
COMPLEXITY OF INDEX SETS OF DESCRIPTIVE SET-THEORETIC

NOTIONS

REESE JOHNSTON AND DILIP RAGHAVAN

Abstract. Descriptive set theory and computability theory are closely-related fields

of logic; both are oriented around a notion of descriptive complexity. However, the two

fields typically consider objects of very different sizes; computability theory is principally

concerned with subsets of the naturals, while descriptive set theory is interested primarily

in subsets of the reals. In this paper, we apply a generalization of computability theory,

admissible recursion theory, to consider the relative complexity of notions that are of

interest in descriptive set theory. In particular, we examine the perfect set property,

determinacy, the Baire property, and Lebesgue measurability. We demonstrate that there

is a separation of descriptive complexity between the perfect set property and determinacy

for analytic sets of reals; we also show that the Baire property and Lebesgue measurability

are both equivalent in complexity to the property of simply being a Borel set, for Σ1
2 sets

of reals.

§1. Uncountable Computability. Computability is often used to study
the relationships between properties, to determine whether one property is more
“complex” than another; the general strategy is to establish that the set of indices
for structures with one property is reducible (Turing-reducible, m-reducible, 1-
reducible, or any of a number of other notions of reducibility) to the set of indices
for structures with the other property, thereby showing that the latter property is
at least as complex as the former. This technique has met considerable success
in topics such as group theory and graph theory, settings in which countable
structures are of key interest.
In descriptive set theory, however, the properties of interest are of sets of

reals rather than sets of natural numbers. Because classical computability is
predicated on ω, it is difficult to apply its techniques to descriptive set-theoretic
notions. For this reason, we turn to α-recursion, a notion of computability built
by replacing ω with a larger ordinal α.

For a full treatment of α-recursion in the general case, see [1]; in this document,
we will be largely concerned with ω1-recursion in particular. Further details on
ω1-recursion may be found in [5]. To ensure that ω1-recursion will be sufficient
to consider the objects of interest, we will operate under the premise that V = L.
The fundamental definitions of ω1-recursion will be provided at the begin-

ning of the next section. Over the course of this paper, however, we will rely
on an uncountable analogue of the Church-Turing Thesis: anything intuitively
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computable by a machine capable of manipulating countably infinite objects in
memory and running for any countable number of stages is ω1-computable.

The work in this paper lies at the intersection of uncountable computability
theory and descriptive set theory. Classical descriptive set theory studies the
topological complexity of subsets of the set of real numbers R in terms of their
place in the Borel and projective hierarchies. Under the axiom of constructibility,
every subset of R, and more generally, any collection of Borel or projective subsets
of R can be coded as a subset of Lω1 or of ω1. It is then natural to investigate
the connection between topological or descriptive complexity and algorithmic
complexity in the context of the theory of computability on Lω1

outlined above.
In this paper, the perfect set property, determinacy, the Baire property, and

Lebesgue measurability of some point classes in the projective hierarchy will be
investigated from the perspective of uncountable computability theory. Recall
that a set A of real numbers is called analytic if it is the continuous image of
some Borel subset of R. It is a classical theorem that every uncountable analytic
set contains a perfect set, which is a non-empty closed set with no isolated points.
However under the axiom of constructibility, this fails to hold for complements
of analytic sets, which are called co-analytic sets. In fact, a well-known result
of Solovay (see Kanamori [6]) says that all uncountable co-analytic sets contain

a perfect set if and only if for every real a, ω
L[a]
1 < ω1. In particular, if every

uncountable co-analytic set contains a perfect set, then ω1 is an inaccessible
cardinal in L. We first investigate the algorithmic complexity of the (code for
the) collection of all uncountable co-analytic sets of real numbers that contain
perfect sets. It is shown that this set is Σ0

1-complete.
Another central theme in classical descriptive set theory is the determinacy of

two player games of perfect information where the payoff set is Borel or projec-
tive. For any set A of real numbers, one can define a two player game ⅁(A) as
follows. Two players, call them In and Out, take turns choosing natural num-
bers, with the convention that In makes the initial move. At the end of play In
and Out have jointly constructed a sequence ⟨an : n ∈ ω⟩ of natural numbers,
where a2n has been played by In and a2n+1 was chosen by Out in response, for
every n ∈ ω. Now this sequence ⟨an : n ∈ ω⟩ codes a real number and In wins
this particular play of the game ⅁(A) if and only if the real number coded by
⟨an : n ∈ ω⟩ belongs to the set A. The set A is said to be determined if either
In or Out has a winning strategy in ⅁(A). A major theorem is that every Borel
subset of R is determined (see Kechris [8]). However under the axiom of con-
structibility, not all analytic sets are determined. The collection of all (codes for)
analytic subsets of R that are determined under the axiom of constructibility is
shown to be Σ0

