LOWER BOUNDS OF SETS OF P-POINTS

BORISA KUZELJEVIC, DILIP RAGHAVAN, AND JONATHAN L. VERNER

ABSTRACT. We show that MA, implies that each collection of P.-points of
size at most k which has a P.-point as an RK upper bound also has a P.-point
as an RK lower bound.

1. INTRODUCTION

The Rudin-Keisler (RK) ordering of ultrafilters has received considerable at-
tention since its introduction in the 1960s. For example, one can take a look at
[10, 8 @, 2, [, [6, [5], or [7]. Recall the definition of the Rudin-Keisler ordering.

Definition 1. Let U and V be ultrafilters on w. We say that U <gp V if there is
a function f in w* such that A € U if and only if f~1(A) € V for every A C w.

When U and V are ultrafilters on w and U < V, we say that U is Rudin-Keisler
(RK) reducible to V, or that U is Rudin-Keisler (RK) below V. In case U <pg V
and V <pg U both hold, then we say that U/ and V are Rudin-Keisler equivalent,
and write Y =g V.

Very early in the investigation of this ordering of ultrafilters, it was noticed
that the class of P-points is particularly interesting. Recall that an ultrafilter
on w is called a P-point if for any {a, : n <w} C U there is an a € U such that
a C* a, for every n < w, i.e. the set a\ a, is finite for every n < w. P-points
were first constructed by Rudin in [I0], under the assumption of the Continuum
Hypothesis. The class of P-points forms a downwards closed initial segment of the
class of all ultrafilters. In other words, if I/ is a P-point and V is any ultrafilter on w
with V <gg U, then V is also a P-point. Hence understanding the order-theoretic
structure of the class of P-points can provide information about the order-theoretic
structure of the class of all ultrafilters on w. One of the first systematic explorations
of the order-theoretic properties of the class of all ultrafilters, and particularly of
the class of P-points, under <z was made by Blass in [3] and [2], where he proved
many results about this ordering under the assumption of Martin’s Axiom (MA).

Let us note here that it is not possible to construct P-points in ZFC only, as
was proved by Shelah (see [I1]). Thus some set-theoretic assumption is needed
to ensure the existence of P-points. The most commonly used assumption when
studying the order-theoretic properties of the class of P-points is MA. Under MA
every ultrafilter has character ¢. Therefore, the P.-points are the most natural class
of P-points to focus on under MA. Again, the P.-points form a downwards closed
subclass of the P-points.
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Definition 2. An ultrafilter U on w is called a P,-point if for every a < ¢ and any
{a; :i < a} CU there is an a € U such that a C* a; for every i < a.

In Theorem 5 from [2], Blass proved in ZFC that if {{4,, : n < w} is a countable
collection of P-points and if there is a P-point V such that U,, <gpx V for every
n < w, then there is a P-point U such that U <gx U, for every n < w. In other
words, if a countable family of P-points has an upper bound, then it also has a
lower bound.

The main result of this paper generalizes Blass’ theorem to families of P.-points
of size less than ¢ under MA. More precisely, if MA holds and a family of P.-points
of size less than ¢ has an RK upper bound which is a P,-point, then the family also
has an RK lower bound.

Blass proved his result via some facts from [I] about non-standard models of
complete arithmetic. In order to state these results, we introduce a few notions from
[1]. The language L will consist of symbols for all relations and all functions on w.
Let N be the standard model for this language, its domain is w and each relation or
function denotes itself. Let M be an elementary extension of N, and let *R be the
relation in M denoted by R, and let * f be the function in M denoted by f. Note that
if a € M, then the set {*f(a) : f : w — w} is the domain of an elementary submodel
of M. Submodel like this, i.e. generated by a single element, will be called principal.
It is not difficult to prove that a principal submodel generated by a is isomorphic to
the ultrapower of the standard model by the ultrafilter U, = {X Cw:a € *X}. If
A, B C M, we say that they are cofinal with each other iff (Va € A)(Fb € B) a *< b
and (Vb € B)(Ja € A) b *< a. Finally, we can state Blass’ theorem.

Theorem 3 (Blass, Theorem 3 in [I]). Let M; (i < w) be countably many pairwise
cofinal submodels of M. Assume that at least one of the M; is principal. Then
Micw Mi is cofinal with each M;, in fact it contains a principal submodel cofinal
with each M;.

