LOWER BOUNDS OF SETS OF P-POINTS

BORISA KUZELJEVIC, DILIP RAGHAVAN, AND JONATHAN L. VERNER

Abstract

We show that MA_{κ} implies that each collection of $P_{\mathfrak{c}}$-points of size at most κ which has a $P_{\mathfrak{c}}$-point as an $R K$ upper bound also has a $P_{\mathfrak{c}}$-point as an $R K$ lower bound.

1. Introduction

The Rudin-Keisler ($R K$) ordering of ultrafilters has received considerable attention since its introduction in the 1960s. For example, one can take a look at [10, 8, 9, 2, 4, 6, 5], or [7]. Recall the definition of the Rudin-Keisler ordering.
Definition 1. Let \mathcal{U} and \mathcal{V} be ultrafilters on ω. We say that $\mathcal{U} \leq_{R K} \mathcal{V}$ if there is a function f in ω^{ω} such that $A \in \mathcal{U}$ if and only if $f^{-1}(A) \in \mathcal{V}$ for every $A \subseteq \omega$.

When \mathcal{U} and \mathcal{V} are ultrafilters on ω and $\mathcal{U} \leq_{R K} \mathcal{V}$, we say that \mathcal{U} is Rudin-Keisler $(R K)$ reducible to \mathcal{V}, or that \mathcal{U} is Rudin-Keisler ($R K$) below \mathcal{V}. In case $\mathcal{U} \leq_{R K} \mathcal{V}$ and $\mathcal{V} \leq_{R K} \mathcal{U}$ both hold, then we say that \mathcal{U} and \mathcal{V} are Rudin-Keisler equivalent, and write $\mathcal{U} \equiv_{R K} \mathcal{V}$.

Very early in the investigation of this ordering of ultrafilters, it was noticed that the class of P-points is particularly interesting. Recall that an ultrafilter \mathcal{U} on ω is called a P-point if for any $\left\{a_{n}: n<\omega\right\} \subseteq \mathcal{U}$ there is an $a \in \mathcal{U}$ such that $a \subseteq^{*} a_{n}$ for every $n<\omega$, i.e. the set $a \backslash a_{n}$ is finite for every $n<\omega$. P-points were first constructed by Rudin in [10], under the assumption of the Continuum Hypothesis. The class of P-points forms a downwards closed initial segment of the class of all ultrafilters. In other words, if \mathcal{U} is a P-point and \mathcal{V} is any ultrafilter on ω with $\mathcal{V} \leq_{R K} \mathcal{U}$, then \mathcal{V} is also a P-point. Hence understanding the order-theoretic structure of the class of P-points can provide information about the order-theoretic structure of the class of all ultrafilters on ω. One of the first systematic explorations of the order-theoretic properties of the class of all ultrafilters, and particularly of the class of P-points, under $\leq_{R K}$ was made by Blass in [3] and [2], where he proved many results about this ordering under the assumption of Martin's Axiom (MA).

Let us note here that it is not possible to construct P-points in ZFC only, as was proved by Shelah (see [11). Thus some set-theoretic assumption is needed to ensure the existence of P-points. The most commonly used assumption when studying the order-theoretic properties of the class of P-points is MA. Under MA every ultrafilter has character \mathfrak{c}. Therefore, the $P_{\mathfrak{c}}$-points are the most natural class of P-points to focus on under MA. Again, the P_{c}-points form a downwards closed subclass of the P-points.

[^0]Definition 2. An ultrafilter \mathcal{U} on ω is called a $P_{\mathfrak{c}}$-point if for every $\alpha<\mathfrak{c}$ and any $\left\{a_{i}: i<\alpha\right\} \subseteq \mathcal{U}$ there is an $a \in \mathcal{U}$ such that $a \subseteq^{*} a_{i}$ for every $i<\alpha$.

In Theorem 5 from [2], Blass proved in ZFC that if $\left\{\mathcal{U}_{n}: n<\omega\right\}$ is a countable collection of P-points and if there is a P-point \mathcal{V} such that $\mathcal{U}_{n} \leq_{R K} \mathcal{V}$ for every $n<\omega$, then there is a P-point \mathcal{U} such that $\mathcal{U} \leq_{R K} \mathcal{U}_{n}$ for every $n<\omega$. In other words, if a countable family of P-points has an upper bound, then it also has a lower bound.

The main result of this paper generalizes Blass' theorem to families of $P_{c_{c}}$-points of size less than \mathfrak{c} under MA. More precisely, if MA holds and a family of $P_{\mathfrak{c}}$-points of size less than \mathfrak{c} has an $R K$ upper bound which is a $P_{\mathfrak{c}}$-point, then the family also has an RK lower bound.

Blass proved his result via some facts from [1] about non-standard models of complete arithmetic. In order to state these results, we introduce a few notions from [1]. The language L will consist of symbols for all relations and all functions on ω. Let N be the standard model for this language, its domain is ω and each relation or function denotes itself. Let M be an elementary extension of N, and let ${ }^{*} R$ be the relation in M denoted by R, and let * f be the function in M denoted by f. Note that if $a \in M$, then the set $\left\{{ }^{*} f(a): f: \omega \rightarrow \omega\right\}$ is the domain of an elementary submodel of M. Submodel like this, i.e. generated by a single element, will be called principal. It is not difficult to prove that a principal submodel generated by a is isomorphic to the ultrapower of the standard model by the ultrafilter $\mathcal{U}_{a}=\left\{X \subseteq \omega: a \in{ }^{*} X\right\}$. If $A, B \subseteq M$, we say that they are cofinal with each other iff $(\forall a \in A)(\exists b \in B) a^{*} \leq b$ and $(\forall b \in B)(\exists a \in A) b^{*} \leq a$. Finally, we can state Blass' theorem.

Theorem 3 (Blass, Theorem 3 in [1]). Let $M_{i}(i<\omega)$ be countably many pairwise cofinal submodels of M. Assume that at least one of the M_{i} is principal. Then $\bigcap_{i<\omega} M_{i}$ is cofinal with each M_{i}, in fact it contains a principal submodel cofinal with each M_{i}.

After proving this theorem, Blass states that it is not known to him whether Theorem 3 can be extended to larger collections of submodels. The proof of our main result clarifies this, namely in Theorem 19 below we prove that under MA it is possible to extend it to collections of models of size less than \mathfrak{c} provided that there is a principal model that is isomorphic to an ultrapower induced by a $P_{\mathfrak{c}}$-point. Then we proceed and use this result to prove Theorem 20 where we extend Theorem 5 from [2] to collections of fewer than \mathfrak{c} many $P_{\mathfrak{c}}$-points.

Recall that MA_{α} is the statement that for every partial order P which satisfies the countable chain condition and for every collection $\mathcal{D}=\left\{D_{i}: i<\alpha\right\}$ of dense subsets of P, there is a filter $G \subseteq P$ such that $G \cap D_{i} \neq \emptyset$ for every $i<\alpha$.