2-complete in Theorem 2.10.
These two results nicely tie–in with some well–known results from descriptive

set theory. The statement “every uncountable co-analytic subset of R contains
a perfect set” and the statement “every analytic subset of R is determined” are
both consistent relative to large cardinals, and indeed they are both consequences
of the existence of large cardinals (see [6]). However the consistency strength of
the second of these statements is significantly greater than that of the first. The
statement that every uncountable co-analytic subset of R contains a perfect set is
known to be equiconsistent with the existence of a strongly inaccessible cardinal,
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while the statement that every analytic subset of R is determined requires at least
the consistency of the much more powerful 0♯. Extrapolating from this to the
context of the axiom of constructibility, one might expect the collection of all
analytic subsets of R that are determined to be algorithmically strictly more
complicated than the collection of all uncountable co-analytic subsets of R that
contain perfect sets. Our results bear out this intuition.
The Baire property and Lebesgue measurability of Σ1

2 sets is considered next.
Here the concurrence with classical results in set theory is less straightforward.
It is shown in Theorem 2.13 that the collection of all (codes for) Σ1

2 sets that
have Baire property is Turing equivalent to the collection of all (codes for) Σ1

2

sets that are Lebesgue measurable. In terms of consistency strength, the state-
ment that all Σ1

2 sets have the Baire property and the statement that all Σ1
2 sets

are Lebesgue measurable are equally weak. They are both equiconsistent with
ZFC – Martin and Solovay showed that they are both consequences of MAℵ1 .
However an asymmetry between the Baire property and Lebesgue measurability
already appears at the level of Σ1

2 sets: Raisonnier and Stern showed that if all
Σ1

2 sets are measurable, then all Σ1
2 sets have the Baire property, while Judah

produced a model of ZFC where all Σ1
2 sets have the Baire property and yet

there is even a ∆1
2 set that fails to be Lebesgue measurable (see [13] for more

details). It is well-known that a major asymmetry in consistency strength ap-
pears one level higher at Σ1

3 sets. The statement that all Σ1
3 sets have the Baire

property is equiconsistent with ZFC, while the statement that all Σ1
3 sets are

measurable requires the consistency of a strongly inaccessible cardinal. Hence it
would be of interest to investigate whether an asymmetry in Turing complexity
also appears between the collection of all Σ1

3 sets that have the Baire property
and the collection of all Σ1

3 sets that are measurable.

§2. Index Sets of Descriptive Set-Theoretic Notions. The following
definitions are essentially due to Kripke [10].

Definition 2.1. A set is hereditarily countable if it is countable and all of
its elements are hereditarily countable. Note that, under the assumption V = L,
Lω1 is precisely the set of hereditarily countable sets.
We develop the Lévy hierarchy of formulas as usual: a formula φ is Σ0

1 if it
has the form ∃xψ, where ψ is a formula with only bounded quantification. A
formula φ is Π0

n if it is the negation of a Σ0
n formula, and is Σ0

n+1 if it has the
form ∃xψ, where ψ is a Σ0

n formula.
A subset X ⊂ Lω1

is said to be ω1-Σ
0
n if there exists a Σ0

n formula φ and a
parameter c ∈ Lω1 so that for each x ∈ Lω1 , x ∈ X iff Lω1 |= φ(x, c). X is
ω1-computable if both it and its complement are ω1-Σ

0
1.

As usual, we say that a function is ω1-computable if its graph is ω1-Σ
0
1.

For ease of notation, we will use “computable” in place of “ω1-computable”
(and likewise Σ0

n for ω1-Σ
0
n) except when ambiguity would arise. In general, if a

notion is intended in the classical sense, it will be referred to as “ω-computable”
or “in the standard setting”. Boldface symbols are intended in the descriptive
set-theoretic sense, detailed below.
We begin with a few well-known elementary facts regarding ω1-recursion.
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Fact 2.2. (i) The map α → Lα taking each countable ordinal to the corre-
sponding level of the constructible hierarchy is a computable function.