After proving this theorem, Blass states that it is not known to him whether
Theorem [3| can be extended to larger collections of submodels. The proof of our
main result clarifies this, namely in Theorem [I9]below we prove that under MA it is
possible to extend it to collections of models of size less than ¢ provided that there is
a principal model that is isomorphic to an ultrapower induced by a P.-point. Then
we proceed and use this result to prove Theorem [20] where we extend Theorem 5
from [2] to collections of fewer than ¢ many P.-points.

Recall that MA,, is the statement that for every partial order P which satisfies
the countable chain condition and for every collection D = {D; : i < a} of dense
subsets of P, there is a filter G C P such that G N D; # § for every i < «.

2. THE LOWER BOUND

In this section we prove the results of the paper. We begin with a purely com-
binatorial lemma about functions.

Definition 4. Let o be an ordinal, let F = {f;:i < a} C w* be a family of
functions, and let A be a subset of . We say that a set F' C w is (A4, F)-closed if
7 (fI'F) C F for each i € A.

Remark 5. Notice that if ' is (A, F)-closed, then f; ' (f/'F) = F for each i € A.
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Lemma 6. Let « be an ordinal, let F = {f; : i < a} Cw® be a family of functions,
and let A be a subset of a. Suppose that m < w, and that Fy, is (A, F )-closed subset
of w, for each k < m. Then the set F' = J,,, Fr is (A, F)-closed.

Proof. To prove that F is (A, F)-closed take any i € A, and n € f; '(f/'F). This
means that there is some n’ € F such that f;(n) = f;(n’). Let & < m be such that
n' € F,. Then n € f; '(f/'Fy). Since Fy is (A, F)-closed, n € f; ' (fI'Fy) C Fy.
Thus n € F, C F. O

Lemma 7. Let a < ¢ be an ordinal. Let F = {f; :i < a} C w* be a family of
finite-to-one functions. Suppose that for each 1,5 < a with ¢ < j, there is | < w
such that fj(n) = f;j(m) whenever f;(n) = fi(m) and n,m > 1. Then for each finite
A Ca, and each n < w, there is a finite (A, F)-closed set F' such thatn € F.

Proof. First, if A is empty, then we can take F' = {n}. So fix a non-empty finite
A C a, and n < w. For each i,j € A such that ¢ < j, by the assumption of
the lemma, take [;; < w such that for each n,m > [;;, if fi(n) = fi(m), then
fi(n) = f;(m). Since A is a finite set, there is | = max{l;; : 4,5 € A, i < j}. Sol
has the property that for every i,j € A with i < j, if f;(n) = f;(m) and n,m > I,
then f;(n) = f;(m).

Let iy = max(A). Clearly, f/'l is finite for each ¢ € A, and since each f; is
finite-to-one the set f; ' (f/'l) is finite for every i € A. Since the set A is also finite,
there is I’ < w such that (J;c, f; ' (f/'l) C I'. Again, since f;, is finite-to-one there
is I < w such that figl (f'1") € 1”. Note that by the definition of numbers I’ and
1", we have I” > 1" > 1.

Claim 8. For all k < w, if k > 1", then the set f;l( i {k}) is (A, F)-closed.

Proof. Fix k> 1" and let X = f;l( it {k}). First observe that X N1’ = (). To see
this suppose that there is m € X N{’. Since m € X, fi,(m) = fi, (k). Together
with m € ', this implies that k € f;l( i{m}) C figl(fi(’)l’) C1”. Thus k < 1"
contradicting the choice of k. Secondly, observe that if m < [ and k' € X, then
film) # fi(k') for each i € A. To see this, fix m < and k' € X, and suppose that
for some i € A, f;(m) = fi(k'). This means that ¥’ € ;" '(f/' {m}) C ;7 (fI') C U
contradicting the fact that X N1’ = 0.

