € Q" such that g, = ¢ for every a € W. Let
m € w such that % < m and choose o, ...,y € W. Let X = X,,N...NX,,, and note
Aq,;Nsp
that X is an infinite set. By construction, if n € X and i < m then ¢ < “ﬂ

sn
Since % < m, for each n € X there must be i,,j, < m such that i, # j, and
Aq,, NAg,, Nsy # 0. Since X is infinite, there are 4,j < m and Y € [X]” such
that ¢ = i, and j = j, for every n € Y. This implies that A,, N A, is infinite,

which is a contradiction. =

We also have the following;:
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Lemma 5.17. If B is an increasing block sequence, then J (B) <x Z.

Proof. It is easy to see that J (B) is a non-pathological P-ideal (see [13] or [29]
for the definition of non-pathological P-ideals) and in [29] it was proved that every
non-pathological P-ideal is Katétov below Z. B

Therefore, every MAD family is “nearly Katétov-below” Z. By these results,
it would be tempting to conjecture the following: If Z can be destroyed without
increasing b and s, then every MAD family can be destroyed without increasing b
or s. Unfortunately, it seems that the density zero ideal can not be destroyed with-
out increasing b or s. Recently, Raghavan showed that cov* (Z£) < max {b,s (pt)}ﬁ
(s (pr) is the promptly splitting number, which is a cardinal invariant closely related
to s, see [37] for more details). This improves an earlier work of Raghavan and
Shelah (see [38]) where they showed that cov* (£) < 0.

We know that every MAD family is contained up to a countable subfamily in
an ideal J (B) (where B is an increasing block sequence). We will now show that
(consistently) this is best possible, that is, one can not disregard the countable
family in Proposition (see Theorem .

Let B = {P, | n € w} be the interval partition of w with |P,| = n + 1. Given
X Cwand n € w, we define B(X,n) = {m | |Py, \ X| <n}. We will say a family
A is B-AD if the following conditions hold:

(1) A is a countable AD family.
(2) If B € ZI(A) then B(B,n) is finite for every n € w.
(3) If B € T(A) then there is n € w such that P, N B = 0.

Note that if A is B-AD then for every B € Z (A) there are, in fact, infinitely many
n € w such that P, N B = (recall every finite set is in Z (A)).

Lemma 5.18. Let A be a B-AD and X € At. There is A € [X]* such that AU{A}
is B-AD.

Proof. Letting A = {4,, | n € w}, we may assume that n € A4, for every n € w. For
every n € w, we define B,, = [J{A; | i <max(P,)} (note that PhU...UP, C B,
and B, € Z(A)). We recursively construct a sequence ((Yn, Un, Tp)) with the
following properties:

new

(1) yn < Up, < Yn41 for every n € w.
(2) {zp|new}CX.
(3) zn, € Py,.
(4) =, ¢ B,.
(5) yn € B(Bn,n+1).
(6) B,NP,, =0.
Assuming we have constructed (y;, u;, x;) for every i < n, we will see how to
define (yn, tn, ) . We first find r € w such that the following hold:

(1) max (P,,) < r for every i < n.
(2) B,nX Cr.
(3) B(Bp,n+1)Cr.
Since X is an infinite set, we can find y,, such that r < min (P,, ) and X NP, # 0.
Choose any z,, € X N P, . Finally, let u,, such that y, < u, and B, N P,, = 0.
We now define A = {z,, | n € w}. Clearly A is almost disjoint with every element
of A and A is an infinite subset of X. Letting A; = AU {A}, we need to argue that

A; is a B-AD family. Letting n € w, note that if m > n then (AU B,) NP, =0,

4If 7 is a tall ideal, by cov* (Z) we denote the smallest size of a family X C Z such that for
every A € [w]® there is X € X such that AN X € [w]“.
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so AU B, is disjoint with infinitely many elements of B. Finally, note that if m > n
then ., ¢ B(AU By, n). 4

We can now prove:

Lemma 5.19. Let A be B-AD. If f : w — w is a Katétov-morphism from Z to
T (A) then there is A € At such that Ay = AU{A} is B-AD and f is no longer a
Katétov-morphism from Z to I (A1) .

Proof. As before, let A = {A, | n € w} (we assume again that n € A, for every
n € w) and for every n € w, we define B,, = |J{A4; | i < max (P,)}. We recursively

construct a sequence ((Yn, Un, 5n)),c,, With the following properties:

(1) yn < Yny1 for every n € w.
(2) sn C f[Ry,] (recall that R, = [2",2"T!) and for every A C w we defined
_ |ANR.|
Pn (A) = =)
3) @y, (f71(sn) = 3.
4) s, N B, = 0.
5) If P, N sy, # 0 then m ¢ B(By,3n) for every m € w.
6) If Py, Nsy # 0 then n < |Pp, \ (s, U B,)|.
7) P, N B, =0.
8) max (P,,) < min (s,41) < max (sp41) < min (P, ., ).

Assuming we have constructed the triple (yn,un,s,), we will show how to
construct (Yn41,Unt1sSnt1)- Let D = By UUYU{Pm | m € B(Bpi1,3(n+ 1))} U
max (P,,). Clearly D € Z(A), hence f~*(D) € Z. Let y,11 > y, with the
property that ¢, ., (f7' (D)) < 3. Let z = f[Ry,,, \ /7' (D)] and note that
ifmewand P,Nz#0 then m ¢ B(Bp+1,3(n+ 1)) and max (P,, ) < min (P,,) .
Let K = {m| Py, Nz# 0} which clearly is a finite set. For every m € K let
tm = Ppm \ Bpt1 and define Ky = {m € K | |t \ 2| <n+1}. Note if m € K,
then |t;,| > 3(n + 1) hence 2(n + 1) < |t,, Nz|. For m € K; we can now choose
distinct xf', ..., 2, W', ..., wl" € ty Nz such that ¢, ., (7 {zf,..,20})) >
s (F7H{wf"s...;w})) . Given m € K, we now define the set s = (£, N2)\
{wd, ..;wrtif m e Ky and s = ¢, Nz it m € K\ K. Let 3" = {w{', ..., w"
for every m € K and we define s,11 = |J s and S,01 = | 5. Note that

meK meK,

Ryn+1 = Ryn+1 N (fil (D) U fil (sn+1) U fil (§n+1)) . NOW& Pynt1 (fil (D)) < %
and Pynt1 (fil (§n+1)) < Pynt1 (fil (Sn+1)), hence Pynt1 (fil (8n+1)) > % It
is easy to see that s,;; has all the desired properties. Finally we choose u,1
accordingly.

Letting A = | sy, it is easy to see that f=!(A) ¢ Z and AU{A} is B-AD.

new
With a suitable bookkeeping device, we conclude the following:

Theorem 5.20 (CH). There is a Z-MAD family that is not Shelah-Steprans for
block sequences.

Therefore, the countable family mentioned in Proposition [5.16|is indeed needed.
Theorem [5.20| motivates the following questions:

Problem 5.21. (1) Do Z-MAD families exist (in ZFC)?
(2) Is it consistent that every MAD family that is not Shelah-Steprans (or
Shelah-Steprans for block sequences) is Katétov below Z ¢

6. A GENERAL STRATEGY FOR PRODUCING MODELS WITH SMALL NON-MEAGER
FAMILIES

A general strategy for preserving certain non-meager sets from the ground model
is provided in this section. Usual methods of producing models of non(M) = ¥
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with a countable support iteration rely on the preservation of stronger properties
such as Cogpen- Our results here allow us to keep non(M) = Ry in countable sup-
port iterations where the iterands do not enjoy any of these additional preservation
properties. The results of this section will be used in Section [7]to produce a model
of non(M) = R; where there are no block Shelah-Steprans a.d. families of size N;.
However, our results here are quite general and we expect they will have further
applications going beyond almost disjoint families.

Definition 6.1. An interval partition or IP is a sequence I = (i, : n € w) € w¥

such that o = 0 and Vn € w [ip, < ip41].
Given an IP I and n € w, I, denotes [in,int1) = {l € w4y <1 < ipy1}

The following is a slight variation of a well-known connection between eventually
different reals and meagerness of the ground model. We give a proof even though the
argument is similar to the arguments in Miller [31] or Bartoszynski and Judah [2].

Lemma 6.2. Let Vo C V1 be transitive models of a sufficiently large fragment of
ZFC. Assume that

Ve HRy)“NVidge HNg)* NVoI®n € w|f(n) = g(n).
Then the following hold:

(1) for each f € H(No)* N'Vy and each X € [w]” NV, there exists a g €
H(Xg)“ N Vg so that

3%n € X[f(n) = g(n)];

(2) for each IP I = (i,, :n € w) € WY N'Vy, there is an IP J = (j, :n € w) €
w* NV so that

I*lewin ewll, C J;

(3) for any M € Vi, if (M C 2% is a meager set)’", then there exists © €
2NV with x ¢ M.

Proof. For (1): working in V7, fix f € H(Rp)” and X € [w]”. Let (z, :n € w)
be the strictly increasing enumeration of X. Recall that whenever A € H(Ny),
then H(NO)A C H(Xgy). For each n € w, {x; : i < n}, being a finite subset of w,
is a member of H(Xo). Therefore f[{z; : i < n} € H(Ro)™<™ C H(Ry). So
we may define a function F' : w — H(Ng) by setting F'(n) = f[{z; : i < n}, for
each n € w. By hypothesis, there is a function G € Vg so that G : w — H(X)
and 3°n € w[F(n) = G(n)]. Observe that whenever F(n) = G(n), G(n) is a
function and dom(G(n)) € [w]". Thus working in Vg, we see that the set Y =
{n € w:G(n) is a function and dom(G(n)) € [w]"} is infinite. Let (y,, : n € w) be
the strictly increasing enumeration of Y. Define a function e € w* by induction
as follows. Let n € w and assume that e(m) has been defined for all m < n.
Then |{e(m) : m < n}| < n, while |dom(G(yn+1))| = Yn+1 > n+1 > n. So define
e(n) = min(dom(G(yn+1)) \ {e(m) : m < n}). Note that e is a 1-1 function and
that e(n) € dom(G(yYn+1)), which means that G(yn+1)(e(n)) is defined and is a
member of H(Xg). Define g : w — H(Np) so that g(e(n)) = G(yn+1)(e(n)), for all
n € w, while g(k) = 0, for all £ ¢ ran(e). We check that g is as needed. We know
Z={n€w: F(ynt1) = G(Ynyt1)} is infinite. If n € Z, then dom(G(yn+1)) C X,
whence e(n) € X and g(e(n)) = G(yns1)(e(n)) = F(gnp1)(e(n)) = f(e(n). Thus
e"Z C{ke X :g(k)=f(k)}. Aseisa 1-1 function, {k € X : g(k) = f(k)} is an
infinite set.