2. The Lower bound

In this section we prove the results of the paper. We begin with a purely combinatorial lemma about functions.

Definition 4. Let α be an ordinal, let $\mathcal{F}=\left\{f_{i}: i<\alpha\right\} \subseteq \omega^{\omega}$ be a family of functions, and let A be a subset of α. We say that a set $F \subseteq \omega$ is (A, \mathcal{F})-closed if $f_{i}^{-1}\left(f_{i}^{\prime \prime} F\right) \subseteq F$ for each $i \in A$.
Remark 5. Notice that if F is (A, \mathcal{F})-closed, then $f_{i}^{-1}\left(f_{i}^{\prime \prime} F\right)=F$ for each $i \in A$.

Lemma 6. Let α be an ordinal, let $\mathcal{F}=\left\{f_{i}: i<\alpha\right\} \subseteq \omega^{\omega}$ be a family of functions, and let A be a subset of α. Suppose that $m<\omega$, and that F_{k} is (A, \mathcal{F})-closed subset of ω, for each $k<m$. Then the set $F=\bigcup_{k<m} F_{k}$ is (A, \mathcal{F})-closed.

Proof. To prove that F is (A, \mathcal{F})-closed take any $i \in A$, and $n \in f_{i}^{-1}\left(f_{i}^{\prime \prime} F\right)$. This means that there is some $n^{\prime} \in F$ such that $f_{i}(n)=f_{i}\left(n^{\prime}\right)$. Let $k<m$ be such that $n^{\prime} \in F_{k}$. Then $n \in f_{i}^{-1}\left(f_{i}^{\prime \prime} F_{k}\right)$. Since F_{k} is (A, \mathcal{F})-closed, $n \in f_{i}^{-1}\left(f_{i}^{\prime \prime} F_{k}\right) \subseteq F_{k}$. Thus $n \in F_{k} \subseteq F$.

Lemma 7. Let $\alpha<\mathfrak{c}$ be an ordinal. Let $\mathcal{F}=\left\{f_{i}: i<\alpha\right\} \subseteq \omega^{\omega}$ be a family of finite-to-one functions. Suppose that for each $i, j<\alpha$ with $i<j$, there is $l<\omega$ such that $f_{j}(n)=f_{j}(m)$ whenever $f_{i}(n)=f_{i}(m)$ and $n, m \geq l$. Then for each finite $A \subseteq \alpha$, and each $n<\omega$, there is a finite (A, \mathcal{F})-closed set F such that $n \in F$.

Proof. First, if A is empty, then we can take $F=\{n\}$. So fix a non-empty finite $A \subseteq \alpha$, and $n<\omega$. For each $i, j \in A$ such that $i<j$, by the assumption of the lemma, take $l_{i j}<\omega$ such that for each $n, m \geq l_{i j}$, if $f_{i}(n)=f_{i}(m)$, then $f_{j}(n)=f_{j}(m)$. Since A is a finite set, there is $l=\max \left\{l_{i j}: i, j \in A, i<j\right\}$. So l has the property that for every $i, j \in A$ with $i<j$, if $f_{i}(n)=f_{i}(m)$ and $n, m \geq l$, then $f_{j}(n)=f_{j}(m)$.

Let $i_{0}=\max (A)$. Clearly, $f_{i}^{\prime \prime} l$ is finite for each $i \in A$, and since each f_{i} is finite-to-one the set $f_{i}^{-1}\left(f_{i}^{\prime \prime} l\right)$ is finite for every $i \in A$. Since the set A is also finite, there is $l^{\prime}<\omega$ such that $\bigcup_{i \in A} f_{i}^{-1}\left(f_{i}^{\prime \prime} l\right) \subseteq l^{\prime}$. Again, since $f_{i_{0}}$ is finite-to-one there is $l^{\prime \prime}<\omega$ such that $f_{i_{0}}^{-1}\left(f_{i_{0}}^{\prime \prime} l^{\prime}\right) \subseteq l^{\prime \prime}$. Note that by the definition of numbers l^{\prime} and $l^{\prime \prime}$, we have $l^{\prime \prime} \geq l^{\prime} \geq l$.
Claim 8. For all $k<\omega$, if $k \geq l^{\prime \prime}$, then the set $f_{i_{0}}^{-1}\left(f_{i_{0}}^{\prime \prime}\{k\}\right)$ is (A, \mathcal{F})-closed.
Proof. Fix $k \geq l^{\prime \prime}$ and let $X=f_{i_{0}}^{-1}\left(f_{i_{0}}^{\prime \prime}\{k\}\right)$. First observe that $X \cap l^{\prime}=\emptyset$. To see this suppose that there is $m \in X \cap l^{\prime}$. Since $m \in X, f_{i_{0}}(m)=f_{i_{0}}(k)$. Together with $m \in l^{\prime}$, this implies that $k \in f_{i_{0}}^{-1}\left(f_{i_{0}}^{\prime \prime}\{m\}\right) \subseteq f_{i_{0}}^{-1}\left(f_{i_{0}}^{\prime \prime} l^{\prime}\right) \subseteq l^{\prime \prime}$. Thus $k<l^{\prime \prime}$ contradicting the choice of k. Secondly, observe that if $m<l$ and $k^{\prime} \in X$, then $f_{i}(m) \neq f_{i}\left(k^{\prime}\right)$ for each $i \in A$. To see this, fix $m<l$ and $k^{\prime} \in X$, and suppose that for some $i \in A, f_{i}(m)=f_{i}\left(k^{\prime}\right)$. This means that $k^{\prime} \in f_{i}^{-1}\left(f_{i}^{\prime \prime}\{m\}\right) \subseteq f_{i}^{-1}\left(f_{i}^{\prime \prime} l\right) \subseteq l^{\prime}$ contradicting the fact that $X \cap l^{\prime}=\emptyset$.

Now we will prove that X is (A, \mathcal{F})-closed. Take any $i \in A$ and any $m \in$ $f_{i}^{-1}\left(f_{i}^{\prime \prime} X\right)$. We should prove that $m \in X$. Since $m \in f_{i}^{-1}\left(f_{i}^{\prime \prime} X\right), f_{i}(m) \in f_{i}^{\prime \prime} X$ so there is some $k^{\prime} \in X$ such that $f_{i}(m)=f_{i}\left(k^{\prime}\right)$. By the second observation, $m \geq l$. By the first observation $k^{\prime} \geq l^{\prime} \geq l$. By the assumption of the lemma, since $m, k^{\prime} \geq l$, and $f_{i}(m)=f_{i}\left(k^{\prime}\right)$, it must be that $f_{i_{0}}(m)=f_{i_{0}}\left(k^{\prime}\right)$. Since $k^{\prime} \in X=f_{i_{0}}^{-1}\left(f_{i_{0}}^{\prime \prime}\{k\}\right)$, it must be that $f_{i_{0}}(k)=f_{i_{0}}\left(k^{\prime}\right)=f_{i_{0}}(m)$. This means that $m \in f_{i_{0}}^{-1}\left(f_{i_{0}}^{\prime \prime}\{k\}\right)=X$ as required. Thus $f_{i_{0}}^{-1}\left(f_{i_{0}}^{\prime \prime}\{k\}\right)$ is (A, \mathcal{F})-closed.