Now we will prove that X is (A, F)-closed. Take any i € A and any m €
7 (fI'X). We should prove that m € X. Since m € f'(fI'X), fi(m) € fI'X
so there is some k' € X such that f;(m) = f;(k’). By the second observation,
m > [. By the first observation ¥’ > I’ > [. By the assumption of the lemma,
since m, k' > [, and f;(m) = f;(k’), it must be that f;;(m) = f;,(k’). Since
EeX= flgl( i» {k}), it must be that f;, (k) = fi, (k') = fi,(m). This means that
m € fizl( i+ {k}) = X as required. Thus f;l( it {k}) is (A, F)-closed. O

Now we inductively build a tree T' C w<% we will be using in the rest of the
proof. Fix a function ® : w — w<¥ so that (o) is infinite for each o € w<*. For
each m < w let u,,, = ®(m) (|®(m)| — 1), i.e. u,, is the last element of the sequence
®(m). Let Ty = {0,(n)} (recall that n is given in the statement of the lemma).
Suppose that m > 1, and that T, is given. If ®(m) is a leaf node of T,,, then let

Zim = (Uiea 7 {um D)\ (Uyer,, range())
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and Tryy1 = Ty U{P(m)™ (k) : k € Z,,}. If ®(m) is not a leaf node of Ty, then
Tmy1 = Ty Finally, let T'=U,, ., Trn and F = UnET range(n).

Claim 9. If 0 is a non-empty element of the tree T, then there is mg > 1 such
that o is a leaf node of Ty, that o = ®(mg) and that

Usea S {tme}) € Uyer,,. , vange(a).

Proof. Fix a non-empty o in 7. Let m; = min{k < w: o0 € T}}. Since |o| > 0, ¢
is a leaf node of T,,,. Consider the set W = {m > m; : ®(m) = o}. Since the set
{m < w: ®(m) = o} is infinite, W is non-empty subset of positive integers, so it
has a minimum. Let mg = minW. Note that if my = my, then o is a leaf node
of Thny. If mo > my, by the construction of the tree T, since ®(k) # o whenever
my1 < k < my, it must be that o is a leaf node of every T} for m; < k < mg. Thus
o is a leaf node of T,,, and ®(mg) = o. Again by the construction of the tree T,
we have Tpo1 = Tng U{o ™ (k) : k € Z,p,, }. This means that

UneTm0+1 range(n) = Zm, U UneTmU range(n).
Finally, the definition of Z,,, implies that

UiGA fifl(fi// {umo}) g Zmo U UnETmO range(n) = UneTmo+1 fange(n%
as required. O
Claim 10. The set F' is (A, F)-closed, and contains n as an element.

Proof. Since (n) € Ty, n € F. To see that F is (A, F)-closed, take any j € A, and
any w € fj_1 (fj’»’F). We have to show that w € F. Since w € fj_1 (f]’/F), there is
m € F such that f;(w) = f;j(m). Since m € F = J, cprange(n), there is o in T
such that o(k) = m for some k < w. Consider ¢ [ (k+1). Since o [ (k+1) € T,
by Claim [J] there is mg > 1 such that ®(mo) = o | (k+1), that o | (k+1) is a leaf
node of T, and that (note that u,,, = o(k) = m)

Uiea J7 U7 {mY) € Uyer,, ., range(n) € U, e range(n) = F.
Sow € f;l(fj’»' {m}) C F as required. O
Claim 11. The tree T is finite.

Proof. First we prove that each level of T"is finite. For k < w let T(3) be the k-th
level of T', i.e. Ty = {0 € T : |o| = k}. Clearly T(g) and T,y are finite. So suppose
that T{yy is finite. Let T(3) = {00,02,...,0+} be enumeration of that level. For
s < t let mg be such that ®(m,) = o4 and that o, is a leaf node of T, . Note
that by the construction of the tree T" all nodes at the level T 1) are of the form
o (r) where s <t and r € Z,,,_. Since the set A is finite and all functions f; (for
i € A) are finite-to-one, Z,,, is finite for every s < ¢t. Thus there are only finitely
many nodes of the form o~ (r) where s <t and r € Z,,,, hence the level T{;1)
must also be finite. This proves by induction that each level of T is finite.
Suppose now that T is infinite. By Konig’s lemma, since each level of T is finite,
T has an infinite branch b. By definition of the sets Z,, (m < w), each node of T is
1-1 function, so b is also an injection from w into w. In particular, the range of b is
infinite. Let k = min{m < w : b(m) > 1"}, and let c = b | (k+1). Clearly, o € T
By Claim [9] there is mg < w such that o is a leaf node of T,,, that ®(mg) = o,
and that ;. , f; ' (f/' {o(k)}) C UneTm,O+1 range(n). Since o(k) = b(k) > 1", Claim
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implies that the set Y = figl( w{o(k)}) is (A, F)-closed. By the construction
Tingt1 = TimoU{c™ (m) : m € Z,,,}. Since bis an infinite branch, there is m’ € Z,,,
such that b(k +1) = m/. Now m/ € Zn, € U;ea fi ' (f/ {o(k)}), the fact that
o(k) €Y, and the fact that Y is (A, F)-closed, together imply that

m' € Uiea 71 (fH{o(k)}) S Usea £ (FY) C Y.