For (2): working in Vy, fix an IP I = (i, :n € w). Define f : w — H(Np)
by f(n) = inte, for all n € w. By the hypothesis, there is a ¢ € V( so that
g:w — H®Xg) and 3%°n € wig(n) = inyo]. Working in Vo, define an IP J =
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(ji : 1 € w) as follows. jo = 0. Fix I € w and suppose that j; € w is given. Define
Jivr = max ({1 + 11U {g(n) : n < i1} Nw)). Note jit1 > 51+ 1 > ji, so we have
an IP. To check that it is as needed, fix any M € w. Choose n > jy4+1 with
g(n) = in42. There is a unique k € w with n € J, that is jp < n < jg+1. Observe
k>M+1> M. If i1 < jr+1, then we have jr < n < i, < int1 < Jrt1,
implying that I,, C Ji. If jx41 < in41, then by the definition of jiy2, we have
Jk41 < int1 < fpto < Jrto, implying that I,,4+1 € Jr41. Thus we have found an
I > M, namely either [ = k or [ = k + 1, and an n’, namely either n’ = n or
n’ =n+1, so that I, C J;.

For (3): working in V1, fix a meager set M C 2¢. Let (F), : n € w) be a sequence
of closed nowhere dense subsets of 2¢ such that Vn € w[F, C F,41] and M C
UnecwFrn- Build an IP I = (i, : n € w) and a sequence (7, : n € w) as follows. Put
ig = 0. Let n € w and assume that i,, € w is given and that 7, has been defined
for all m < n. Find i,41 > i, and a function 7, : [iy,in+1) — 2 such that for each
0 iy — 2, [0 UT,] N F, =0. This is possible because F,, is closed nowhere dense.
Note that y = [, c,7n : w = 2. Using (2), find an IP J = (j; : | € w) € V with the
property that 3°/ € win € wll, C Jj]. In V1, define a function F : w — H(Ry)
by setting F(I) = y| [ji, ji+1), for all | € w. Note that if I, C J;, then 7, = y[I,, C
ylJi=F(). Let X ={l € w:3In € w[l, C Jj]}. Applying (1), find G € V{ such
that G : w — H(Rp) and 3! € X [G(1) = F(1)]. Working in Vy, define z : w — 2
such that for each I € w, if G(I) : J; — 2, then z[J; = G(I), while if not, then z[J,
is constantly 0. Suppose | € X and that G(I) = F (). Choose n € w with I, C J.
Let o = iy, : ip, — 2. By the choice of 7,,, [c U7,] N F,, = 0. Since F(I) : J; = 2,
I, C J,and G(I) = F(l), 7, C F(l) = G() Cz. So x € [ocUTy,], whence = ¢ F,.
Thus we conclude that 3%°n € w [z ¢ F,]. As the F,, are increasing, ¢ J . Fn,
and so x ¢ M. !

new

Definition 6.3. S :w — H(Ro) is called a slalom if Vn € w [|S(n)| < (n + 1)27+1].
S :w— H(No) is called a small slalom if Vn € w [|S(n)| < 27+1].

Definition 6.4. Let f € H(R()”. Forn € w, A, = {k < n: f(k) is a function A
n € dom(f(k)) A |f(k)(n)| < 271},
Define Sy(n) =UJ{f(k)(n) : k € A,}, ¥n € w. We observe that

Vn € w [Sf(n) € H(Ry) and |Sy(n)| < (n+1)2"F1].
Thus Sy : w — H(Xp) and Sy is a slalom.

Lemma 6.5. Assume F C H(Rq)" is such that Vf € F[Sy € F|. Then if Vf €
H(Xg)¥3g € F3°n € w[f(n) = g(n)], then for any small slalom S : w — H(Xg)
and any sequence (X;:1 € w) C [w]|”, there is a slalom T : w — H(Xo) so that
TeF and ¥Vl € w3I*n € X;[S(n) CT(n).

—~—

Proof. Let I = (i : k € w) be an IP such that Vk € wVl < k[X; NI # 0]. De-
fine f : w — H(Xg) by f(k) = S|, for all £ € w. Note that for each k € w,
H(NO)I’“ C H(Xg), and so f : w — H(Ng). By hypothesis, fix ¢ € F so that
3°k € w[f(k) = g(k)]. Let T = Sy, which by definition means that 7" is a slalom.
Also by hypothesis, T' € F. To see that T is as required, fix [ € w. Let M € w be
given. Let K = max{M, [} € w. Choose k > K with f(k) = g(k). Since l < K < k,
X NI, #0. Choose n € X;NI;. Thusn € X;and M < K <k < <n. As
g(k) = f(k), we have that k € A, ,,, whence S(n) = g(k)(n) C Sq(n) = T'(n). This
is as needed because n € X; and n > M. =

Definition 6.6. Let <y, be a well-ordering of H(RXg). For any A € H(Xg), (4, <o)
is a finite well-order, and therefore there is a unique function e4  : |A] — A which
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is an order isomorphism from (| A, €) to (A, <yo). Define an IP I = (i), : n € w) as
follows. ig = 0. Given i, € w, iny1 = iy + (n +1)27FL

Now suppose S : w — H(Xg) is a slalom. Define fs . :w — H(Xg) as follows.
Given = € w, there exist unique n, j € w satisfying i, <z < i,41, j < (n+1)2"+1,
and © = 4, +j. If j > |S(n)|, then fs . (z) =0¢€ H(XNg). If j < |S(n)|, then
€3(n),<w () € H(Ro). If eg(n),<,, (4) is a function and dom(eg(n), <, (7)) = [in, int1),
then fs <, (2) = €s(n),<,,(4)(x) € H(No). Otherwise, fs <, (x) =0€ H(Ro).

The point of this somewhat cumbersome definition is the following lemma.

Lemma 6.7. Assume F C H(Xg)” has the property that for every slalom S : w —
H(Rg), if S € F, then fs, € F. Then if for every f € H(Ro)“ there is an
S € F such that S : w — H(Xg) is a slalom and 3%k € w[f(k) € S(k)], then
Ve HNy) g € FI*k e w(f(k) = g(k)].

Proof. Let f : w — H(Xp) be given. Define the IP I = (i, : n € w) as follows:
ip = 0; given iy, € w, iny1 = in + (n+ 1)2"TL. Define F : w — H(Xg) by setting
F(k) = f|1I. By hypothesis, find a slalom S € F such that 3%k € w [F'(k) € S(k)].
Consider any k € w such that F(k) € S(k). There exists a unique j < |S(k)| <
(k + 1)2" with eg(), <., (j) = F(k). Let @ = iy +j. Then iy < & < ipq
and by definition fs < (%) = esw), <, (J)(®) = F(k)(x) = f(z). Thus for each
k € w such that F(k) € S(k), there exists ) € Ij such that fs . (xr) = f(zk).
Since there are infinitely many such k and since I N Iy = @ whenever k # K/,
3%z € w(fs <, (x) = f(z)]. We are done because fg ., € F by hypothesis. =

Definition 6.8. Let <y, be fixed. A family F C H(Xo)" is called well-closed w.r.t.
<o if it satisfies the following:
(1) Vf e F[S;eFl;
(2) for every S € F,if S:w — H(Xp) is a slalom, then fg ., € F;
(3) for every set {f, : n € w} C F, there is a slalom S € F so that Vn €
WYk € w(fn(k) € S(k)].

Remark 6.9. Suppose Vo C V; are transitive models of a sufficiently large fragment
of ZFC with <y, € V. Then for any A € H(Xg), the map e4 ,, : |A| — A is the
same whether it is calculated in Vi or in V4. Also, if S € Vy, then S is a slalom
in Vy if and only if S is a slalom in V, and the computation of fg ., does not
change. Similarly, for any f € H(Ry)” NV, Sy is the same when calculated in Vi
or V1. So we conclude that if F € V and

(F € H(Ro)" satisfies (1) and (2) of Definition [6.8 w.r.t. <wo)vo7 then

(F € H(Ro)" satisfies (1) and (2) of Definition [6.8 w.r.t. <W0)V1.

If the models Vo C V; satisfy the further condition that

VX € VoY € ([X]S“O)Vlaz e ([X]SNO)VO v C 2z,

then for any F € Vy, if
(F is well-closed w.r.t. <4)¥°, then
(F is well-closed w.r.t. <uo)V".
In particular, this holds whenever V is a forcing extension of V by a proper poset.
Remark will used several times in what follows.
Definition 6.10. F C H(Rq)" is called big if
Vf e HXNg)"3g € FI%k € w[f(k) = g(k)].
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Lemma 6.11. Suppose F C H(Rg)“ is big. LetP be a forcing such that IFp F is big.

Let Q be a P-name for a forcing such that IFp “IFg F is big’. Then Fp.g F is big.