(ii) The canonical well-ordering <L, restricted to Lω1
, is a computable relation,

which orders Lω1
with order-type ω1.

Further, the traditional definitions of many key topics of classical computabil-
ity carry forward in a natural way to the uncountable setting. The example
which is relevant to this paper is the definition of ∅′.

Definition 2.3. Let ∅′ be the set of (indices for) true Σ0
1 formulas with pa-

rameters in Lω1 .

With these definitions in place, we now turn our attention to descriptive set
theory.

Definition 2.4. A code for a Π1
1 set is a tree T ⊆ (ω × ω)<ω; the set coded

by a tree T is X = {g ∈ ωω | (∀f ∈ ωω)(∃n)⟨f ↾ n, g ↾ n⟩ /∈ T}.
Let CΠ be the set of codes for uncountable, co-uncountable Π1

1 sets of reals.

Proposition 2.5. Π1
1 sets (equivalently, Σ1

1 sets) are ω1-computable.

Proof. Given a tree T coding a Π1
1 set X, g ∈ X iff g ∈ ωω and (∀f ∈

ωω)(∃n ∈ ω)⟨f ↾ n, g ↾ n⟩ /∈ T . This is a Π0
1 property by inspection – note

that, while the quantifier ∃n ∈ ω would be considered an unbounded quantifier
within the context of classical computability, ω is itself an ω1-finite object, and
the quantifier is hence bounded from the standpoint of ω1-computability.
On the other hand, it is also the case that g ∈ X iff there exists an map

F from the subtree {⟨σ, τ⟩ ∈ T | τ ≺ g} into the countable ordinals so that
F (⟨σ1, τ1⟩) < F (⟨σ2, τ2⟩) whenever σ1 ≽ σ2 and τ1 ≽ τ2. Because this map, if it
exists, is hereditarily countable and hence a member of Lω1 , the statement that
such a map exists is Σ0

1. ⊣

Proposition 2.6. The set of codes for Π1
1 sets having the perfect set property

is Σ0
1.

Proof. X has the perfect set property iff

(∃f : 2<ω → ω<ω)(∀Y ∈ 2ω)f [Y ] ∈ X

Because X is Π1
1, the statement f [Y ] ∈ X is Π1

1[r] for some real r. So the
statement

(∀Y ∈ 2ω)f [Y ] ∈ X

is also a Π1
1[r] statement. By Proposition 2.5, it is computable; so the full

formula is Σ0
1. ⊣

Definition 2.7. For X ⊆ ωω, the Gale-Stewart game GX is the following
two-player game.
Players I and II alternate turns playing natural numbers, I going first. In this

manner, they construct an infinite sequence x of natural numbers. Player I wins
if x ∈ X; Player II wins if x /∈ X.
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A strategy is a function f : ω<ω → ω. A player may play according to f
by playing on each turn f(σ), where σ is the sequence of numbers chosen at
previous turns. The strategy f is a winning strategy for a given player if playing
according to that strategy always results in a win for that player, regardless of
the other player’s moves.
A set X is determined if the game GX has a winning strategy for either player.
For more information on Gale-Stewart games, see [6], [8], or [12].

It is well-known that all Borel sets are determined (see Kechris [8]). However,
not all Σ1

1 and Π1
1 sets in L are determined.

Proposition 2.8. The set of codes for determined Π1
1 sets is Σ0

2.

Proof. X is determined if there is a winning strategy:

X is determined ⇐⇒ ∃f∀g(the play resulting from f and g is in X)

Since membership in X is computable, this is Σ0
2. ⊣

Theorem 2.9. (V = L) The set of codes for Π1
1 sets having the perfect set

property is Σ0
1-complete. In fact, ∅′ ≡m (P,CΠ \ P ), where P is the set of codes

in CΠ coding a Π1
1 set that contains a perfect set.

Proof. For the other direction, we use a construction used extensively in [11]
to construct a code for an uncountable, co-uncountable Π1

1 set which contains
a perfect set iff a given Σ0

1 formula is true. The basic idea of this method for
constructing Π1

1 sets with special combinatorial properties under the axiom of
constructibility goes back to the work of Erdős, Kunen, and Mauldin [3], and it
has found several other applications recently, for instance in [7] and [4].
Say that Lα is point-definable iff the Skolem-hull of (Lα,∈) under the typical

Skolem functions for V = L is isomorphic to (Lα,∈). It is known that there
are unboundedly many point-definable Lα for α < ωL

1 ; see [2] for details. Let
⟨Lβs⟩s<ω1 enumerate (in order) the point-definable Lβ .
Fix a Σ0

1 formula ∃xφ(x) for φ ∈ ∆0
0. We construct a set Sφ together with an

auxiliary sequence x = ⟨xs⟩ as follows:

Stage 0: Let x be the empty sequence, and Sφ the empty set.