Now we inductively build a tree $T \subseteq \omega^{<\omega}$ we will be using in the rest of the proof. Fix a function $\Phi: \omega \rightarrow \omega^{<\omega}$ so that $\Phi^{-1}(\sigma)$ is infinite for each $\sigma \in \omega^{<\omega}$. For each $m<\omega$ let $u_{m}=\Phi(m)(|\Phi(m)|-1)$, i.e. u_{m} is the last element of the sequence $\Phi(m)$. Let $T_{0}=\{\emptyset,\langle n\rangle\}$ (recall that n is given in the statement of the lemma). Suppose that $m \geq 1$, and that T_{m} is given. If $\Phi(m)$ is a leaf node of T_{m}, then let

$$
Z_{m}=\left(\bigcup_{i \in A} f_{i}^{-1}\left(f_{i}^{\prime \prime}\left\{u_{m}\right\}\right)\right) \backslash\left(\bigcup_{\eta \in T_{m}} \operatorname{range}(\eta)\right)
$$

and $T_{m+1}=T_{m} \cup\left\{\Phi(m)^{\frown}\langle k\rangle: k \in Z_{m}\right\}$. If $\Phi(m)$ is not a leaf node of T_{m}, then $T_{m+1}=T_{m}$. Finally, let $T=\bigcup_{m<\omega} T_{m}$ and $F=\bigcup_{\eta \in T} \operatorname{range}(\eta)$.

Claim 9. If σ is a non-empty element of the tree T, then there is $m_{0} \geq 1$ such that σ is a leaf node of $T_{m_{0}}$, that $\sigma=\Phi\left(m_{0}\right)$ and that

$$
\bigcup_{i \in A} f_{i}^{-1}\left(f_{i}^{\prime \prime}\left\{u_{m_{0}}\right\}\right) \subseteq \bigcup_{\eta \in T_{m_{0}+1}} \operatorname{range}(\eta)
$$

Proof. Fix a non-empty σ in T. Let $m_{1}=\min \left\{k<\omega: \sigma \in T_{k}\right\}$. Since $|\sigma|>0, \sigma$ is a leaf node of $T_{m_{1}}$. Consider the set $W=\left\{m \geq m_{1}: \Phi(m)=\sigma\right\}$. Since the set $\{m<\omega: \Phi(m)=\sigma\}$ is infinite, W is non-empty subset of positive integers, so it has a minimum. Let $m_{0}=\min W$. Note that if $m_{0}=m_{1}$, then σ is a leaf node of $T_{m_{0}}$. If $m_{0}>m_{1}$, by the construction of the tree T, since $\Phi(k) \neq \sigma$ whenever $m_{1} \leq k<m_{0}$, it must be that σ is a leaf node of every T_{k} for $m_{1}<k \leq m_{0}$. Thus σ is a leaf node of $T_{m_{0}}$ and $\Phi\left(m_{0}\right)=\sigma$. Again by the construction of the tree T, we have $T_{m_{0}+1}=T_{m_{0}} \cup\left\{\sigma^{\frown}\langle k\rangle: k \in Z_{m_{0}}\right\}$. This means that

$$
\bigcup_{\eta \in T_{m_{0}+1}} \operatorname{range}(\eta)=Z_{m_{0}} \cup \bigcup_{\eta \in T_{m_{0}}} \operatorname{range}(\eta)
$$

Finally, the definition of $Z_{m_{0}}$ implies that

$$
\bigcup_{i \in A} f_{i}^{-1}\left(f_{i}^{\prime \prime}\left\{u_{m_{0}}\right\}\right) \subseteq Z_{m_{0}} \cup \bigcup_{\eta \in T_{m_{0}}} \operatorname{range}(\eta)=\bigcup_{\eta \in T_{m_{0}+1}} \operatorname{range}(\eta)
$$

as required.
Claim 10. The set F is (A, \mathcal{F})-closed, and contains n as an element.
Proof. Since $\langle n\rangle \in T_{0}, n \in F$. To see that F is (A, \mathcal{F})-closed, take any $j \in A$, and any $w \in f_{j}^{-1}\left(f_{j}^{\prime \prime} F\right)$. We have to show that $w \in F$. Since $w \in f_{j}^{-1}\left(f_{j}^{\prime \prime} F\right)$, there is $m \in F$ such that $f_{j}(w)=f_{j}(m)$. Since $m \in F=\bigcup_{\eta \in T}$ range (η), there is σ in T such that $\sigma(k)=m$ for some $k<\omega$. Consider $\sigma \upharpoonright(k+1)$. Since $\sigma \upharpoonright(k+1) \in T$, by Claim 9 there is $m_{0} \geq 1$ such that $\Phi\left(m_{0}\right)=\sigma \upharpoonright(k+1)$, that $\sigma \upharpoonright(k+1)$ is a leaf node of $T_{m_{0}}$ and that (note that $u_{m_{0}}=\sigma(k)=m$)

$$
\bigcup_{i \in A} f_{i}^{-1}\left(f_{i}^{\prime \prime}\{m\}\right) \subseteq \bigcup_{\eta \in T_{m_{0}+1}} \operatorname{range}(\eta) \subseteq \bigcup_{\eta \in T} \operatorname{range}(\eta)=F
$$

So $w \in f_{j}^{-1}\left(f_{j}^{\prime \prime}\{m\}\right) \subseteq F$ as required.
Claim 11. The tree T is finite.
Proof. First we prove that each level of T is finite. For $k<\omega$ let $T_{(k)}$ be the k-th level of T, i.e. $T_{(k)}=\{\sigma \in T:|\sigma|=k\}$. Clearly $T_{(0)}$ and $T_{(1)}$ are finite. So suppose that $T_{(k)}$ is finite. Let $T_{(k)}=\left\{\sigma_{0}, \sigma_{2}, \ldots, \sigma_{t}\right\}$ be enumeration of that level. For $s \leq t$ let m_{s} be such that $\Phi\left(m_{s}\right)=\sigma_{s}$ and that σ_{s} is a leaf node of $T_{m_{s}}$. Note that by the construction of the tree T all nodes at the level $T_{(k+1)}$ are of the form $\sigma_{s}^{\frown}\langle r\rangle$ where $s \leq t$ and $r \in Z_{m_{s}}$. Since the set A is finite and all functions f_{i} (for $i \in A$) are finite-to-one, $Z_{m_{s}}$ is finite for every $s \leq t$. Thus there are only finitely many nodes of the form $\sigma_{s}^{\curvearrowright}\langle r\rangle$ where $s \leq t$ and $r \in Z_{m_{s}}$, hence the level $T_{(k+1)}$ must also be finite. This proves by induction that each level of T is finite.