Proof. Let K be (V,P x @)—generic. Then there are G and H such that G is
(V,P)-generic, H is (V[G],Q[G])-generic and V [K] = V[G] [H]. By hypothesis,
in V[G] we have that F is big, Q [G] is a forcing, and II-@[G] F is big. Therefore in
V [K] = V|G| [H], F is big. -
The next lemma is a variation of Theorem 61 of Raghavan [35]. See also Ragha-
van [34].
Lemma 6.12. Let <y, be a well-ordering of H(Rg). Suppose F C H(Ro)* is well-
closed w.r.t. <y, and big. Let v be a limit ordinal and let (Pa;@a ca < ) be
a CS iteration such that Yo < 7~y [H—a @a 18 proper] Suppose that for all a < 7,
IFo F is big. Then I F is big.

Proof. Let f € V¥ be such that I, f € H(Rp)" and let py € P,,. Fix a sufficiently
large regular 6 and a countable M < H(#) with F, <]P’a,@a o< 7)), f.po € M.
Since F satisfies (3) of Definition [6.8] we can find a slalom S € F so that for all
feFNM, vk cw|f(k) € S(k)]. We will find a ¢ € P, such that ¢ I, po € G
and ¢ I-, 3%n € w [f(n) € S(n)] Put v = sup(MNy) and let (v, : n € w) C MNy
be an increasing sequence that is cofinal in 4'. We build two sequences (g, : n € w)
and (p, : n € w) satisfying the following conditions for all n € w:

(1) gn € Py, gn is (M, P, )-generic, and ¢n41[Vn = ¢n;

(2) Po = Po, Bn € VEm, and gy by, “Pr € MNPy A Pplyn € G;’n'

(3) qn+1 F i Pra < bus

Ik >n {f [é%H] (k) S(k)] "

Assume for a moment that such sequences have been constructed. Then | J
a condition in P.,,. We extend (J

(4) na1lhy s “Prirlbp e

Tn+1
newdn 18
newldn to a condition g in Py by setting g(a) = 1y

for all v/ < a < 7. By standard arguments, Vn € w [q IFy pp € GA,} In particular,
qlFy po € én,. We will check that ¢ I, 3%°n € w [f(n) € S(n )]

Suppose not. Then Ir < ¢In € w |r ey Vk > n [f(k) ¢ S(h)|]. Let G, e
P

(V,P,)-generic with r € G. It is a standard fact that G, is (V,
that G, is (V [G,,,.] . Py/G,..,)-generic, and that in V [G, ] G, = G
Soin V [G,,..]t Bny1 [Gypir] €Py/G,., and

Brt1 [Gy) = Brst [Grsa] e sc,,,, 3k 2> [ Fl1G. ] (k)€ S(k)}.
Since pp41[G4] € G4, in V[G,] =V [G,,.,] [G,] there exists k > n+ 1 such that
I [G%H] [G,] (k) € S(k). Since f[ %+1] G,] = [ 4], s0 f[ 4 (k) € S(k), and
we have a contradiction.

To build (g, : n € w) and (p,, : n € w), proceed by induction on n. Let po = Po,
the canonical P, ,-name for py. Note that po[vo € M NP,, and P,, € M. By the
properness of P, there is gy € P, which is (M, P, )-generic with gy < po[vo. Then
po and go satisfy (1)-(4). Now suppose p,, and g,, are given, for some n € w. By
the Properness Extension Lemma (see, for example, Lemma 2.8 of Abraham [I]),
there is an (M, IE”%H)—generic condition ¢,4+1 € P such that ¢,+1[vn = ¢n and

Qn+1 ”_'yn+1 PnlYnt1 € G’Yn+1'
To find p,, 41 we proceed as follows. Fix a (V,P,,,,)-generic filter G

a1 )-generic,

* Gy

Yn+1

Yn+1

yns1 With
Gni1 € Gy, Recall that M [G,,,,] < H(0) [G,,,] = HYIGw](9). Note that
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Py /Gy, € M[G,,,,] and that in V [G,, ], ke ja, | f[Gyi] € HRo)™.
Since ¢ni1 € Gopivs Pn [Gorngs] 1nt1 € Gopyye So in V[Gy, 1], Bn [Grysi] €
M NP,/G,,.,. By elementarity, find a sequence (p’ : i € w) € M [G,,.,] and a
function f € H(Xo)“ N M [G,, ]| satisfying the following for each i € w:

(5) p' € By /Gy,

(6) pi—H < pi < ]snc [G'yn+1]§

(7) p* e /c,, ., f [G,.1] (i) = f(3).
By hypothesis, F is big in V [G,,,,]. So by elementarity and by the fact that
feM[G,,.,], wecan find g € FNM [G,,.,] so that Ik € w[f(k) = g(k)].
Since ¢n1 is an (M, P, )-generic condition with g,41 € G, ,, and since F € V,
FNM = FNM [G,,.,]. Sog € FNM. By the choice of S, vk € w[g(k) € S(k)].
Hence we can fix k > n+ 1 such that f(k) € S(k). Note that p* € P, "M [G,,,, ],
and that P, N M [G,,,,] = Py N M similarly to F. Thus p* has the following
properties:

(8) p* € MNP, and p*|y,11 € G

(9) pk < Pn I:G’Yn+11|;

(10) P e, s, i = n+1 [ [Ga,n] () € SG)].

Since G, ,, was an arbitrary (V,P,, ,,)-generic filter with ¢,41 € G
use the maximal principle in V to find a p,41 € VFrmi1 5o that in V:

(11) gny1 IFp “ry1 € M NPy Apni1nsr € G
(12) dn+1 ||_1P.Yn+1 ﬁnJrl gﬁnv

o o "
(13) gust e, “Bost ey, =041 [f G| (B) € SG)|

This concludes the inductive construction.

To complete the proof, fix an arbitrary (V,P,)-generic filter G. In V [G,], by
what has been proved above, for every f € H(Rg)“, there exists a slalom S € F so
that 3k € w[f(k) € S(k)]. Since P, is proper and since F is well-closed w.r.t. <y,
in V, F is still well-closed w.r.t. <y in V[G,]. So Lemma applies in V [G,]
and implies that Vf € H(Ry)“3g € FI®k € w[f(k) = g(k)]. a

7n+1;

In+1

my1> WE CAN

1"

In+1 Yn41?

Corollary 6.13. Let <y, be a well-ordering of H(Rg). Suppose F C H(Ro)“ is
well-closed w.r.t. <y and is big. Let v be any ordinal. Suppose (Pn;Qq : @ < )

is a CS iteration such that Vo < 7y [Il—a @a 18 proper}. Suppose also that for each
a <7 lk, “Il—@a F is big'. Then |-, F is big.

Proof. The proof is by induction on 7. If v = 0, then P, is the trivial forcing.
By hypothesis, in V, F is big, so there is nothing to do. Suppose v =" + 1 and
that the statement is true for 4'. So I, F is big. Now P,/ is forcing equivalent
to Py * @71. By hypothesis, IFp_, “H—le F is big”. By Lemma we have
H_P'Y’*Q'y’ F is big. So I, F is big as required. Finally suppose that ~ is a limit
ordinal and that the statement is true for all 8 < . So V8 < «[lFg F is big]. By
Lemma I, F is big. This concludes the induction and the proof. B

Lemma 6.14. Suppose <y, is a well-ordering of H(Ro). If F C H(Rg)* is well-
closed w.r.t. <y, and is big, then IFc F is big.

Proof. Let f be a C-name and suppose that IF¢ f:w — H(Xp). Enumerate C
as {pp:m €w} in a 1-1 way. Define a small slalom S : w — H(Xg) as follows.
Given n € w, find ¢, < p, and z, € H(Xy) so that ¢, IFc f(n) = x,,, and define
S(n) = {z,}. Note that for each | € w, X; € [w]”, where X; = {n € w: p, < pi}.
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Since F is big, Lemma [6.5] applies and implies that there is a slalom T : w —
H(Rg) so that T € F and VI € w3*n € X;[S(n) C T(n)]. Now we check that
IF¢ 3*°n e w [f(n) € T(n)} To see this, fix p € C and N € w. Then p = p; for
some [ € w. Find n € X; with n > N and S(n) C T'(n). By the definition of S and
X1, gn < pn < prand gy IFe f(n) = 2, € {2,} = S(n) C T(n). This is as required.

Now to complete the proof, fix a (V,C)-generic filter G. As C is proper, F is
well-closed w.r.t. <y, in V[G]. By what has been proved in the previous paragraph,
we have in V[G] that whenever f :w — H(Rg), then there is a slalom T' € F with
the property that 3°n € w[f(n) € T(n)]. As F is well-closed w.r.t. <y, in V[G],
Lemma [6.7] tells us that F is big in V[G]. 8

Corollary 6.15. Suppose <y, is a well-ordering of H(XNo). If F C H(Xg)” is
well-closed w.r.t. <y, and is big, then l-c,, F is big.

Proof. Suppose G is (V,C,, )-generic. Consider any f € H(Ng)” N V[G]. It is
well-known that for some (V,C)-generic filter H, f € V [H]. By Lemmal[6.14] F is
big in V [H]. So there is g € F so that 3°n € w[f(n) = g(n)]. Therefore, F is big
in V[G]. 4

7. SHELAH-STEPRANS FAMILIES AND NON-MEAGER SETS

In Subsectionsand we show that it is consistent to have non(M) = ®; and
no Shelah-Steprans or block Shelah-Steprans a.d. families of size R;. This improves
Theorem This also shows that even though Shelah-Steprans a.d. families are
hard to destroy, they can still be diagonalized without increasing non(M) (see
Corollary . The question of whether it is possible to do this for every maximal
almost disjoint family, at least consistently, is open.

7.1. The partial order. In V, let & C [w]” be a fixed block Shelah-Steprans a.d.
family. Let V,,, denote the extension of V by w; Cohen reals (i.e. by C,). We
assume that o7 remains block Shelah-Steprans in V. Actually, Shelah-Steprans
a.d. families remain Shelah-Steprans after adding Cohen reals, but this does not
seem to hold in general for block Shelah-Steprans a.d. families. However, since
we are mainly interested in the minimal cardinality of Shelah-Steprans and block
Shelah-Steprans a.d. families, this is not relevant for our main result in the next
section.