Consider the node 7 = ¢~ (m/) = b | (k4 2). Since b is an infinite branch, it
must be that 77 (b(k + 2)) € T. By Claim|[J] there is m; such that 7 is a leaf node
of T,,, and that ®(m,) = 7. Clearly, m1 > mo and 77 (b(k + 2)) € T, +1- Recall
that we have already shown that | J; 4 N o(k)}) € UneTnzo+1 range(n). Thus
Y C UneTrrL0+1 range(n). This, together with the fact that 7(k+ 1) =m’ € Y, that
Y is (A, F)-closed, and my > mg jointly imply that

Ui 572 {r(k+ DY) €Y € Uy, 4o range(n) € Uyer, range().

This means that
b(k +2) € Zn, = Uiea ST (I {r(k + D)\ U,er,,, range(n) =0,

which is clearly impossible. Thus, T is not infinite. O

To finish the proof, note that by Claim[10]the set F is (A, F)-closed and contains
n as an element, while by Claim [TI] the set F' is finite. So F satisfies all the
requirements of the conclusion of the lemma. ([l

The following lemma is the main application of Martin’s Axiom. Again, it does
not directly deal with ultrafilters, but with collections of functions.

Lemma 12 (MA,). Let F = {f; :i < a} C w¥ be a family of finite-to-one func-
tions. Suppose that for each non-empty finite set A C o, and each n < w, there is a
finite (A, F)-closed set F' containing n as an element. Then there is a finite-to-one
function h € w*, and a collection {e; : i < a} C w® such that for each i < «, there
is | < w such that h(n) = e;(fi(n)) whenever n > 1.

Proof. We will apply MA,,, so we first define the poset we will be using. Let P be
the set of all p = (g, hy,) such that
T hp : Np — w where N, is a finite subset of w,
(1) g, = (g’ :i € Ap) where A, € [o]<N, and g} : f/'N, — w for each i € A,
(IIT) N, is (Ap,}") -closed.
Define the ordering relation < on P as follows: ¢ < p iff

(IV) N, C N,,

(V) 4, C Aq,

(VD) hy [ N, = hy,

(VII) ¢ f”N = g} for each i € A,

(VIII) h ( ) > hg(m ) whenever m € N, and n € Ny \ Np,
(IX) hg(n) = gi(fi(n)) for each n € Ny \ N, and i € A,.

It is clear that (P, <) is a partially ordered set.

Claim 13. Letp € P, ng < w, and suppose that A C o is finite such that A, C A.
Then there is ¢ < p such that no C Ny and that Ny is (A, F)-closed.
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Proof. Applying the assumption of the lemma to the finite set A, and each k €
ng U Np,, we obtain sets Fj (k € ng UN,) such that k € F), and fi_l(fi”Fk) C Fy,
for each k € ng U N, and i € A. Let Ny = UkenouN,, Fi, let Ay = A,, and let
t = max {h,(k) +1: k € Np}. Finally, define

~|{ hp(n), ifn e N, i _ | gp(R), if ke fI'N,
frg(n) = { titne N\ N, V90 = 0 ke o\ g,

Let g4 denote the sequence <gf1 1t E Aq>. Clearly ng € Ny. By Lemma |§|, Ny is
(A, F)-closed. We still have to show that ¢ = (gq,hq) € P and ¢ < p. Since
h, is defined on N, and N, finite, since 4, = A, and g’ is defined on f/'N, for
i € A, and since N, is (A4, F)-closed, conditions IIT)| are satisfied by gq. Thus
q < p. Next we show ¢ < p. Conditions |(IV are obviously satisfied by the
definition of ¢. Since hq(n) =t > h,(k) = hq(k) for each n € N, \ N, and k € N,
conditions is also satisfied. So we still have to check Take any i € 4,
and n € Ny \ Np. By the definition of hy, we have hy(n) =t. Once we prove that
filn) € fI/Ng\ f/'N,, we will be done because in that case the definition of g;
implies that g,(fi(n)) = t as required. So suppose the contrary, that f;(n) € f/'N,.
Since p is a condition and A, = A,, it must be that n € fi_l(fi”Np) C N,. But this
contradicts the choice of n. Thus condition is also satisfied and ¢ < p. O

for i € A,.