Suppose now that T is infinite. By König's lemma, since each level of T is finite, T has an infinite branch b. By definition of the sets $Z_{m}(m<\omega)$, each node of T is 1-1 function, so b is also an injection from ω into ω. In particular, the range of b is infinite. Let $k=\min \left\{m<\omega: b(m) \geq l^{\prime \prime}\right\}$, and let $\sigma=b \upharpoonright(k+1)$. Clearly, $\sigma \in T$. By Claim 9, there is $m_{0}<\omega$ such that σ is a leaf node of $T_{m_{0}}$, that $\Phi\left(m_{0}\right)=\sigma$, and that $\bigcup_{i \in A} f_{i}^{-1}\left(f_{i}^{\prime \prime}\{\sigma(k)\}\right) \subseteq \bigcup_{\eta \in T_{m_{0}+1}} \operatorname{range}(\eta)$. Since $\sigma(k)=b(k) \geq l^{\prime \prime}$, Claim

8 implies that the set $Y=f_{i_{0}}^{-1}\left(f_{i_{0}}^{\prime \prime}\{\sigma(k)\}\right)$ is (A, \mathcal{F})-closed. By the construction $\bar{T}_{m_{0}+1}=T_{m_{0}} \cup\left\{\sigma^{\frown}\langle m\rangle: m \in Z_{m_{0}}\right\}$. Since b is an infinite branch, there is $m^{\prime} \in Z_{m_{0}}$ such that $b(k+1)=m^{\prime}$. Now $m^{\prime} \in Z_{m_{0}} \subseteq \bigcup_{i \in A} f_{i}^{-1}\left(f_{i}^{\prime \prime}\{\sigma(k)\}\right)$, the fact that $\sigma(k) \in Y$, and the fact that Y is (A, \mathcal{F})-closed, together imply that

$$
m^{\prime} \in \bigcup_{i \in A} f_{i}^{-1}\left(f_{i}^{\prime \prime}\{\sigma(k)\}\right) \subseteq \bigcup_{i \in A} f_{i}^{-1}\left(f_{i}^{\prime \prime} Y\right) \subseteq Y
$$

Consider the node $\tau=\sigma^{\frown}\left\langle m^{\prime}\right\rangle=b \upharpoonright(k+2)$. Since b is an infinite branch, it must be that $\tau^{\frown}\langle b(k+2)\rangle \in T$. By Claim 9 there is m_{1} such that τ is a leaf node of $T_{m_{1}}$ and that $\Phi\left(m_{1}\right)=\tau$. Clearly, $m_{1}>m_{0}$ and $\tau^{\frown}\langle b(k+2)\rangle \in T_{m_{1}+1}$. Recall that we have already shown that $\bigcup_{i \in A} f_{i}^{-1}\left(f_{i}^{\prime \prime}\{\sigma(k)\}\right) \subseteq \bigcup_{\eta \in T_{m_{0}+1}}$ range (η). Thus $Y \subseteq \bigcup_{\eta \in T_{m_{0}+1}}$ range (η). This, together with the fact that $\tau(k+1)=m^{\prime} \in Y$, that Y is (A, \mathcal{F})-closed, and $m_{1}>m_{0}$ jointly imply that

$$
\bigcup_{i \in A} f_{i}^{-1}\left(f_{i}^{\prime \prime}\{\tau(k+1)\}\right) \subseteq Y \subseteq \bigcup_{\eta \in T_{m_{0}}+1} \operatorname{range}(\eta) \subseteq \bigcup_{\eta \in T_{m_{1}}} \operatorname{range}(\eta)
$$

This means that

$$
b(k+2) \in Z_{n_{1}}=\bigcup_{i \in A} f_{i}^{-1}\left(f_{i}^{\prime \prime}\{\tau(k+1)\}\right) \backslash \bigcup_{\eta \in T_{m_{1}}} \operatorname{range}(\eta)=\emptyset
$$

which is clearly impossible. Thus, T is not infinite.
To finish the proof, note that by Claim 10 the set F is (A, \mathcal{F})-closed and contains n as an element, while by Claim 11 the set F is finite. So F satisfies all the requirements of the conclusion of the lemma.

The following lemma is the main application of Martin's Axiom. Again, it does not directly deal with ultrafilters, but with collections of functions.

Lemma $12\left(\mathrm{MA}_{\alpha}\right)$. Let $\mathcal{F}=\left\{f_{i}: i<\alpha\right\} \subseteq \omega^{\omega}$ be a family of finite-to-one functions. Suppose that for each non-empty finite set $A \subseteq \alpha$, and each $n<\omega$, there is a finite (A, \mathcal{F})-closed set F containing n as an element. Then there is a finite-to-one function $h \in \omega^{\omega}$, and a collection $\left\{e_{i}: i<\alpha\right\} \subseteq \omega^{\omega}$ such that for each $i<\alpha$, there is $l<\omega$ such that $h(n)=e_{i}\left(f_{i}(n)\right)$ whenever $n \geq l$.

Proof. We will apply MA_{α}, so we first define the poset we will be using. Let \mathcal{P} be the set of all $p=\left\langle g_{p}, h_{p}\right\rangle$ such that
(I) $h_{p}: N_{p} \rightarrow \omega$ where N_{p} is a finite subset of ω,
(II) $g_{p}=\left\langle g_{p}^{i}: i \in A_{p}\right\rangle$ where $A_{p} \in[\alpha]^{<\aleph_{0}}$, and $g_{p}^{i}: f_{i}^{\prime \prime} N_{p} \rightarrow \omega$ for each $i \in A_{p}$,
(III) N_{p} is $\left(A_{p}, \mathcal{F}\right)$-closed.

Define the ordering relation \leq on \mathcal{P} as follows: $q \leq p$ iff
(IV) $N_{p} \subseteq N_{q}$,
(V) $A_{p} \subseteq A_{q}$,
(VI) $h_{q} \upharpoonright N_{p}=h_{p}$,
(VII) $g_{q}^{i} \upharpoonright f_{i}^{\prime \prime} N_{p}=g_{p}^{i}$ for each $i \in A_{p}$,
(VIII) $h_{q}(n)>h_{q}(m)$ whenever $m \in N_{p}$ and $n \in N_{q} \backslash N_{p}$,
$(\mathrm{IX}) h_{q}(n)=g_{q}^{i}\left(f_{i}(n)\right)$ for each $n \in N_{q} \backslash N_{p}$ and $i \in A_{p}$.
It is clear that $\langle\mathcal{P}, \leq\rangle$ is a partially ordered set.
Claim 13. Let $p \in \mathcal{P}, n_{0}<\omega$, and suppose that $A \subseteq \alpha$ is finite such that $A_{p} \subseteq A$. Then there is $q \leq p$ such that $n_{0} \subseteq N_{q}$ and that N_{q} is (A, \mathcal{F})-closed.