Definition 7.1. If F' and G are non-empty sets of ordinals, we write F' < G as an
abbreviation for Vo € FVy € G [z < y].
We use FIN to denote [w]<“\ {0}.

Lemma 7.2. Shelah-Steprans a.d. families remain Shelah-Steprans after adding
Cohen reals.

Proof. Let 2 be a Shelah-Steprans a.d. family. It suffices to show that
IFc “4% is Shelah-Steprans”.
To this end, let X be a C-name such that ke X C FIN and
e “VB e Z(#B)Is € X [sn B = (]".
Let (p, : n € w) enumerate C. For each n € w, let
Xn:{SGFIN:Equpn [qlhcse)o(}}.

By hypothesis, for any n € w and any B € Z(%), there exists ¢ < p, and

S

s € FIN such that sN' B = @ and ¢ k¢ s € X, whence s € X,. Since %
is a Shelah-Steprans a.d. family, there exists B € Z(%) with the property that
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Vn € w {[B]<NO NX, is inﬁnite]. We check that IF¢ “[B]<"° N X is infinite”. To
this end, fix p € C and some k € w. Then p = p, for some n € w, and there
exists s € [B]<"° N X, such that s ¢ P(k). By definition of X,,, ¢ IF¢ s € X, for
some g < p, = p. Thus we have proved that for each p € C and k € w, there
exist s € [B]™™ and ¢ < p such that s ¢ P(k) and ¢ l-¢ s € X, which proves that
ke “[B]<N° N X is infinite”. !

We work in V|, for the remainder of this section unless the contrary is explicitly
stated. As stated above, &/ C [w]” is a fixed block Shelah-Steprans a.d. family
which is a member of V and remains block Shelah-Steprans in V,,,.

Definition 7.3. Working in V,,,, define a forcing P(«7) as follows. A pair p =
(sp, cp) belongs to P(&7) if and only if:
(1) sp € ] =5
(2) ¢p : w— FIN such that:
(2a) Vi€ wlep(i) < cp(i + 1))
(2b) Vz € s,Vy € ¢,(0) [z < y];
(3) VB e Z(o/)Fi € w[BNcy(i) = 0.
For ¢,p € P(«/), ¢ < p if and only if:
(4) 5q 2 sp3
(5) IFyp € 1% [0\ 5y = Uicr, , &)
(6) Vi € wIGypi € [W]< [cq(i) - Ujegqﬁpﬁicp(j)]

For n € wand ¢,p € P(«/), ¢ <,, p if and only if (¢ < p and ¢4[n =cpn). It is
easy to see that < and <,, are transitive.

The following lemma lists some elementary consequences of the definitions which
are easy to verify.

Lemma 7.4. Let p,q € P(&). The following hold:

(1) ¢<op = q<p;

(2) for alln >0, if ¢ <, p, then sq = sp;

(3) if ¢ <p, then for alli < j <w, Gqpi < Gqpi;
(4)Vn<m<wlg<p,p = ¢<,p

Lemma 7.5. P(«7) is non-empty.

Proof. Working in V, define a partial order S as follows. s € S if and only if
s:mngs — FIN, where ng € wand Vi <i+1 <ng[s(i) <s(i+1)]. Fort,s €S, t<s
if and only if ¢ D s. It is easy to see that for each i € w, D; = {t € S : i < n},
and for each B € (Z(«#))V, Ep = {t €S : 3i < ny [BNt(i) = 0]} are dense subsets
of (S, <) belonging to V. In V,, there exists a (V,S)-generic filter H. Setting
c=|JH, it is clear that ((},c) is a condition in P(). 4

The relations <,, do not define an Axiom A structure on P() because the limit
of a fusion sequence will not, in general, satisfy clause (3) of Deﬁnition However,
the next lemma says that clause (3) of Definition is the only obstruction. The
proof is straightforward and left to the reader.

Lemma 7.6. Suppose (p, : n € w) is a sequence of members of P(o/) so that Vn €
W [Prnt1 <n Pn). Define p = (s, cp) by setting s, = sp, and c,(n) = ¢, (n), for
alln € w. Then clauses (1) and (2) of Definition[7.3 are satisfied. If clause (3) of
Definition[7.3 is also satisfied, then p € P(«) and ¥n € w [p <,, pn].
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Definition 7.7. Let p € P(&/) and suppose k € w and F' C k. Define p(k, F) =

<Sp(k,F),Cp(k7F)> by spk,r)y = sp U (Ujchp(j)> and ¢, ) (i) = cp(i + k), for all
i € w. It is easy to check that p(k, F) € P(«/) and that p(k, F) < p.

Definition 7.8. Let p € P(«/), k € w, and F C k. Note that p(k + 1,F U
{k}) < p. Suppose that some ¢ < p(k + 1,F U {k}) < p is given. Define
q(p,k, F) = <Sq(p7k’p),cq(p’k’p)> as follows. Put sqppp) = sp. For i < k, de-
fine cq(p,i,r) (i) = cp(i), define cqep 1.7y (k) = U{cp(j) : J € Fyp \ k}, and for i > &,
define cy(p k7 (i) = cq(i — k —1).

It is easy to check that ¢(p, k, F) € P(«7) and q(p, k, F) <, p.

Lemma 7.9. Letp e P(), k € w, and F C k. Suppose ¢ < p(k+ 1, FU{k}). If
r <q(p,k, F) and i € w are such that k = min (Gr)q(%hp))i) and Fy qprr) = F,
then r(i+1,{i}) < q.

Proof. Note that ¢, (i) = U {cqp.,7)(J) : § € Grgpp,F),i - Let

J = {j € Gr,q(p,k,F),i .] > k} .
Then

se(i1(iy) = S0 U J {Cawmm () 15 € T} =sq U J{eG—k = 1) : j € J}.

This confirms both (4) and (5) of Deﬁnition For | € w, we have ¢,i41,() (1) =
o(l+i+1)=

U {CQ(P,kﬁF)(j) WS Gr»q(pyk,F),lHJrl} = U {Cq(j —k-1):j€ Gr,q(p,k,F),l+i+1}-
This confirms (6) of Definition Therefore r(i + 1, {i}) < q. !

Lemma 7.10. Let p € P(«7) and k € w. Suppose & € Vg(f{) and IFp(g) @ € Vo, .
Then there are ¢ <y p and X € V,,, so that:
(1) 1X] < 2k, sp = Sq, and cq(k) 2 cp(k);
(2) for any ¢ <p11 q, F Ck,r <¢, andi € w, if F,,p = F and k =
min (G, g ), thenr(i+1,{i}) IFz € X.

Proof. Let (F;:1<2") enumerate P(k). We define by induction two sequences
<ql 1< 2k> and <a:l < 2k> satisfying the following: gy = p and

VI <1 [ql <k Q> Sq = Sq,, and cq, (k) 2 ¢q, (k)] )

Define gy = p and note that the induction hypothesis is vacuously satisfied. Now
suppose [ < 2F and that ¢; satisfying the induction hypothesis is given. Then q;(k +
1, U {k}) < q. Find r; < ql(k +1,F U {k}) and z; € le with r; “_JP’(szf) T =z,
and define qi41 = 7(q, k, I7). Note that qiy1 < q and sq,,, = Sr,(q k7)) = Sqi-
Further, cg, (k) C sq,(k+1,F0{k}) \ Sa € Sry \ 8¢5 and k € F, 4 \ k. Thus ¢, (k) C
Cqi., (k). Hence by the induction hypothesis,

VZ/ < l [CIZ+1 Sk q Sk v, Sqpr = Sq = Sqp> and cqz+1(k) = qu(k’) = Cqyr (k)] '

This concludes the inductive construction.

Now define ¢ = gor and X = {x; : | < 2¥}. Then (1) is satisfied by construction.
To verify (2), fix any ¢’ <41 ¢, F Ck,r < ¢, and i € w, and assume that F, ,, = F'
and that & = min (G,., ;). Then F = Fj, for some [ < 2*. Since ¢ <, q111, 84 =
Squsrs and cq(k) 2 cq,, (), it follows that F, 4, = F and that min (G,,q,,,,i) = k.
By definition, r; < q;(k+ 1, F U {k}) and ¢;+1 = 7i(qi, k, F). Therefore, by Lemma
r(i +1,{i}) < ;. Therefore, r(i 4 1, {i}) lFpy) © = 21 € X. -
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Lemma 7.11. Work in V. Let 0 be a sufficiently large reqular cardinal. Suppose
M < H(0) is countable with M containing all relevant parameters. Let f :w — M
be such that

vk € w [f(k) € VI Nlpy) f(R) € vwl} .

For any p € P(&/) N M, there exist ¢ and S satisfying the following:
(1) ¢ <p;
(2) S is a function, dom(S) = w, and Vk € w [S(k) € M A [S(k)| < 2*];
(3) for any k € w, any F Ck, anyr < ¢, and any ¢ € w, if ., = F and
min (Grq:) = k, then r(i + 1, {i}) lFpr) f(k) € S(k).

Proof. Let M denote the transitive collapse of M. Let  : M — M be the collapsing

map and 7* : M — M be the inverse of w. Say that a is an approzimation if:

4) a € (P(«) N M) x M<¥;

5) writing a = (04, 74), dom(c,) = dom(7,) + 1;

6) 04,(0) =pand Vn <n+1 < dom(o,) [oq(n+1) <, 04(n)];

7) for all k < dom(7,), |7a(k)| < 2F;

8) for any k+ 1 < dom(oy,), any ¢’ <1 0a(k+1), FCk,r<¢,andi€cw,
if F. o = F and k = min (G, 4 ;), then

r(i +1,{i}) Fpa) f(k) € {7"(x) : @ € 7(K)}.