Claim 14. Let p € P, and jo < a.. Then there is ¢ < p such that jo € Aq.

Proof. Let A, = A, U {jo}. Applying Claim to Ay and n = 0, we obtain a
condition p’ < p such that N, is (A4, F)-closed. Let N, = N/, hy = hy, and
g, = gi, for i € A,. Define gJo(k) = 0 for each k € f' Ny, and let g, denote the
sequence <gf1 11 € Aq>. Since jo € Aq, to finish the proof of the claim it is enough
to show that ¢ = (gq, hg) € P, and that ¢ < p’. Conditions are clear from
the definition of ¢ because p € Pand Ny = Ny, hy = hy, g° : il Ny = w, and
gy = g, for i € Ay \ {jo}. Conditions |(IV){(VII)|are clear by the definition of h,
and gq. Conditions and are vacuously true because N, = N,. Thus
the claim is proved. O

Claim 15. If p,q € P are such that hy, = hq and gzi, = gz forie A,NA,, then p
and q are compatible in P.

Proof. We proceed to define 7 < p,q. Let N = N, = N,. Let
t =max{h,(n)+1:n € N}.

Applying the assumption of the lemma to A = A,UA4,, and each k € N, we obtain
(A, F)-closed sets Fy, (k € N). By Claim@ the set N, = Uycn Fi is (A, F)-closed.
Let A, = A, and define
i(k), if i € A, and k € fI'N
hp(”)y ifneN ) gp( ) 1 l p an f!
hy(n) = and g,.(k) = g;(k), ifie A; and k € fIN

t, if ne N, \ N
ifn € N t, ifke fIN,\ fIN

fori € A,.. Let g, denote the sequence < gliie Ar>. As we have already mentioned,
r = {h,, g,) satisfies and it clear that |(I)| and |(II)| are also true for r. To see
that » < p and r < g note that conditions re clearly satisfied. We will
check that r and p satisfy also. Take any n € N, \ N and i € A,. By the
definition of h,, h,(n) = t. By the definition of ¢, if fi(n) € f/'N, \ f/'N, then
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gt(fi(n)) =t = h.(n). So suppose this is not the case, i.e. that fi(n) € f/'N.
This would mean that n € f; '(f/N), which is impossible because n ¢ N and N
is (A, F)-closed because p € P. Thus we proved r < p. In the same way it can be
shown that r < q. O

Claim 16. The poset P satisfies the countable chain condition.

Proof. Let (pe : £ <wi) be an uncountable set of conditions in P. Since h,, €
[w X w]<¥ for each & < wy, there is an uncountable set T' C wq, and h € [w X w]|<¥
such that h,, = h for each £ € . Consider the set <Aps 1€ e F>. By the A-
system lemma, there is an uncountable set A C I'; and a finite set A C « such that
Ap. N Ay, = Afor each £, € A. Since A is uncountable and gzi,g € [w X w]<¥ for
each i € A and £ € A, there is an uncountable set © C A and g; for each i € A,
such that gl’;s = g; for each £ € ©® and i € A. Let £ and n in © be arbitrary. By
Claim 15 p¢ and p, are compatible in P. O