Proof. Applying the assumption of the lemma to the finite set A, and each $k \in$ $n_{0} \cup N_{p}$, we obtain sets $F_{k}\left(k \in n_{0} \cup N_{p}\right)$ such that $k \in F_{k}$ and $f_{i}^{-1}\left(f_{i}^{\prime \prime} F_{k}\right) \subseteq F_{k}$ for each $k \in n_{0} \cup N_{p}$ and $i \in A$. Let $N_{q}=\bigcup_{k \in n_{0} \cup N_{p}} F_{k}$, let $A_{q}=A_{p}$, and let $t=\max \left\{h_{p}(k)+1: k \in N_{p}\right\}$. Finally, define

$$
h_{q}(n)=\left\{\begin{array}{l}
h_{p}(n), \text { if } n \in N_{p} \\
t, \text { if } n \in N_{q} \backslash N_{p}
\end{array} \quad \text { and } g_{q}^{i}(k)=\left\{\begin{array}{l}
g_{p}^{i}(k), \text { if } k \in f_{i}^{\prime \prime} N_{p} \\
t, \text { if } k \in f_{i}^{\prime \prime} N_{q} \backslash f_{i}^{\prime \prime} N_{p}
\end{array} \quad \text { for } i \in A_{q} .\right.\right.
$$

Let g_{q} denote the sequence $\left\langle g_{q}^{i}: i \in A_{q}\right\rangle$. Clearly $n_{0} \subseteq N_{q}$. By Lemma 6, N_{q} is (A, \mathcal{F})-closed. We still have to show that $q=\left\langle g_{q}, h_{q}\right\rangle \in \mathcal{P}$ and $q \leq p$. Since h_{q} is defined on N_{q} and N_{q} finite, since $A_{q}=A_{p}$ and g_{p}^{i} is defined on $f_{i}^{\prime \prime} N_{q}$ for $i \in A_{p}$, and since N_{q} is $\left(A_{q}, \mathcal{F}\right)$-closed, conditions (I) (III) are satisfied by q. Thus $q \leq p$. Next we show $q \leq p$. Conditions (IV) (VII) are obviously satisfied by the definition of q. Since $h_{q}(n)=t>h_{p}(k)=h_{q}(k)$ for each $n \in N_{q} \backslash N_{p}$ and $k \in N_{p}$, conditions (VII) is also satisfied. So we still have to check (IX). Take any $i \in A_{p}$ and $n \in N_{q} \backslash N_{p}$. By the definition of h_{q}, we have $h_{q}(n)=t$. Once we prove that $f_{i}(n) \in f_{i}^{\prime \prime} N_{q} \backslash f_{i}^{\prime \prime} N_{p}$, we will be done because in that case the definition of g_{p}^{i} implies that $g_{p}^{i}\left(f_{i}(n)\right)=t$ as required. So suppose the contrary, that $f_{i}(n) \in f_{i}^{\prime \prime} N_{p}$. Since p is a condition and $A_{q}=A_{p}$, it must be that $n \in f_{i}^{-1}\left(f_{i}^{\prime \prime} N_{p}\right) \subseteq N_{p}$. But this contradicts the choice of n. Thus condition (IX) is also satisfied and $q \leq p$.

Claim 14. Let $p \in \mathcal{P}$, and $j_{0}<\alpha$. Then there is $q \leq p$ such that $j_{0} \in A_{q}$.
Proof. Let $A_{q}=A_{p} \cup\left\{j_{0}\right\}$. Applying Claim 13 to A_{q} and $n=0$, we obtain a condition $p^{\prime} \leq p$ such that $N_{p^{\prime}}$ is $\left(A_{q}, \mathcal{F}\right)$-closed. Let $N_{q}=N_{p^{\prime}}, h_{q}=h_{p^{\prime}}$, and $g_{q}^{i}=g_{p^{\prime}}^{i}$ for $i \in A_{p}$. Define $g_{q}^{j_{0}}(k)=0$ for each $k \in f_{j_{0}}^{\prime \prime} N_{p^{\prime}}$, and let g_{p} denote the sequence $\left\langle g_{q}^{i}: i \in A_{q}\right\rangle$. Since $j_{0} \in A_{q}$, to finish the proof of the claim it is enough to show that $q=\left\langle g_{q}, h_{q}\right\rangle \in \mathcal{P}$, and that $q \leq p^{\prime}$. Conditions (I) (III) are clear from the definition of q because $p^{\prime} \in \mathcal{P}$ and $N_{q}=N_{p^{\prime}}, h_{q}=h_{p^{\prime}}, g_{q}^{J_{0}}: f_{j_{0}}^{\prime \prime} N_{q} \rightarrow \omega$, and $g_{q}^{i}=g_{p}^{i}$ for $i \in A_{q} \backslash\left\{j_{0}\right\}$. Conditions (IV) (VII) are clear by the definition of h_{q} and g_{q}. Conditions (VIII) and (IX) are vacuously true because $N_{p^{\prime}}=N_{q}$. Thus the claim is proved.

Claim 15. If $p, q \in \mathcal{P}$ are such that $h_{p}=h_{q}$ and $g_{p}^{i}=g_{q}^{i}$ for $i \in A_{p} \cap A_{q}$, then p and q are compatible in \mathcal{P}.

Proof. We proceed to define $r \leq p, q$. Let $N=N_{p}=N_{q}$. Let

$$
t=\max \left\{h_{p}(n)+1: n \in N\right\}
$$

Applying the assumption of the lemma to $A=A_{p} \cup A_{q}$, and each $k \in N$, we obtain (A, \mathcal{F})-closed sets $F_{k}(k \in N)$. By Claim 6 , the set $N_{r}=\bigcup_{k \in N} F_{k}$ is (A, \mathcal{F})-closed. Let $A_{r}=A$, and define

$$
h_{r}(n)=\left\{\begin{array}{l}
h_{p}(n), \text { if } n \in N \\
t, \text { if } n \in N_{r} \backslash N
\end{array} \text { and } g_{r}^{i}(k)=\left\{\begin{array}{l}
g_{p}^{i}(k), \text { if } i \in A_{p} \text { and } k \in f_{i}^{\prime \prime} N \\
g_{q}^{i}(k), \text { if } i \in A_{q} \text { and } k \in f_{i}^{\prime \prime} N, \\
t, \text { if } k \in f_{i}^{\prime \prime} N_{r} \backslash f_{i}^{\prime \prime} N
\end{array}\right.\right.
$$

for $i \in A_{r}$. Let g_{r} denote the sequence $\left\langle g_{r}^{i}: i \in A_{r}\right\rangle$. As we have already mentioned, $r=\left\langle h_{r}, g_{r}\right\rangle$ satisfies (III), and it clear that (I) and (II) are also true for r. To see that $r \leq p$ and $r \leq q$ note that conditions (IV) $\|$ (VIII) are clearly satisfied. We will check that r and p satisfy (IX) also. Take any $n \in N_{r} \backslash N$ and $i \in A_{p}$. By the definition of $h_{r}, h_{r}(n)=t$. By the definition of g_{r}^{i}, if $f_{i}(n) \in f_{i}^{\prime \prime} N_{r} \backslash f_{i}^{\prime \prime} N$, then
$g_{r}^{i}\left(f_{i}(n)\right)=t=h_{r}(n)$. So suppose this is not the case, i.e. that $f_{i}(n) \in f_{i}^{\prime \prime} N$. This would mean that $n \in f_{i}^{-1}\left(f_{i}^{\prime \prime} N\right)$, which is impossible because $n \notin N$ and N is (A, \mathcal{F})-closed because $p \in \mathcal{P}$. Thus we proved $r \leq p$. In the same way it can be shown that $r \leq q$.