Let A = {a : a is an approximation}. Define a partial order on A by setting
<={(b,a) €A X A:0, D0, ANTp D7y} It is easy to see that (A, <) € H(N;).
For each B € IV (&), define

DB)={beA:T ewll+1edom(oy) Acy,u1)(l) N B=10]}.
Claim 7.12. D(B) is dense in (A, <).

Proof. Let a € A be given and put k& = dom(7,). Let p’ = o,(k) and = = f(k).
Note that £ € M N VE({Q{) and that IFp() © € V,,. Note also that p’ € M. Let
Z ={z€w:z>kAcy(z)N B =0}. By the definition of P(&/), Z € [w]”. Let
(z1 : | € w) be the strictly increasing enumeration of Z. Define p” = (s,, cp) by
setting sy = sp, cpr (1) = ¢ (1), for all ¢ < k, and ¢, (k+1) = ¢y (21), for all | € w.
Then it is clear that p” € P(«/) and that p” <, p’. Applying Lemma[7.10] with p”,
k, and &, find ¢* <;, p” <4 p’ and X* € V,,, satisfying (1) and (2) of Lemma [7.10]
with respect to p”, k, and 2. Notice that ¢« (k) N B = 0. p” may not be in M,
and so ¢* and X* may not be in M either. However, p’, Z, ¢y« (k) € M. Therefore
by elementarity and by the fact that M contains all the relevant parameters, there
exist ¢, X € M satistying the following properties:
(9) g <k p' and |X| < 2%;
(10) for any ¢ <gy1 ¢, F Ck,r < ¢, and i € w, if F.;p = F and k =
min (Gy,q i), then r(i + 1, {i}) IFp(ry = € X;

(11) cq(k) = cq= (k).
Define o, = o, U {{(k+1,¢)}. Next, X C M, and so {n(z) : » € X} C M
and [{7(z):x € X}| = |X| < 2*. Since M is a transitive model of a sufficiently
large fragment of ZFC — P and since {m(x) : 2 € X} is a finite subset of M,
{n(z) : z € X} € M. Define 7, = 7, U {{k,{m(z) : x € X})}. Observe that
{m*(y) : y € (k)} = X. Using these observations and (10), it is easy to verify that
b = (op,7p) satisfies (4)~(8). Therefore b € A and b < a. Finally, ¢, k41)(k) N
B = ¢4«(k) N B = () because of (11). Therefore | = k witnesses that b € D(B),
establishing the density of D(B). 4
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Now note that A is non-empty because ({(0,p)},0) € A. As we have observed
earlier, (A, <) € H(X;). Hence there exists § < w; such that (A, <) € V;, where
V5 is the extension of V by the first § Cohen reals. Further, for B € IV (&),
D(B) € Vs because D(B) has an absolute definition in terms of the parameters A
and B. Since (A, <) is a countable forcing notion, there exists H € V,,, which is
(Vs,A)-generic. Define P =J{o,:a€ H}y and T =|J{7, : a € H}. Then P and
T are functions and dom(P) = sup {dom(o,) : a € H}.

Claim 7.13. dom(P) = w.

Proof. Suppose not. Then dom(P) < w. Let B = J {cpu11)(l) : I+ 1 € dom(P)}.
Since dom(P) is finite, B is a finite subset of w, whence B € ZV (). Consider
a € HN D(B). By definition of D(B), there exists { + 1 € dom(o,) such that

Coo(1+1)(1)NB = (. It follows that [+ 1 € dom(P) and B 2 cp(41)(l) = ¢5, 141)(1),
whence ¢, (4+1)(1) = 0. But this is impossible by Clause (2) of Definition 4

For n € w, define p, = P(n). Then py = p, Vn € w(p, € P(&)], and Vn €
W [Pnt1 <y pnl]. Define ¢/ = (s4, cqr) by setting s = s, and ¢y (n) = ¢p,,,, (1),
for all n € w. Now if B € IV (&), then for some b € H and for some | € w,
Cpipr (1) N B =0, whence ¢, (1) N B = (. Thus by Lemma. q € P(«/) and Vn €
wl[q <, pn]. In particular, ¢’ < po = p, which is to say that ¢’ < p. Next for each
k€ w, T(k) € M and |T(k)| < 2*. T(k) C M because M is transitive. Defining
S(k) = {7*(y) : y € T(k)} € M, |S(k)| = {7*(y) :y € T(W)}| = [T(k)| < 2.
Thus (1) and (2) are satisfied by ¢’ and S. To see that (3) is satisfied, fix k € w,
FCk,r<¢,and i€ w. Assume that F, , = F and min (G, 4 ;) = k. Note that
¢ <giy1 Pr+1 and that pry1 = 04(k + 1), for some a € H. Hence by (8),

r(i + 1,{i}) Fpa) f(k) € {n%(x) : 2 € 7o(K)} = {n"(2) : 2 € T(k)} = S(k).

This concludes the proof. B

We remark that even though the filter H and the function T belong to an inter-
mediate extension of the form Vg, for some ¢ < wy, this is not the case for S. This
is because the functions 7 and 7* are not in any intermediate Vs with § < wy.

Corollary 7.14. P(<7) is proper.

Proof. Working in V,,,, fix a countable M < H(#), where 6 is a sufficiently large
regular cardinal and M contains the relevant parameters. Let (&, : n € w) be an
enumeration of all & € M such that & is a P(«/)-name and lFp() “é is an ordinal”.
Define a function f : w — M as follows. Suppose k € w. Consider a (V,,,P(<))-
generic filter G. In V, [G], {0 [G],...,dx [G]} is a finite set of ordinals and so
{&[G],..., &, [G]} € V,,. Applying the maximal principal in Vy,,, there is a
P(o/)-name & such that IFp(y 2 € V,,, and

ey Vyly€d > (y=co V- Vy=dup)"
Since &g, ...,0r € M, we may choose such an & € M. Define f(k) = ¢ € M.
Notice that IFpigy “f(k) is finite” and that IFpary cu € f(k), for every | < k.

Unfix k from the previous paragraph. Fix any p € P(&)NM. We must find ¢ < p
which is (M, P(&))-generic. Applying Lemma- find ¢ and S satisfying (1)—(3)
of Lemma We argue that ¢ is (M, P(&))- generlc To this end, it suffices to
show that for any & € M, if IFp(y) “G is an ordinal”, then ¢ lFpwy & € M. Let a
relevant & be given. Then & = &;, for some | < w. Suppose r < q. Let F' = F,.,.
Since (min (G, q,) : % € w) is a strictly increasing sequence, it is possible to find
k.i € w such that k = min (G, 4,), F C k, and k > [. By (3) of Lemma
r(i + 1,{i}) lFpeyy f(k) € S(k) C M. Find v < 7(i+1,{i}) <rand X € M
with r’ Ibp() f(k) = X. Since we know Ibp(o) “f(k) is finite”, it follows that X
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is finite, and since X € M, X C M. Thus 1’ lFp() & € f(k) = X € M, whence
" IFpy u € M. Thus we have proved that Vr < ¢3r’ < r [r’ IFp(ary Gy € M},
whence ¢ IFp(7y &; € M. This proves that P(/) is proper.

_|
Lemma 7.15. In V, suppose <y, is a well-ordering of H(Rg), and that F C
H(Xg)” is well-closed w.r.t. <y, and is big. Then in V,, IFp(ery F is big.

Proof. Work in V,,,. F is well-closed w.r.t. <y, because C,, is proper and F is big
by Lemma Fix a P(«/) name ¢ and assume that IFp(y) g :w — H(Rp). Let
p € P(«) be fixed. Let 0 be a sufficiently large regular cardinal. Suppose M < H(0)
is countable with M containing all the relevant parameters. In particular, g,p € M.
Define f : w — M as follows. For each k € w, find a P(&/)-name & € M such that
IFp(oy © € H(X) and IFpy g(k) =&, and define f(k) = 2. Applying Lemma
find ¢ and S satisfying (1)—(3) of Lemma Note that for each k € w,
|S(k) N H(No)| < |S(k)| < 2F, and so S(k) N H(Xy) is a finite subset of H(Xp),
which implies that S(k) N H(Xg) € H(Xp). Hence we may define a small slalom
S* 1w — H(Xg) by S*(k) = S(k) N H(Rp), for all k € w.

Next, define sequences (7 : | € w) C [«/]=° and (Y} : 1 € w) C [w]* as follows.
Fix | € w and suppose that (o7 : I’ <1) C [«/]=° and (Yy :I' < 1) C [w]” are
already given. By the definition of P(/), the family

2= (ocnmtey: o0 (U(U,.4)) =)

has the property that VB € Z(«/)3s € E[sN B =10]. Since &/ is assumed to
be block Shelah-Steprans in V,,,, there exists B € Z(«/) with the property that
{y € w:cy(y) € EAcy(y) C B} is infinite. Clearly for every F' € [w]™, the set
{y e w:cy(y) € ENcy(y) C B\ F} is still infinite. Therefore, there exists o&7* €
[7]~™° such that {y € w : cq(y) € ENcy(y) €U/} is infinite. Let 7 be such an
&/* of minimal cardinality. Define ¥, = {y € w : ¢,(y) € E Acy(y) CU A} € [w]”.
Suppose that A € o N .7, for some " < I. Then for each y € Y}, ¢,(y) N A =10
and ¢,(y) C Jo, whence ¢,(y) C |J (4 \ {A}), contradicting the minimality of
. Therefore VI' < [« N o = 0]. This concludes the definition of (7 : | € w)
and (Y] : 1 € w).