Consider sets D; = {peP:je€ Ay} for j € a, and D, = {p € P: m € Np} for
m € w. By Claim [14] and Claim these sets are dense in P. By MA,, there is a
filter G C P intersecting all these sets. Clearly, h = J, g hp and e; = g gy, for
each i € a, are functions from w into w. We will prove that these functions satisfy
the conclusion of the lemma. First we will prove that A is finite-to-one. Take any
m € w and let k = h(m). By the definition of h, there is p € G such that h,(m) = k.
Suppose that A~ ({k}) € N,. This means that there is an integer mo ¢ N, such
that h(mo) = k. Let ¢ € G be such that hy(mg) = k. Now for a common extension
r € G of both p and ¢, it must be that h,.(mg) = h,(m), contradicting the fact that
r < p, in particular condition is violated in this case. We still have to show
that for each i € «, there is | € w such that h(n) = e;(f;(n)) whenever n > I. So
take i € a. By Claim there is p € G such that i € A,. Let | = max(N,) + 1.
We will prove that [ is as required. Take any n > [. By Claim there is ¢ € G
such that n € ¢. Let r € G be a common extension of p and ¢. Since n ¢ N,
and 7 < p, it must be that h,.(n) = g.(f;(n)), according to condition Hence
h(n) = e;(fi(n)), as required. O

Before we move to the next lemma let us recall that if ¢ is any element of the
model M, then U = {X Cw:c € *X} is ultrafilter on w.

Lemma 17. Let o < ¢ be an ordinal. Let (M; : i < a) be a C-decreasing sequence
of principal submodels of M, i.e. each M; is generated by a single element a; and
M; C M; wheneveri < j < . Let each M; (i < ) be cofinal with My. Suppose that
Uy ={X Cw:ag € *X} is a P.-point. Then there is a family {f; : i < a} Cw* of
finite-to-one functions such that ™ f;(ag) = a; for i < a, and that fori,j < a with
i < j, there isl < w such that f;(n) = f;(m) whenever f;(n) = fi(m) and m,n > 1.

Proof. Let i < j < a. Since M; C M;, and M; is generated by a;, there is a
function ¢;; : w — w such that *¢;;(a;) = a;. Since M; is cofinal with M;, by
Lemma in [I, page 104], if ¢ < j < «, then there is a set Y;; C w such that
a; € *Yz-j and that ¢;; [ Yj; is finite-to-one. For ¢ < a let g; : w — w be
defined as follows: if n < w, then for n ¢ Yy, let g;(n) = n, while for n € Yy,
let g;(n) = @o;(n). Note that *g;(ag) = a;, and that g; is finite-to-one. The latter
fact follows since g; is one-to-one on w \ Yp; and on Yy, it is equal to g, which
is finite-to-one on Yp;. Now by the second part of Lemma on page 104 in [I], for
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i < j < a there is a finite-to-one function m;; : w — w such that *¢;;(a;) = *m;(a;).
Note that this means that *g;(ag) = *m;(*gi(ag)) for i < j < a, i.e. the set
Xij = {n€ew:gj(n)=mj(g:(n))} is in Uy. Since a < ¢ and Uy is a Pe-point,
there is a set X C w such that X € Uy and that the set X \ Xi; is finite whenever
i < j < . Consider the sets W; = g/ X for i < a. Foreachi < a, let W; = WPUW}
where W2 N W} = () and both W and W} are infinite. Fix i < o for a moment.
We know that

X = (X 0 Uewn 97 (0) U (X 0Upes 97 ()

Since X € Uy and Uy is an ultrafilter, we have that either XﬂUneWp g, ({n}) € Uy
or X N Unewil g; *({n}) € Up. Suppose that Y = X N UneW{’ g7 ({n}) € Uy
(the other case would be handled similarly). Note that by the definition of Uy we
know that ap € *Y. Define f; : w — w as follows: for n € Y let f;(n) = g;(n),
while for n ¢ Y let fi(n) = Wl (n). Now that functions f; are defined, unfix i.
We will prove that F = {f; :i < a} has all the properties from the conclusion
of the lemma. Since each g; (i < «) is finite-to-one, it is clear that f; is also
finite-to-one. Again, this is because g; is finite-to-one on w, and outside of Y the
function f; is defined so that it is one-to-one. Since *g;(ag) = a; and ag € *Y,
it must be that *f;(ag) = a; for each i < a. Now we prove the last property.
Suppose that ¢ < j < «. Since the set X \ Xj; is finite and ¥ C X, there is
| < wso that Y\ I C X;;. Take m,n > [, and suppose that f;(n) = fi(m).
There are three cases. First, n,m ¢ Y. In this case, f;(n) = f;(m) implies that
Wl(n) = W}l(m), i.e. n=m. Hence f;(n) = fj(m). Second, m € Y and n ¢ Y.
Since m € Y, gi(m) = fi(m) = fi(n) so fi(n) € W?. On the other hand, since
n ¢Y, filn) = Wl(n). Thus we have f;(n) € W2 N W} which is in contradiction
with the fact that W2 N W} = 0. So this case is not possible. Third, m,n € Y.
In this case f;(n) = f;(m) implies that ¢;(n) = g;(m). Since m,n € Y\ 1 C X;;
it must be that f;(n) = g;(n) = mi;(gi(n) = mig(ga(m) = g;(m) = fy(m) as
required. Thus the lemma is proved. [