Stage s > 0: Suppose Lβs
|= ¬∃xφ(x). Let Ps be the <L-least code in Lβs

for
a perfect set P so that Lβs

|= ¬(∃y ∈ P, t < s)y = xt, and put xs the <L-least
such y. Let zs be the <L-least z ∈ Lβs+ω so that z ̸= xt for t ≤ s and there is a
presentation of Lβs

recursive in z, and include zs in Sφ.
If Lβs |= ∃xφ(x), then put z in Sφ for every z so that z ̸= xt for t ≤ s and z

computes some presentation of Lβs , and halt construction.

Because Lβs
is point-definable and L has Skolem functions, there is a presen-

tation of Lβs
computable in the first-order theory of Lβs

. Because the first-order
theory appears shortly afterward in the constructible hierarchy, this presentation
appears by Lβs+n for a finite n (the precise value of n is unimportant). As a
result, Lβs+ω is a sufficiently high level of the constructible hierarchy to run the
construction up through stage s; there is certainly a z ∈ Lβs+ω which computes
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a presentation of Lβs , and determining whether a given z does requires at most
three additional levels of definability (one to quantify over sets computable from
z, one to determine whether the necessary Skolem functions are realized in a
given candidate presentation, and one to determine whether all elements of the
candidate are part of the Skolem hull).
Since Lβs+ω is sufficient to perform this construction through stage s, z ∈ Sφ

iff z = zs for some s iff Lβs+ω |= z = zs for some s. But this holds only if
z computes some presentation of Lβs , in which case there is a presentation of
Lβs+ω hyperarithmetic in z. So z ∈ Sφ iff (∃x ∈ ∆1

1(z))x is a presentation of
some Lα ∧ Lα |= z ∈ Sφ. Determining whether a given x is a presentation of
some Lα is a Π1

1 task, because it requires checking for well-foundedness. By a
result of Kleene (Kleene [9]), the existential quantifier over ∆1

1(z) does not add
further complexity; therefore, Sφ is Π1

1.
It is evident that Sφ contains a perfect set iff Lω1

|= ∃xφ(x); if no witness is
ever found, then at every step we place one member of the next perfect set into
our sequence x, to be withheld from Sφ. If a witness is eventually found, then
the entirety of {z | z ≥T Lβs} (minus a countable set) is immediately included
in Sφ; this is Borel and not countable, and therefore contains a perfect set.
It is also evident that Sφ is never countable or co-countable. If no witness to

φ is ever found, then one real is added to Sφ at every stage and one withheld. If
a witness is eventually found, then Sφ is only countably different from {z | z ≥T

Lβs
} for the appropriate s, which is clearly an uncountable and co-uncountable

set.
Thus the function f taking φ to this canonical code for Sφ is the desired

m-reduction. ⊣

Theorem 2.10. (V = L) The set of codes for determined Π1
1 sets is Σ0

2-
complete. In fact, S ≡m (D,CΠ\D), where S is the set of true Σ0

2(Lω1
) formulas

and D is the set of codes in CΠ for determined Π1
1 sets.

Proof. To show the other direction, we perform a construction similar to
before. Fix a Σ0

2(Lω1) formula φ = (∃x)(∀y)ψ(x, y). Again we construct a set
of reals Sφ and an auxiliary sequence of reals ⟨xs⟩; we will ensure that Sφ is Π1

1

by way of an index uniform in φ. Again let ⟨Lβs
⟩s<ω1

enumerate the countable
ordinals β so that Lβ is point-definable and β = α+ ω for some α.

Stage 0: Take Sφ = ∅, ⟨xs⟩ the empty sequence.

Stage s > 0: If Lβs
|= (∃y)¬ψ(x, y) for the first value of x for which this was

not true at a previous stage, then let (f, i) be the <L-least pair of a strategy in
Lβs

and a player (I or II) that has not yet been considered, if any exists. Fix
the <L-least two reals z1, z2 so that the following holds:

(i) z1 ̸= z2;
(ii) Each is the result of the player i playing according to f ;
(iii) Neither are in Sφ or the sequence ⟨xt⟩t<s;
(iv) z2 ∈ Lβs

; and
(v) z1 computes a presentation of Lβs .