Since F is big and is well-closed w.r.t. <y, in Vi, Lemma@ applies and implies
that there exists T' € F such that T : w — H(Xp) is a slalom and VI € w3®y €
Y, [S*(y) C T(y)]. Define Z, = {y € Y, : S*(y) C T(y)} € [w]”, for all | € w.
Let Z = e, 21 and let (z; : j < w) be the strictly increasing enumeration of Z.
Define ¢* = (sg+,¢q+) by g+ = sq and cg=(j) = cq(2;), for all j € w. Consider
any B € IV (/). Since VI' < | < w[o N o/ = ()], there exists I,m € w such that
Bn(J4) € m. As Z; is infinite, we can find y € Z; with min(c,(y)) > m. As
y €Y, ¢(y) €U, whence BN¢y(y) = 0. Now y = z; for some j < w because
y € Z. Therefore, cg«(j) N B = c¢4(z;) N B = ¢4(y) N B = (. This shows that
q* € P(«/) and that ¢* < q.

We will now argue that ¢* IFp(o) 3%k € w[g(k) € T(k)]. To this end fix r < ¢*
and some | € w. Asr < ¢, (min (G, 4;) : i < w) is a strictly increasing sequence.
Let F,, = F. Find k,i € w such that k = min (G, 4,), F C k, and k > [. It
follows from the fact that r < ¢* < ¢ and from the definition of ¢* that k € Z. In
particular, S*(k) C T(k). By (3) of Lemma [7.11]

P+ 1, {0}) Thager) §06) = F(R) € S(B) 0 H(Ro) = §°(k) € T(k),
whence (i +1, {i}) IFp() g(k) € T(k). Since r(i+1,{i}) < r, we have proved that

for each r < ¢* and | € w, there exists k > [ and v’ < r with 1" lFp) g(k) € T'(k).
This proves that ¢* IFpyy 3%k € wlg(k) € T(k)]. Since ¢* < ¢ < p, we have

now proved that for any g € Vg(f{) and any p € P(o), if IFp(yy §:w — H(Ry),
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then there exist ¢* < p and T € F such that T : w — H(Xg) is a slalom and

To complete the proof, let G be a (V,,,,P(«&/))-generic filter. As P(/) is proper,
F is well-closed w.r.t. <y in Vy,, [G]. By what has been proved above, we have in
V., [G] that for every g : w — H(Ry), there exists T € F such that T : w — H(RXp)
is a slalom and 3%k € wg(k) € T(k)]. As F is well-closed w.r.t. <y in V,,, [G],
Lemma [6.7] tells us that F is big in V,, [G]. =

Note the similarity in the proofs of Lemmas and Also, the proof
of Lemma is the only place where we use the assumption that & is block
Shelah-Steprans.

Lemma 7.16. P(«/) diagonalizes <7 .

Proof. Let A be a P(o7)-name such that IFp(.) A= U {sp ip € G}, where G is
the canonical P(&7)-name for a generic filter over P(«7). Suppose p € P(«/) and
B € o are given. Then Z = {z € w : ¢,(2) N B = 0} € [w]”. Let (z;: j <w) be
the strictly increasing enumeration of Z. Define ¢ = (sq, ¢4) by setting s, = s, and

cq(j) = cp(zj), for all j <w. Then g < p and q IFp(y) ‘A N B’ < Np. -

The following corollary is worth stating even though it is not directly used in
the proof of our main result in the next section.

Corollary 7.17. Any Shelah-Steprans a.d. family in V can be diagonalized with-
out increasing non(M). Any block Shelah-Steprans a.d. family in 'V which remains
block Shelah-Steprans after adding Cohen reals can be diagonalized without increas-
ing non(M).

Proof. If o is a Shelah-Steprans a.d. family, then &7 remains Shelah-Steprans, and

hence block Shelah-Steprans, after adding Cohen reals (see Lemma . Hence
C., * P(«7) will diagonalize &/ and not increase non(M). .

7.2. A model where non(M) = X; and there are no block Shelah-Steprans
a.d. families of size ¥;.

Theorem 7.18. There is a model in which non(M) = Ny and there are no Shelah-
Steprans or block Shelah-Steprans a.d. families of size W;.

Proof. Shelah-Steprans a.d. families are block Shelah-Steprans. So it is enough to
produce a model where non(M) = ®; and there are no block Shelah-Steprans a.d.
families of size N;. Let V be a universe satisfying GCH. In V, let <y, be a well-
ordering of H(Rg) and let F =V N H(Rg)“. Then F is well-closed w.r.t. <y, in V.
F is also big in V. Build a CS iteration <Pa; @a < w2> as follows. Using GCH
in V, fix a bookkeeping device which has the property that any PP,,,-name for a set
of reals of size Ny will be enumerated cofinally often. At a stage av < wo, suppose Py,
is given. Assume P, is proper and Ik, F is big. Suppose the bookkeeping device
hands us a Py-name 7 such that

ko “@ C [w]” is an infinite a.d. family”.
Let G, be a (V,P,)-generic filter. In V [G,], either
ke, “o [Gq) is block Shelah-Steprans”
or lc,, “of [G4] is not block Shelah-Steprans” because C,, is almost homoge-

neous. If the first alternative happens, then let Q be C,, x* P(d [Go]). If the
second alternative happens, then let Q be C,,. Back in V, let Q, be a full



COMBINATORIAL PROPERTIES OF MAD FAMILIES 37

P,-name for Q. If the bookkeeping device does not hand us a P,-name of the
form o/ , then we let @a be a full P,-name for the trivial forcing. Observe that
IFa “IFg,. </ is not block Shelah—Steprans” (if an appropriate o is given) and that
IFo “IF@@ F is big”. This concludes the construction.

Let G, be a (V,P,,)-generic filter. In V [G,,], by Corollary F is big.
Therefore by Lemma[6.2] 2¥ NV is non-meager in V [G.,,]. Therefore non(M) = R,
in V[G,,].

Next, suppose for a contradiction that in V [Gy,], there exists &/ C [w]* which
is a block Shelah-Steprans a.d. family with |&/| = R;. For v < ws, G4 de-
notes the restriction of G, to P,. There exists { < wy such that & € V [G¢].
Since the property of being a block Shelah-Steprans a.d. family is downwards
absolute, < is a block Shelah-Steprans a.d. family in V[G,], for all £ < v <
ws. The bookkeeping device ensured that for some £ < a < ws, a Py-name
o such that o/ [G.] = o was considered at stage «. By the choice of Qq,
IFat1 “27 is not block Shelah-Steprans”. This is a contradiction because &/ =
 [Ga] = o [Gay1] is block Shelah-Steprans in V [Ggy1]- 4

Note that since max{b,s} < non(M), b = s = Ny holds in the model V [G,]
constructed above.

Conjecture 7.19. There are Shelah-Steprans a.d. families in the model V [G.,]
constructed in the proof of Theorem (necessarily of size N ).

A model with no Shelah-Steprans a.d. families is constructed in [36]. This model
is gotten by iterating posets of the form L(G), where G is some filter on a countable

set. Since posets of this form always add dominating reals, b > RX; in the model in
[36].

Question 7.20. Is it consistent that there are no Shelah-Steprans a.d. families and
non(M) =8 ?

8. A MAD FAMILY THAT CAN NOT BE EXTENDED TO A HUREWICZ IDEAL

We know that every Shelah-Steprans MAD family is Hurewicz (Proposition.
Non Canjar MAD families can be constructed in ZFC, see [I0] or [I5]). In order to
solve the Problem it would be enough to show that every MAD family can be
extended to a Hurewicz ideal. Unfortunately, we will see that it is consistent with
CH that this is not the case.

Definition 8.1. (1) By Part we denote the set of partitions of w into infinitely

many infinite pieces.

(2) Given D € Part we define finxfin(D) ={B Cw |V*D eD(|DNB|<w)}.

(3) Given two elements D= {D(n)|n€w},C={C(n)|ncw} of Part, we
say C — D if one of the following conditions holds:
(a) C(n) is almost disjoint with every D (m) for almost alln € w or
(b) there is m € w such that C (n) C* D (m) for almost all n € w or
(c) for almost every n € w there is my, € w such that C (n) C* D (m,)

and my # m, whenever k # r.

Note that if C — D then almost every element of C is in finxfin(D). Now we
define the following:

Definition 8.2. Let P be the set of all p = (A,, K,) such that A, is a countable
AD family and IC,, is a countable subset of Part. We say that p = (A,,K,) < g =
(Aq, KCq) if the following conditions hold:

(1) A, C A, and K, C K,,.
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(2) If Ce K,\ Ky and D € K, then C — D.
(3) If Ae A,\ Ay and D € K, then A € finxfin(D).

It is easy to see that P is a o-closed forcing (so it does not add new reals). Let
Agen be the name of [J{A, | p € G} (where G is the name for the generic filter).
It is easy to see that Agen is forced to be an almost disjoint family, and we will see
that ./lgen is forced to be a MAD family that can not be extended to a Hurewicz
ideal. Recall that a family H C [w]” is open dense in p (w) / fin if for every A € [w]”
there is a B € H such that B C* A and H is closed under almost inclusion. It is
well known and easy to see that every tall ideal on w is open dense in g (w) / fin
and the intersection of countably many open dense sets is open dense.

Lemma 8.3. A, is forced to be a MAD family.

Proof. Letting p = (Ap,K,) € P and X € [w]”, we must find ¢ = (4, K,) < p
such that X is not AD with A, (this is enough since P does not add new reals).
Assume that X is AD with A,. By the previous remarks, we can find A C* X such
that A € finxfin(D) for every D € K,. It is clear that ¢ = (A, U{A},K,) has the
desired properties. B

Recall that an ideal Z in a countable set is a P*-ideal if for every decreasing
family {X,, |n € w} C Z7 there is X € ZT such that X C* X,, for every n € w.
We will need the following:

Lemma 8.4. Let p = (A,,K,) € P, J be a name for a P*-ideal such that p I+
“Agen € J” and X € [w]” such that p Ik “X € J*7. There areq <p and Y € [X]*
such that the following conditions hold:
(1) Y € A
(2) For every D € ICp, eitherY is AD with all elements of D or there is D € D
such that Y C* D.
(3) qlF Y € 7.