Lemma 18 (MA,). Let (M, :i < a) be a C-decreasing sequence of principal, and
pairwise cofinal submodels of M. Suppose that Uy = {X Cw:ag € "X} is a P,-
point, where ag generates My. Then there is an element ¢ € ,_., M; which gener-
ates a principal model cofinal with all M; (i < ).

<o

Proof. Let a; for i < a be an element generating M;. By Lemma [I7] there is a
family F = {f; : i < a} C w® of finite-to-one functions such that * f;(ag) = a; for
i < o, and that for ¢,j < a with ¢ < j, there is | < w such that f;(n) = f;(m)
whenever f;(n) = fi;(m) and m,n > l. By Lemma [7| for each finite A C «, and
each n < w, there is a finite (A, F)-closed set containing n as an element. Now
using MA,,, Lemma [T2) implies that there is a finite-to-one function h € w*, and
a collection {e; : ¢ < a} C w® such that for each ¢ < « there is I < w such that
h(n) = e;(fi(n)) whenever n > I.

Let ¢ = *h(ag), and let M, be a model generated by c¢. By Lemma in [I]
pp. 104], M, is cofinal with M,. Thus M, is a principal model cofinal with all
M; (i < ). To finish the proof we still have to show that ¢ € (., M;. Fix
i < a. Let I < w be such that h(n) = e;(fi(n)) for n > 1. If ap < I, then
M; = M for each j < a so the conclusion is trivially satisfied. So ag *>!. Since the
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sentence (Vn)[n > 1= h(n) = e;(fi(n))] is true in M, it is also true in My. Thus
c="h(ag) =*e;("fi(ap)) = *e;(a;) € M; as required. O

Theorem 19 (MA,). Let M; (i < a) be a collection of pairwise cofinal submodels
of M. Suppose that My is principal, and that Uy = {X Cw:ap € *X} is a P,-
point, where ag generates My. Then (,_., M; contains a principal submodel cofinal
with each M;.

1<

Proof. We define models M for i < « as follows. My = My. If M/ is defined,
then M/, is a principal submodel of M] N M;; cofinal with M; and M;, ;. This
model exists by Corollary in [I pp. 105]. If i < « is limit, then the model M is a
principal model cofinal with all M} (j < ). This model exists by Lemma Now
the model M, is as required in the conclusion of the lemma.

Theorem 20 (MA,,). Suppose that {U; : i < a} is a collection of P-points. Suppose
moreover that Uy is a P.-point such that U; <rg Uy for each i < a. Then there is
a P-point U such that U <grg U; for each i.

Proof. By Theorem 3 of [2], w*/U; is isomorphic to an elementary submodel M;
of w¥/Uy. Since all U; (i < «) are non-principal, each model M; (i < «) is non-
standard. By Corollary in [2, pp. 150], each M; (i < «) is cofinal with My. This
implies that all the models M; (i < «) are pairwise cofinal with each other. By
Theorem [19| there is a principal model M’ which is a subset of each M; (i < «)
and is cofinal with M. Since M’ is principal, there is an element a generating M’.
Let  ={X Cw:a € *X}. Then w¥/U = M'. Since M’ is cofinal with My, M’ is
not the standard model. Thus I/ is non-principal. Now M’ < M; (i < «) implies
that U <pr U; (again using Theorem 3 of [2]). Since U is Rudin-Keisler below a
P-point, U is also a P-point. O

Corollary 21 (MA). If a collection of fewer than ¢ many P.-points has an upper
bound which is a P.-point, then it has a lower bound.

Corollary 22 (MA). The class of P.-points is downwards < c-closed under <gg .
In other words, if a < ¢ and (U; : i < «) is a sequence of P.-points such that
Vi < j < aUy <gpg U], then there is a P.-point U such that Vi < o [U <pg U;].
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