Claim 16. The poset \mathcal{P} satisfies the countable chain condition.
Proof. Let $\left\langle p_{\xi}: \xi<\omega_{1}\right\rangle$ be an uncountable set of conditions in \mathcal{P}. Since $h_{p_{\xi}} \in$ $[\omega \times \omega]^{<\omega}$ for each $\xi<\omega_{1}$, there is an uncountable set $\Gamma \subseteq \omega_{1}$, and $h \in[\omega \times \omega]^{<\omega}$ such that $h_{p_{\xi}}=h$ for each $\xi \in \Gamma$. Consider the set $\left\langle A_{p_{\xi}}: \xi \in \Gamma\right\rangle$. By the Δ system lemma, there is an uncountable set $\Delta \subseteq \Gamma$, and a finite set $A \subseteq \alpha$ such that $A_{p_{\xi}} \cap A_{p_{\eta}}=A$ for each $\xi, \eta \in \Delta$. Since Δ is uncountable and $g_{p_{\xi}}^{i} \in[\omega \times \omega]^{<\omega}$ for each $i \in A$ and $\xi \in \Delta$, there is an uncountable set $\Theta \subseteq \Delta$ and g_{i} for each $i \in A$, such that $g_{p_{\xi}}^{i}=g_{i}$ for each $\xi \in \Theta$ and $i \in A$. Let ξ and η in Θ be arbitrary. By Claim 15, p_{ξ} and p_{η} are compatible in \mathcal{P}.

Consider sets $D_{j}=\left\{p \in \mathcal{P}: j \in A_{p}\right\}$ for $j \in \alpha$, and $D_{m}=\left\{p \in \mathcal{P}: m \in N_{p}\right\}$ for $m \in \omega$. By Claim 14 and Claim 13, these sets are dense in \mathcal{P}. By MA_{α} there is a filter $\mathcal{G} \subseteq \mathcal{P}$ intersecting all these sets. Clearly, $h=\bigcup_{p \in \mathcal{G}} h_{p}$ and $e_{i}=\bigcup_{p \in \mathcal{G}} g_{p}^{i}$, for each $i \in \alpha$, are functions from ω into ω. We will prove that these functions satisfy the conclusion of the lemma. First we will prove that h is finite-to-one. Take any $m \in \omega$ and let $k=h(m)$. By the definition of h, there is $p \in \mathcal{G}$ such that $h_{p}(m)=k$. Suppose that $h^{-1}(\{k\}) \nsubseteq N_{p}$. This means that there is an integer $m_{0} \notin N_{p}$ such that $h\left(m_{0}\right)=k$. Let $q \in \mathcal{G}$ be such that $h_{q}\left(m_{0}\right)=k$. Now for a common extension $r \in \mathcal{G}$ of both p and q, it must be that $h_{r}\left(m_{0}\right)=h_{p}(m)$, contradicting the fact that $r \leq p$, in particular condition (VIII) is violated in this case. We still have to show that for each $i \in \alpha$, there is $l \in \omega$ such that $h(n)=e_{i}\left(f_{i}(n)\right)$ whenever $n \geq l$. So take $i \in \alpha$. By Claim 14, there is $p \in \mathcal{G}$ such that $i \in A_{p}$. Let $l=\max \left(N_{p}\right)+1$. We will prove that l is as required. Take any $n \geq l$. By Claim 13, there is $q \in \mathcal{G}$ such that $n \in q$. Let $r \in \mathcal{G}$ be a common extension of p and q. Since $n \notin N_{p}$ and $r \leq p$, it must be that $h_{r}(n)=g_{r}^{i}\left(f_{i}(n)\right)$, according to condition (IX). Hence $h(n)=e_{i}\left(f_{i}(n)\right)$, as required.

Before we move to the next lemma let us recall that if c is any element of the model M, then $\mathcal{U}=\left\{X \subseteq \omega: c \in{ }^{*} X\right\}$ is ultrafilter on ω.

Lemma 17. Let $\alpha<\mathfrak{c}$ be an ordinal. Let $\left\langle M_{i}: i<\alpha\right\rangle$ be $a \subseteq$-decreasing sequence of principal submodels of M, i.e. each M_{i} is generated by a single element a_{i} and $M_{j} \subseteq M_{i}$ whenever $i<j<\alpha$. Let each $M_{i}(i<\alpha)$ be cofinal with M_{0}. Suppose that $\mathcal{U}_{0}=\left\{X \subseteq \omega: a_{0} \in{ }^{*} X\right\}$ is a P_{c}-point. Then there is a family $\left\{f_{i}: i<\alpha\right\} \subseteq \omega^{\omega}$ of finite-to-one functions such that ${ }^{*} f_{i}\left(a_{0}\right)=a_{i}$ for $i<\alpha$, and that for $i, j<\alpha$ with $i<j$, there is $l<\omega$ such that $f_{j}(n)=f_{j}(m)$ whenever $f_{i}(n)=f_{i}(m)$ and $m, n \geq l$.

Proof. Let $i<j<\alpha$. Since $M_{j} \subseteq M_{i}$, and M_{i} is generated by a_{i}, there is a function $\varphi_{i j}: \omega \rightarrow \omega$ such that ${ }^{*} \varphi_{i j}\left(a_{i}\right)=a_{j}$. Since M_{j} is cofinal with M_{i}, by Lemma in [1 page 104], if $i<j<\alpha$, then there is a set $Y_{i j} \subseteq \omega$ such that $a_{i} \in{ }^{*} Y_{i j}$ and that $\varphi_{i j} \upharpoonright Y_{i j}$ is finite-to-one. For $i<\alpha$ let $g_{i}: \omega \rightarrow \omega$ be defined as follows: if $n<\omega$, then for $n \notin Y_{0 i}$ let $g_{i}(n)=n$, while for $n \in Y_{0 i}$ let $g_{i}(n)=\varphi_{0 i}(n)$. Note that ${ }^{*} g_{i}\left(a_{0}\right)=a_{i}$, and that g_{i} is finite-to-one. The latter fact follows since g_{i} is one-to-one on $\omega \backslash Y_{0 i}$ and on $Y_{0 i}$ it is equal to $\varphi_{0 i}$, which is finite-to-one on $Y_{0 i}$. Now by the second part of Lemma on page 104 in [1], for
$i<j<\alpha$ there is a finite-to-one function $\pi_{i j}: \omega \rightarrow \omega$ such that ${ }^{*} \varphi_{i j}\left(a_{i}\right)={ }^{*} \pi_{i j}\left(a_{i}\right)$. Note that this means that ${ }^{*} g_{j}\left(a_{0}\right)={ }^{*} \pi_{i j}\left({ }^{*} g_{i}\left(a_{0}\right)\right)$ for $i<j<\alpha$, i.e. the set $X_{i j}=\left\{n \in \omega: g_{j}(n)=\pi_{i j}\left(g_{i}(n)\right)\right\}$ is in \mathcal{U}_{0}. Since $\alpha<\mathfrak{c}$ and \mathcal{U}_{0} is a $P_{\mathfrak{c}}$-point, there is a set $X \subseteq \omega$ such that $X \in \mathcal{U}_{0}$ and that the set $X \backslash X_{i j}$ is finite whenever $i<j<\alpha$. Consider the sets $W_{i}=g_{i}^{\prime \prime} X$ for $i<\alpha$. For each $i<\alpha$, let $W_{i}=W_{i}^{0} \cup W_{i}^{1}$ where $W_{i}^{0} \cap W_{i}^{1}=\emptyset$ and both W_{i}^{0} and W_{i}^{1} are infinite. Fix $i<\alpha$ for a moment. We know that