Proof. We first note that if Z is a P*-ideal, Z € Z* and C = {C' (n) |n € w} €

Part, then there is W € [Z]“NZ™" such that either W is AD with C or there is C' € C

such that W C C. Indeed, if there is n € w such that ZNC (n) € ZT then we define

W =ZnNC (n), and if this is not the case, then {Z\ |J C (i) | n € w} CZ" forms
i<n

a decreasing sequence, and we just let W C Z be a psgudointersection in Z“'.
To prove the lemma, note that if A € A, then p forces that X\ A is in 7. Since
both A, and IC,, are countable, the result then follows by the previous remarks.

With the lemma, we can now prove the following;:

Lemma 8.5. Let p = (A,,K,) € P, J be a name for a P*-ideal such that p I+
“Agen € J” and { X, | n € w} C [w]* such that X, N X, = O whenever n # m
and p |- “X,, € J*7 for every n € w. There are ¢ = (Ag,Kq) < p, W € [w]* and
{Y,, | n € W} € Part such that the following conditions hold:

(1) Y, C* X,, for every n € W.

(2) Y={Y,|neW} ek, andY — D for every D € K, \ {V}.

(3) qIF “Y,, € It for every n € W.

(4) q forces that every element in Age" has infinite intersection with only

finitely many elements in ).

Proof. Using the previous lemma, we recursively construct a sequence ((py, Z,))
with the following properties:

new

(1) (Pn) e, is decreasing and po < p.
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(2) Zn € [Xn]”,

(3) pn e “Zne T

(4) Z, € A;. | (where p_y = p).
(5) For every D € K, , either Z, is AD with D or there is D € D such that
Zn, C* D.

The construction is straightforward. Let p,, = (A,,,Cp,) where A, = JA,, and
Kp., = UK,,. By our construction, p,, has the following properties:

(1) If Ae A, then AN Z, is finite for almost every n € w.
(2) f D € K, then for almost all n € w, either Z, is AD with D or there is
D € D such that Z,, C* D.

We can then find W € [w]” and Y = {Y,, | n € W} such that the following condi-
tions hold:

(1) Y, =* Z, for every n € W.

(2) Y € Part.

(3) Y — D for every D € K.
Such W can be found since its construction only requires intersecting countably
many open dense subsets of p (w) / fin. Letting g = (A, Kp, U{Y}), it is easy to
see that ¢ has the desired properties. n

n—1

It is well known that every Canjar ideal is a P*-ideal (see [21], [10] or [15]). We
now have the following result, which is the heart of the construction:

Proposition 8.6. Let G C P be a generic filter. The following holds in V' [G] :
If 7 is a Canjar ideal such that Agep, € J, then there are no {X, |n €w} C J*
such that X, N X,, = 0 for every n € w.

Proof. Let p € P, J aname for a PT-ideal extending ./lgen and {X,, | n € w} a pair-
wise disjoint family such that p IF “{X, | n € w} € J*”. We will find an extension
of p that forces that J is not Canjar. By the previous lemma, let ¢ = (Ag, Ky) < p,
W € [w]” and {Y,, | n € w} C [w]” be such that the following conditions hold:
(1) ¥, C* X, for every n € W.
(2) Y={Yn|neW}eK;and Y — D for every D € K¢ \ {V}.
(3) qlF “Y, € J+7 for every n € W.
(4) ¢ forces that every element in A, has infinite intersection with only finitely
many elements in ).
Let W = {w,, | n € w}. For every n € w, we define F,, to be the set of all {ayo, ..., an }
such that ap < a1 < ... < ap, and a; € Yy, for every ¢ < n. It is easy to see that
q - “F, € (J<“)*” for every n € w. We claim that ¢ forces that (F, | n € w)
witnesses that (in the extension) J is not a Canjar ideal. It is enough to prove
the following: For every ¢; < ¢q and (H,), ., such that H, € [Fn}<“7 there is
= (Agy, Ky,) < g1 and A € 7 (Ay,) such that A has non empty intersection with
every element of H, for every n € w (recall that J is forced to extend Agen).
Let ¢1 = (Ag,,Kq ) be an extension of ¢ and let (H be such that H, €
[F,]=“ . We fix the following items:

(1) Let A, = {A, | n € w} and define B,, = J A; for every n € w.
i<n

>n€w

(2) Let L={Ce Ky | Y —C}.
(a) Let Lap be the family of all C € £ such that almost every element
of Y is AD with C. Fix an enumeration Lap = {CAP | n € w} where
CAP = {CAP (m) | m € w}. Let Ca” (m) = CAP (0) U ... U CAP (m).
(b) Let £ be the family of all C € £ such that there is C' € C such that

almost all elements of ) are almost contained in C. Fix an enumeration
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L_={C; | n € w} where C; ={C; (m) | m € w} and let ¢, € w be
such that almost every element of ) is almost contained in C; (c};) .

(c) Let £ be the family of all C € £ such that for almost all n € W,
the Y,, are almost contained in pairwise distinct members of C. Fix an
enumeration £ = {C7 | n € w} where C7 = {C7 (m) | m € w}.

Note that £ is the disjoint union of Lap, £—, and L.
B) Lt R={DekK, |D— YV}.

(a) Let Rap be the family of all D € R such that almost every element
of D is AD with Y. Fix an enumeration Rap = {PAP | n € w} where
DAP = {DAD (m) | m € w}. Let dAP € w such that if dA® < m then
DAP (1) is AD with Y and let D" (m) = J{DAP (i) | d"P < i < m}.

(b) Let R= be the family of all D € R such there is Y,, € ) such that
almost all elements of D are almost contained in Y,,. Fix an enumer-
ation R = {D;, | n € w} where D = {D;; (m) | m € w}, and let
d,, e, € wsuch that D7 (m) C* Y= for every m > e} .

(c) Let Ry be the family of all D € R such that almost all D € D are al-
most contained in pairwise distinct members of ). Fix an enumeration
R ={D7 | n € w} where D} = {D7 (m)|m € w}.

Note that R is the disjoint union of Rap, R=, and R.
(4) Let h : w — w be an increasing function such that for every n € w, the
following conditions hold:

(a) If h(n) < m then B, is almost disjoint with Y,, .

(b) If h(n) < m then Y, is almost disjoint with every element of CAP.

(c) If h(n) <mthenY,, C*C;(c).

(d) If h(n) < m < k then Y,,, and Y,,, are almost subsets of different
elements in C7 .

(e) If h(n) < m then DAP (m) is AD with Y (i.e. dAP < h(n)).

(f) If h(n) < m then D (m) C* Yy= (ie. e, < h(n)).

(g) If h(n) < m < k then D7 (m) and D7 (k) are almost subsets of
different elements in ).

Note that IC;, = LUR U{Y}. This follows from the construction of Y and ¢; < gq.

We will say that a finite sequence ((Py, Sg) , ..., (Pn, $n)) is suitable if the following

conditions hold:

(1) Py, ..., P, are non-empty finite consecutive intervals of w.

(2) min (Py) = 0.

(3) So = P() N (U {ij | j < h(O)}) .

(4) Si+1 = PiJrl n (U {ij | h(l) S _7 < h(Z + ].)}) .

(5) s; # 0 for every i < m.

(6) If m < h(n) then (J s; has non-empty intersection with every element of

i<n
H,,.

B0 (U{Yu, [ h () <j <h(i+1)}) C max(F).

8) C)° (h (i) N (U{Yu, | h(5) <j < h(i+1)}) Cmax(P,) for every I < i.

9) U{Yuw, | h(i) <j<h(i+1)}\C7 (¢f) € max (P;) for every [ <.

(10) For every j such that h (i) < j < h(i+1),if Y, is not an almost subset
of C7 (1) with k, < i then Y, N C7 (I) C max (P)).

(11) EfD (h(@) N (U{Yw, | R(i) <j<h(i+1)}) C max(P;) for every | < i.

(12) If i <iand e <j < h(i) then D (j) \ max (F;) C Yy=.

(13) For every j such that h (i) <j < h(i+1),if Df: (1) is not an almost subset
of Yy, with k,1 < i then Y,,, N DF (I) C max (P,).
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Although the list of requirements needed to be verified is excessively long, it is not
hard to see that for every suitable (P, So) ..., (Pn, Sn)) there is (Py41, Spt1) such
that ((Po,80) ;- (PnySn), (Paut1, Snt1)) is suitable. Therefore, we can recursively
construct ((Po, 80) , -+, (Pns8n) ;) pe, such that every initial segment is suitable.
Letting A = J s, it is easy to see that g2 = (Ag, U{A},Ky,) is a condition

new
extending g1, which is the extension we were looking for. =

We now obtain the main result of this section:

Theorem 8.7. Let G C P be a generic filter. If J is a Canjar ideal extending
I (Agern) in V[G], then the following hold:
(1) For every X € J+ thereisY € JTN[X]" such that J* |'Y is an ultrafilter.
(2) Forcing with M (J) diagonalizes an ultrafilter.
(3) J is not a Hurewicz ideal.

Proof. It is easy to see that 2 follows from 1 and 3 is a consequence of 2 (this follows
e.g. from Proposition , so we only prove 1. Assume this is not the case, so for
every Y € Jt N [X]¥ it is the case that J* [ Y is not an ultrafilter. We can then
recursively construct a pairwise disjoint family {X,, | n € w} € JT N[X]*, which
contradicts the previous result. a

We point out that under the Continuum Hypothesis, every MAD family can be
extended to the dual of a Canjar ultrafilter [4]. Finally, we will prove the following
result:

Proposition 8.8. ./lgen is forced to be a Cohen-destructible MAD family.

Proof. Recall that every Cohen indestructible MAD family has a restriction that is
tight (see [20]). In fact, we will prove that no restriction of Ag., is weakly tight.
Let p € P and X € [w]” such that p IF “X € I(Agm)+”. Since the ideals generated
by MAD families are hereditarily meager, we may assume there is a pairwise disjoint
family {X,, | n € w} C [X]” such that p - “X,, € I(Aqen)+” for every n € w. Since
the ideals generated by AD families are P*t-ideals (see [27] or [I8]), we know by
Lemma there are ¢ < p, W € [w]” and {Y,, | n € W} C [w]” such that the
following conditions hold:

(1) Y, C* X, for every n € W.