Observe that such a pair z1, z2 does exist; this is because the opposing player
may play any sequence of naturals, regardless of the restrictions on the player i.
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Since at any countable stage both Sφ and ⟨xt⟩t<s consist only of reals present in
Lβt for t < s, to satisfy condition (iii) it is sufficient that the sequence of plays
by the opposing player be a real not in any such Lβt

. As noted in the previous
proof, since Lβt

is point-definable there is a presentation of Lβt
in Lβt+ω (in

fact, there is a presentation of Lβt+1, which cannot be in Lβt
). By the choice

of the sequence, βt ≥ supu<t βu + ω for all t, and therefore Lβs includes reals
not in any previous Lβt . By taking one of these reals as the opposing plays, we
have a z2 ∈ Lβs

satisfying (ii) through (iv). By taking a sufficiently complicated
presentation of Lβs

(e.g., one found only in Lβs+3) and using this for the opposing
plays, we obtain a z1 satisfying (i) through (v).
Put z1 ∈ Sφ and set xs = z2. Note that, as long as the members of ⟨xs⟩ are

withheld from Sφ, f cannot be a winning strategy for either player.
If, on the other hand, Lβs

|= (∀y)ψ(x, y) for the first value of x for which this
was true until this stage, then let zs be the <L-least real so that zs ̸= xt for t < s
and zs is a presentation of Lβs

. Put zs ∈ Sφ. This completes the construction.

Note that Sφ is Π1
1 for the same reason as before: Lβs+ω is enough to run the

construction up through stage s.
If we fall in the first case only boundedly often, then Sφ is (up to a countable

set) a set of reals coding well-founded relations; there is then clearly a strategy
that avoids Sφ, and Sφ is therefore determined. If we visit the first case un-
boundedly often, on the other hand, then each possible strategy is eventually
encountered and diagonalized against, so Sφ is not determined. And clearly we
visit the first case unboundedly often if and only if Lω1

|= ¬φ. This completes
the proof. ⊣

Definition 2.11. A Σ1
2 code or a code for a Σ1

2 set is a pair (φ(x, b), a) where
φ(x, b) is a formula of the form (∃y ∈ ωω)(∀z ∈ ωω)ψ(x, y, z, b) and a ∈ ωω. The
set X coded by a Σ1

2 code (φ(x, b), a) is {x ∈ ωω | φ(x, a)}.
Definition 2.12. Let Borel2 denote the set of codes for Σ1

2 sets which are
Borel. Let Baire2 denote the set of Σ1

2 codes for Σ1
2 sets with the Baire property,

and let Lebesgue2 denote the set of Σ1
2 codes for Lebesgue-measurable Σ1

2 sets.

The remainder of this section will consist of the proof of the following theorem.

Theorem 2.13. Under the assumption V = L, the sets Borel2, Baire2, and
Lebesgue2 are pairwise m-equivalent. In particular, they have the same Turing
degree.

The following lemma is straightforward, but essential to the proofs that follow.

Lemma 2.14. (V = L) A set of reals is Σ1
2 in the classical sense if and only

if it is Σ0
1 (c.e.) in the sense of ω1.

Proof. (⇒): Let X be a Σ1
2 set of reals. Then there exists an arithmetic

formula φ and a parameter a ⊆ ω such that

x ∈ X ⇐⇒ (∃y ⊆ ω)(∀z ⊆ ω)φ(a, x, y, z)

for all reals x. The formula (∀z ⊆ ω)φ(a, x, y, z) is Π1
1, hence ω1-computable;

the full statement is therefore ω1-computably-enumerable.
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(⇐): Let X be a c.e. set of reals. By definition, X is Σ0
1-definable over Lω1 ,

so there exists a formula φ and a parameter a ∈ Lω1 such that

x ∈ X ⇐⇒ (∃y ∈ Lω1)φ(a, x, y)

By replacing hereditarily countable sets with subsets of ω encoding them, we
may replace this with the following:

x ∈ X ⇐⇒ (∃y ⊆ ω)(WF (y) ∧ φ∗(a, x, y))

where WF (y) is the formula “the structure coded by y is well-founded” and
φ∗ is φ modified to decode y. WF (y) is a Π1

1 formula; the rest is Borel, so this
is a Σ1

2 definition of X. ⊣
As a consequence of the lemma, we will often transition freely between c.e.

sets of reals and Σ1
2 sets of reals.