$$
X=\left(X \cap \bigcup_{n \in W_{i}^{0}} g_{i}^{-1}(\{n\})\right) \cup\left(X \cap \bigcup_{n \in W_{i}^{1}} g_{i}^{-1}(\{n\})\right) .
$$

Since $X \in \mathcal{U}_{0}$ and \mathcal{U}_{0} is an ultrafilter, we have that either $X \cap \bigcup_{n \in W_{i}^{0}} g_{i}^{-1}(\{n\}) \in \mathcal{U}_{0}$ or $X \cap \bigcup_{n \in W_{i}^{1}} g_{i}^{-1}(\{n\}) \in \mathcal{U}_{0}$. Suppose that $Y=X \cap \bigcup_{n \in W_{i}^{0}} g_{i}^{-1}(\{n\}) \in \mathcal{U}_{0}$ (the other case would be handled similarly). Note that by the definition of \mathcal{U}_{0} we know that $a_{0} \in{ }^{*} Y$. Define $f_{i}: \omega \rightarrow \omega$ as follows: for $n \in Y$ let $f_{i}(n)=g_{i}(n)$, while for $n \notin Y$ let $f_{i}(n)=W_{i}^{1}(n)$. Now that functions f_{i} are defined, unfix i. We will prove that $\mathcal{F}=\left\{f_{i}: i<\alpha\right\}$ has all the properties from the conclusion of the lemma. Since each $g_{i}(i<\alpha)$ is finite-to-one, it is clear that f_{i} is also finite-to-one. Again, this is because g_{i} is finite-to-one on ω, and outside of Y the function f_{i} is defined so that it is one-to-one. Since ${ }^{*} g_{i}\left(a_{0}\right)=a_{i}$ and $a_{0} \in{ }^{*} Y$, it must be that ${ }^{*} f_{i}\left(a_{0}\right)=a_{i}$ for each $i<\alpha$. Now we prove the last property. Suppose that $i<j<\alpha$. Since the set $X \backslash X_{i j}$ is finite and $Y \subseteq X$, there is $l<\omega$ so that $Y \backslash l \subseteq X_{i j}$. Take $m, n \geq l$, and suppose that $f_{i}(n)=f_{i}(m)$. There are three cases. First, $n, m \notin Y$. In this case, $f_{i}(n)=f_{i}(m)$ implies that $W_{i}^{1}(n)=W_{i}^{1}(m)$, i.e. $n=m$. Hence $f_{j}(n)=f_{j}(m)$. Second, $m \in Y$ and $n \notin Y$. Since $m \in Y, g_{i}(m)=f_{i}(m)=f_{i}(n)$ so $f_{i}(n) \in W_{i}^{0}$. On the other hand, since $n \notin Y, f_{i}(n)=W_{i}^{1}(n)$. Thus we have $f_{i}(n) \in W_{i}^{0} \cap W_{i}^{1}$ which is in contradiction with the fact that $W_{i}^{0} \cap W_{i}^{1}=\emptyset$. So this case is not possible. Third, $m, n \in Y$. In this case $f_{i}(n)=f_{i}(m)$ implies that $g_{i}(n)=g_{i}(m)$. Since $m, n \in Y \backslash l \subseteq X_{i j}$ it must be that $f_{j}(n)=g_{j}(n)=\pi_{i j}\left(g_{i}(n)\right)=\pi_{i j}\left(g_{i}(m)\right)=g_{j}(m)=f_{j}(m)$ as required. Thus the lemma is proved.

Lemma $18\left(\mathrm{MA}_{\alpha}\right)$. Let $\left\langle M_{i}: i<\alpha\right\rangle$ be $a \subseteq$-decreasing sequence of principal, and pairwise cofinal submodels of M. Suppose that $\mathcal{U}_{0}=\left\{X \subseteq \omega: a_{0} \in{ }^{*} X\right\}$ is a $P_{\mathfrak{c}}$ point, where a_{0} generates M_{0}. Then there is an element $c \in \bigcap_{i<\alpha} M_{i}$ which generates a principal model cofinal with all $M_{i}(i<\alpha)$.

Proof. Let a_{i} for $i<\alpha$ be an element generating M_{i}. By Lemma 17 there is a family $\mathcal{F}=\left\{f_{i}: i<\alpha\right\} \subseteq \omega^{\omega}$ of finite-to-one functions such that ${ }^{*} f_{i}\left(a_{0}\right)=a_{i}$ for $i<\alpha$, and that for $i, j<\alpha$ with $i<j$, there is $l<\omega$ such that $f_{j}(n)=f_{j}(m)$ whenever $f_{i}(n)=f_{i}(m)$ and $m, n \geq l$. By Lemma 7, for each finite $A \subseteq \alpha$, and each $n<\omega$, there is a finite (A, \mathcal{F})-closed set containing n as an element. Now using MA_{α}, Lemma 12 implies that there is a finite-to-one function $h \in \omega^{\omega}$, and a collection $\left\{e_{i}: i<\alpha\right\} \subseteq \omega^{\omega}$ such that for each $i<\alpha$ there is $l<\omega$ such that $h(n)=e_{i}\left(f_{i}(n)\right)$ whenever $n \geq l$.

Let $c={ }^{*} h\left(a_{0}\right)$, and let M_{α} be a model generated by c. By Lemma in [1, pp. 104], M_{α} is cofinal with M_{0}. Thus M_{α} is a principal model cofinal with all $M_{i}(i<\alpha)$. To finish the proof we still have to show that $c \in \bigcap_{i<\alpha} M_{i}$. Fix $i<\alpha$. Let $l<\omega$ be such that $h(n)=e_{i}\left(f_{i}(n)\right)$ for $n \geq l$. If $a_{0}<l$, then $M_{j}=M$ for each $j<\alpha$ so the conclusion is trivially satisfied. So $a_{0}{ }^{*} \geq l$. Since the
sentence $(\forall n)\left[n \geq l \Rightarrow h(n)=e_{i}\left(f_{i}(n)\right)\right]$ is true in M, it is also true in M_{0}. Thus $c={ }^{*} h\left(a_{0}\right)={ }^{*} e_{i}\left({ }^{*} f_{i}\left(a_{0}\right)\right)={ }^{*} e_{i}\left(a_{i}\right) \in M_{i}$ as required.