(2) qIF “Y,, € Z(A,, )" for every n € W.

(3) g forces that every element in Agen has infinite intersection with only finitely

many elements in ).

gen)

Clearly q forces that the family {Y,, | n € W} witnesses that Agen is not weakly
tight. 4

The result raises the following question:

Problem 8.9. Is there (consistently) a Cohen indestructible MAD family that can
not be extended to a Hurewicz ideal?

REFERENCES

[1] U. Abraham, Proper forcing, Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010,
pp. 333-394.

[2] T. Bartoszynski and H. Judah, Set theory: On the structure of the real line, A K Peters Ltd.,
Wellesley, MA, 1995.

[3] Andreas Blass. Combinatorial cardinal characteristics of the continuum. In Handbook of set
theory. Vols. 1, 2, 3, pages 395-489. Springer, Dordrecht, 2010.

[4] Jorg Brendle. Mob families and mad families. Arch. Math. Logic, 37(3):183-197, 1997.



42 BRENDLE, GUZMAN, HRUSAK, AND RAGHAVAN

[5] Jorg Brendle. Mad families and iteration theory. In Logic and algebra, volume 302 of Contemp.
Math., pages 1-31. Amer. Math. Soc., Providence, RI, 2002.

[6] Jorg Brendle and Vera Fischer. Mad families, splitting families and large continuum. J. Sym-
bolic Logic, 76(1):198-208, 2011.

[7] Jorg Brendle and Dilip Raghavan. Bounding, splitting, and almost disjointness. Ann. Pure
Appl. Logic, 165(2):631-651, 2014.

[8] Jorg Brendle and Shunsuke Yatabe. Forcing indestructibility of MAD families. Ann. Pure
Appl. Logic, 132(2-3):271-312, 2005.

[9] R. Michael Canjar. Mathias forcing which does not add dominating reals. Proc. Amer. Math.
Soc., 104(4):1239-1248, 1988.

[10] David Chodounsky, Dusan Repovs, and Lyubomyr Zdomskyy. Mathias forcing and combi-
natorial covering properties of filters. J. Symb. Log., 80(4):1398-1410, 2015.

[11] David Chodounsky and Jindfich Zapletal. Ideals and their generic ultrafilters. Notre Dame
J. Form. Log., 61(3):403-408, 2020.

[12] Tlijas Farah. Semiselective coideals. Mathematika, 45(1):79-103, 1998.

[13] Ilijas Farah. Analytic quotients: theory of liftings for quotients over analytic ideals on the
integers. Mem. Amer. Math. Soc., 148(702):xvi+177, 2000.

[14] Osvaldo Guzmén, Michael Hrusdk, Carlos Martinez, and Ariet Ramos. Generic existence of
mad families. The Journal of Symbolic Logic, 82(1):303-316, 2017.

[15] Osvaldo Guzmén, Michael Hrusdk, and Arturo Martinez-Celis. Canjar filters. Notre Dame J.
Form. Log., 58(1):79-95, 2017.

[16] Fernando Herndndez-Herndndez and Michael Hrusdk. Cardinal invariants of analytic P-ideals.
Canad. J. Math., 59(3):575-595, 2007.

[17] Michael Hrusdk. MAD families and the rationals. Comment. Math. Univ. Carolin., 42(2):345—
352, 2001.

[18] Michael Hrusdk. Almost disjoint families and topology. In Recent progress in general topology.
111, pages 601-638. Atlantis Press, Paris, 2014.

[19] Michael Hrusdk. Katétov order on Borel ideals. Archive for Mathematical Logic, 56(7):831—
847, Nov 2017.

[20] Michael Hrusék and Salvador Garcia Ferreira. Ordering MAD families a la Katé&tov. J. Sym-
bolic Logic, 68(4):1337-1353, 2003.

[21] Michael Hrusék and Hiroaki Minami. Mathias-Prikry and Laver-Prikry type forcing. Ann.
Pure Appl. Logic, 165(3):880-894, 2014.

[22] Michael Hrusék and Jindfich Zapletal. Forcing with quotients. Arch. Math. Logic, 47(7-
8):719-739, 2008.

[23] Miroslav Katétov. Products of filters. Comment. Math. Unw. Carolinae, 9:173-189, 1968.

[24] Milos S. Kurilié. Cohen-stable families of subsets of integers. J. Symbolic Logic, 66(1):257-270,
2001.

[25] Miklés Laczkovich and Ireneusz Rectaw. Ideal limits of sequences of continuous functions.
Fundam. Math., 203(1):39-46, 20009.

[26] Claude Laflamme. Filter games and combinatorial properties of strategies. In Set theory
(Boise, ID, 1992-1994), volume 192 of Contemp. Math., pages 51-67. Amer. Math. Soc.,
Providence, RI, 1996.

[27] A. R. D. Mathias. Happy families. Ann. Math. Logic, 12(1):59-111, 1977.

[28] Krzysztof Mazur. Fy-ideals and wiwj-gaps in the Boolean algebras P(w)/I. Fund. Math.,
138(2):103-111, 1991.

[29] David Meza. Ideals and filters on countable sets. PhD thesis, Universidad Auténoma de
Mézxico, 2009.

[30] Heike Mildenberger, Dilip Raghavan, and Juris Steprans. Splitting families and complete
separability. Canad. Math. Bull., 57(1):119-124, 2014.

[31] A. W. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981),
no. 1, 93-114.

[32] Hiroaki Minami and Hiroshi Sakai. Katétov and Katétov-Blass orders on Fi-ideals. Arch.
Math. Logic, 55(7-8):883-898, 2016.

[33] Justin Tatch Moore, Michael Hrusdk, and Mirna Dzamonja. Parametrized < principles.
Trans. Amer. Math. Soc., 356(6):2281-2306, 2004.

[34] D. Raghavan, MADness and set theory, ProQuest LLC, Ann Arbor, MI, 2008, Thesis
(Ph.D.)-The University of Wisconsin - Madison.

[35] D. Raghavan, Mazximal almost disjoint families of functions, Fund. Math. 204 (2009), no. 3,
241-282.

[36] Dilip Raghavan. A model with no strongly separable almost disjoint families. Israel J. Math.,
189:39-53, 2012.



COMBINATORIAL PROPERTIES OF MAD FAMILIES 43

[37] D. Raghavan. The density zero ideal and the splitting number. Ann. Pure Appl. Logic,
171(7):102807, 15, 2020.

[38] Dilip Raghavan and Saharon Shelah. Two inequalities between cardinal invariants. Fund.
Maith., 237(2):187-200, 2017.

[39] Dilip Raghavan and Juris Steprans. On weakly tight families. Canad. J. Math., 64(6):1378—
1394, 2012.

[40] Saharon Shelah. Proper and Improper Forcing. Perspectives in Mathematical Logic. Springer-
Verlag, Berlin, second edition, 1998.

[41] Saharon Shelah. Two cardinal invariants of the continuum (9 < a) and FS linearly ordered
iterated forcing. Acta Math., 192(2):187-223, 2004.

[42] Saharon Shelah and Juris Steprans. Masas in the Calkin algebra without the continuum
hypothesis. J. Appl. Anal., 17(1):69-89, 2011.

[43] Stawomir Solecki. Analytic ideals and their applications. Ann. Pure Appl. Logic, 99(1-3):51—
72, 1999.

[44] Stawomir Solecki. Filters and sequences. Fundam. Math., 163(3):215-228, 2000.

[45] JindFich Zapletal. Forcing idealized, volume 174 of Cambridge Tracts in Mathematics. Cam-
bridge University Press, Cambridge, 2008.

(Brendle) GRADUATE SCHOOL OF SYSTEM INFORMATICS, KOBE UNIVERSITY, ROKKODAI 1-1,
NaDA, KOBE 657-8501, JAPAN
Email address: brendle@kobe-u.ac. jp

(Guzman) CENTRO DE CIENCIAS MATEMATICAS, UNAM, CAMPUS MORELIA, 58089, MEXICO
Email address: oguzman@matmor . unam.mx
URL: https://wuw.matmor .unam.mx/~oguzman/

(Hrusdk) CENTRO DE CIENCIAS MATEMATICAS, UNAM, CAMPUS MORELIA, 58089, MEXICO
Email address: michael@matmor .unam.mx
URL: https://www.matmor.unam.mx/~michael/

(Raghavan) DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF SINGAPORE, SINGA-
PORE 119076.

Email address: |[dilip.raghavan@protonmail.com

URL: https://dilip-raghavan.github.io/


brendle@kobe-u.ac.jp
oguzman@matmor.unam.mx
https://www.matmor.unam.mx/~oguzman/
michael@matmor.unam.mx
https://www.matmor.unam.mx/~michael/
dilip.raghavan@protonmail.com
https://dilip-raghavan.github.io/

	1. Introduction and preliminaries
	2. Notation
	3. Shelah-Steprāns ideals
	4. Strong properties of MAD families
	4.1. Combinatorial properties of ideals: definitions and implications
	4.2. Generic MAD families
	4.3. Existence versus non-existence
	4.4. Existence under diamond principles
	4.5. Existence under forcing axioms
	4.6. Non-implications

	5. Destructibility by forcing
	5.1. Destroying Hurewicz ideals
	5.2. Variants of the Shelah-Steprāns property

	6. A general strategy for producing models with small non-meager families
	7. Shelah-Steprāns families and non-meager sets
	7.1. The partial order
	7.2. A model where `3́9`42`"̇613A``45`47`"603Anon(M) = 1 and there are no block Shelah-Steprāns a.d. families of size 1

	8. A MAD family that can not be extended to a Hurewicz ideal
	References