Theorem 2.13 is an immediate consequence of Theorems 2.15, 2.21, and 2.26.
The proofs of these three results have very similar structure, so before we begin
we outline some of the commonalities.
The general aim of each proof is to, given a c.e. set of reals X, produce a

c.e. set of reals A. Alongside this, an additional c.e. set, usually called B, is
constructed as well; B may be considered as a set of elements that are prohibited
from entering A except by actions of sufficiently high priority.
In each proof, we also maintain a collection S of promises of the form (s, i, Y ),

where s is a countable ordinal, i is either 0 or 1, and Y is (some representation of)
a set of reals. Intuitively, a promise of the form (s, 0, Y ) promises to include the
next available element of Y in A, while a promise of the form (s, 1, Y ) promises
to include it in B. The first component, s, is a priority; lower values have higher
priority. Promises are ordered in the natural way: lexicographically, using <L

to order each component. At every stage, the first promise that is satisfiable will
be satisfied by adding a real to either A or B, and then will be removed from S;
the precise notion of satisfiability will vary slightly between the proofs.

Theorem 2.15. Under the assumption that V = L, Borel2 ≥m Baire2.

Proof. Given a code for a Σ1
2 set X, we construct a code for another Σ1

2 set
A. Recall that a set has the Baire property iff there is an open set with which
its symmetric difference is meager; we therefore require a means of referring to
open and meager sets within the construction.

Definition 2.16. An open code is a countable subset of ω<ω. If U is an open
code, the set coded by U is the set {x ∈ ωω | (∃σ ∈ U)σ ≺ x}.
A nowhere-dense code is a set X ⊆ ω<ω so that (∀σ ∈ 2<ω)(∃τ ∈ X)(τ ≼

σ ∨ σ ≼ τ). If N is a nowhere-dense code, the set coded by N is the set
{x ∈ ωω | ¬(∃σ ∈ N)σ ≺ x}.

A meager code is an ω-sequence of nowhere-dense codes. If M is a meager
code, the set coded by M is the union of the sets coded by its members.

Note that every open set has an open code, and while not every nowhere-dense
set or meager set has a nowhere-dense or meager code, it is the case that every
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nowhere-dense set is covered by a nowhere-dense set that does, and likewise for
meager sets.
It is also worth noting that every closed nowhere-dense set has a nowhere-dense

code, so the closure of a given nowhere-dense set is an example of a nowhere-
dense set with a nowhere-dense code that covers it.
A Borel code is a well-founded tree T ⊆ ω<ω equipped with a function f so

that f(σ) ∈ ω<ω whenever σ is a leaf node of T and f(σ) ∈ {∪,∩} otherwise.
When B = (T, f) is a Borel code, the set coded by B is defined inductively: let
Sσ = {x ∈ ωω | f(σ) ≺ x} for σ a leaf node of T ; let Sσ =

⋃
i∈ω Sσi if f(σ) = ∪;

and let Sσ =
⋂

i∈ω Sσi otherwise. The set coded by B is S⟨⟩.

The set of open codes, the set of nowhere-dense codes, the set of meager codes,
and the set of Borel codes are all ω1-computable (henceforth “computable”);
note that since 2<ω is hereditarily countable, quantification over it is bounded
quantification. Likewise, the set coded by a code of any sort is computable
uniformly in the code.
We now begin the construction. Given a code for a Σ1

2 set X, we will construct
a code for a Σ1

2 set A so that A will be Borel iff X has the Baire property. We
factor through the equivalence of Σ1

2 sets of reals and c.e. sets of reals from
Lemma 2.14, and for clarity we do not distinguish between an open or meager
code and the set it codes. Finally, we arrange that all c.e. sets enumerate at
most one element per stage.
During the construction, we will maintain two structures. First, we will be

constructing the c.e. set A, and alongside it an auxiliary c.e. set B. Second, we
maintain a collection S of promises of the form (s, i, Y ), where s ∈ ω1, i = 0 or
1, and Y is a (code for a) set. Intuitively, (s, 0, Y ) promises that the <L-least
element of Y will enter A, and (s, 1, Y ) that it will enter B, with priority s.
We will ensure that elements that are enumerated into B on behalf of a promise
(s, 1, Y ) have not previously been enumerated into A and will not be enumerated
into A except on behalf of a promise of the form (t, 0, Z) with t < s.
Fix an effective enumeration (Ue,Me) of pairs of open codes and meager codes.