Theorem $19\left(\mathrm{MA}_{\alpha}\right)$. Let $M_{i}(i<\alpha)$ be a collection of pairwise cofinal submodels of M. Suppose that M_{0} is principal, and that $\mathcal{U}_{0}=\left\{X \subseteq \omega: a_{0} \in{ }^{*} X\right\}$ is a $P_{c^{-}}$point, where a_{0} generates M_{0}. Then $\bigcap_{i<\alpha} M_{i}$ contains a principal submodel cofinal with each M_{i}.

Proof. We define models M_{i}^{\prime} for $i \leq \alpha$ as follows. $M_{0}^{\prime}=M_{0}$. If M_{i}^{\prime} is defined, then M_{i+1}^{\prime} is a principal submodel of $M_{i}^{\prime} \cap M_{i+1}$ cofinal with M_{i}^{\prime} and M_{i+1}. This model exists by Corollary in [1, pp. 105]. If $i \leq \alpha$ is limit, then the model M_{i}^{\prime} is a principal model cofinal with all $M_{j}^{\prime}(j<i)$. This model exists by Lemma 18. Now the model M_{α}^{\prime} is as required in the conclusion of the lemma.

Theorem $20\left(\mathrm{MA}_{\alpha}\right)$. Suppose that $\left\{\mathcal{U}_{i}: i<\alpha\right\}$ is a collection of P-points. Suppose moreover that \mathcal{U}_{0} is a $P_{\mathfrak{c}}$-point such that $\mathcal{U}_{i} \leq_{R K} \mathcal{U}_{0}$ for each $i<\alpha$. Then there is a P-point \mathcal{U} such that $\mathcal{U} \leq_{R K} \mathcal{U}_{i}$ for each i.

Proof. By Theorem 3 of [2], $\omega^{\omega} / \mathcal{U}_{i}$ is isomorphic to an elementary submodel M_{i} of $\omega^{\omega} / \mathcal{U}_{0}$. Since all $\mathcal{U}_{i}(i<\alpha)$ are non-principal, each model $M_{i}(i<\alpha)$ is nonstandard. By Corollary in [2, pp. 150], each $M_{i}(i<\alpha)$ is cofinal with M_{0}. This implies that all the models $M_{i}(i<\alpha)$ are pairwise cofinal with each other. By Theorem 19 there is a principal model M^{\prime} which is a subset of each $M_{i}(i<\alpha)$ and is cofinal with M_{0}. Since M^{\prime} is principal, there is an element a generating M^{\prime}. Let $\mathcal{U}=\left\{X \subseteq \omega: a \in^{*} X\right\}$. Then $\omega^{\omega} / \mathcal{U} \cong M^{\prime}$. Since M^{\prime} is cofinal with M_{0}, M^{\prime} is not the standard model. Thus \mathcal{U} is non-principal. Now $M^{\prime} \prec M_{i}(i<\alpha)$ implies that $\mathcal{U} \leq_{R K} \mathcal{U}_{i}$ (again using Theorem 3 of [2]). Since \mathcal{U} is Rudin-Keisler below a P-point, \mathcal{U} is also a P-point.

Corollary 21 (MA). If a collection of fewer than \mathfrak{c} many $P_{\mathfrak{c}}$-points has an upper bound which is a P_{c}-point, then it has a lower bound.

Corollary 22 (MA). The class of $P_{\mathfrak{c}}$-points is downwards $<\mathfrak{c}$-closed under $\leq_{R K}$. In other words, if $\alpha<\mathfrak{c}$ and $\left\langle\mathcal{U}_{i}: i<\alpha\right\rangle$ is a sequence of $P_{\mathfrak{c}}$-points such that $\forall i<j<\alpha\left[\mathcal{U}_{j} \leq_{R K} \mathcal{U}_{i}\right]$, then there is a $P_{\mathfrak{c}}$-point \mathcal{U} such that $\forall i<\alpha\left[\mathcal{U} \leq_{R K} \mathcal{U}_{i}\right]$.

References

[1] Andreas Blass. The intersection of nonstandard models of arithmetic. J. Symbolic Logic, 37:103-106, 1972.
[2] Andreas Blass. The Rudin-Keisler ordering of P-points. Trans. Amer. Math. Soc., 179:145166, 1973.
[3] Andreas Raphael Blass. ORDERINGS OF ULTRAFILTERS. ProQuest LLC, Ann Arbor, MI, 1970. Thesis (Ph.D.)-Harvard University.
[4] K. Kunen. Ultrafilters and independent sets. Trans. Amer. Math. Soc., 172:299-306, 1972.
[5] Borisa Kuzeljevic and Dilip Raghavan. A long chain of P-points. J. Math. Log., 18(1):1850004, 38, 2018.
[6] Dilip Raghavan and Saharon Shelah. On embedding certain partial orders into the P-points under Rudin-Keisler and Tukey reducibility. Trans. Amer. Math. Soc., 369(6):4433-4455, 2017.
[7] Dilip Raghavan and Jonathan L. Verner. Chains of P-points. Canad. Math. Bull., 62(4):856868, 2019.
[8] M. E. Rudin. Types of ultrafilters. In Topology Seminar (Wisconsin, 1965), pages 147-151. Ann. of Math. Studies, No. 60, Princeton Univ. Press, Princeton, N.J., 1966.
[9] Mary Ellen Rudin. Partial orders on the types in β. Trans. Amer. Math. Soc., 155:353-362, 1971.
[10] W. Rudin. Homogeneity problems in the theory of Čech compactifications. Duke Math. J., 23:409-419, 1956.
[11] Saharon Shelah. Proper and improper forcing. Perspectives in Mathematical Logic. SpringerVerlag, Berlin, second edition, 1998.

Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Serbia.

Email address: borisha@dmi.uns.ac.rs
URL: http://www.dmi.uns.ac.rs/~borisha
(Raghavan) Department of Mathematics, National University of Singapore, SingaPORE 119076.

Email address: dilip.raghavan@protonmail.com
$U R L:$ https://dilip-raghavan.github.io/
Department of Logic, Faculty of Arts, Charles University, Prague, Czech Republic.
Email address: jonathan.verner@ff.cuni.cz
URL: http://logic.ff.cuni.cz/people/verner

[^0]: Date: February 11, 2022.
 2010 Mathematics Subject Classification. 03E50, 03E05, 03E20, 03E35, 03E40, 54D35, 54D80.
 Key words and phrases. ultrafilter, Rudin-Keisler order, P-point.
 This paper was completed when the second author was a Fields Research Fellow. The second author thanks the Fields Institute for its kind hospitality.