These are the candidate witnesses to the Baire property for X. At any stage
s, some of these pairs may have been invalidated : an x has been enumerated
into X so that x /∈ Ue ∪Me. When this occurs, it is no longer possible that the
symmetric difference of X and Ue might be covered by Me, so we disregard the
pair; we will consider only valid pairs (pairs which have not been invalidated).
For ease of notation, we call an index e valid if the pair (Ue,Me) is valid.
Let Ve,s denote the intersection of the Ui for i < e that are valid at stage s.
Let xs be the real enumerated into X at stage s, if any. Suppose that there

exists e < s such that the following conditions hold:

(i) e remains valid;
(ii) xs is the <L-least element of Ue \Me not already enumerated into X; and
(iii) for every valid i < e, xs ∈ Ui.

In such a situation, we say that e triggers an action. For the least e which
triggers an action at stage s, add the promise (e, 0, Ve,s) to S.
Otherwise, let D be the first Borel set not yet considered. Add the promises

(s, 1, D) and (s, 0, D) to S.
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Finally, we consider the contents of S. Say that a promise (t, i, Y ) is satisfiable
if one of the following holds:

(i) i = 0, Ls∩Y ∩Vt,s \A is nonempty, and the <L-least member of Y ∩Vt,s \A
is either not in B or was enumerated into B on behalf of a promise of the
form (u, 1, Z) with u > t; or

(ii) i = 1 and Ls ∩ Y ∩ Vt,s \ (A ∪B) is nonempty.

If there is a satisfiable promise in S, let (t, i, Y ) be the first (<L-least) one. If
i = 0, we enumerate the <L-least member of Y ∩ Vt,s \A into A; if this element
was already in B, return to S the promise of the form (u, 1, Z) on behalf of
which that element was enumerated into B. If i = 1, we enumerate the <L-least
member of Y ∩ Vt,s \ (A ∪B) into B. In either case, we declare (t, i, Y ) satisfied
and remove it from S.

Claim 2.17. Every promise eventually ceases to be satisfiable.

Proof. Let (t, i, Y ) be a promise in S, and suppose by induction that all
promises that are <L-below it eventually cease to be satisfiable. Let s0 > t be
a stage at which this has happened. If (t, i, Y ) is never satisfiable after stage s0,
then of course it has already ceased to be satisfiable. On the other hand, if it is
satisfiable at some later stage u, then it must be the <L-least promise satisfiable
at that stage, which means it will be satisfied.
If i = 0, then by construction, once satisfied the promise will never be returned

to S, and hence will never be satisfiable again.
If i = 1, then the only circumstance in which (t, i, Y ) would be returned to

S would be if a higher-priority promise of the form (s, 0, Z) enumerated into A
the element which was used to satisfy (t, i, Y ). However, this would only happen
if (s, 0, Z) became satisfiable, which by induction does not happen after stage
u. ⊣

Claim 2.18. If X is meager, then A is countable.

Proof. Suppose that X is meager. Then there is a meager code for a meager
set that covers it. Let e be least so that Ue is empty and Me ⊇ X. Clearly
(Ue,Me) is never invalidated.
For each i < e, the symmetric difference of X and Ui is not contained in Mi.

Thus there is some yi so that one of the following holds:

(i) yi ∈ X \ Ui and yi /∈Mi; or
(ii) yi ∈ Ui \X and yi /∈Mi.

For a given i, if the first possibility holds, then as soon as yi is enumerated
into X the pair (Ui,Mi) will be invalidated. Let s0 be a stage large enough that
every (Ui,Mi) for i < e that will ever be invalidated has been.
If the second possibility holds instead, then after a certain stage the <L-least

element of Ui \ (Mi ∪X) will be a witnessing yi and will never be enumerated
into X. After this point, i will never trigger an action. Let s1 > s0 be a stage
large enough that this has occurred for every i < e for which it will ever occur.

After this stage, at most e elements will be enumerated into A: if no action
is triggered at a stage before e, an element of a Borel set might be promised.
Any promises made after stage e will never be satisfied, because by construction
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the elements added would have to be members of Ue, which is empty. So A is
countable. ⊣

Claim 2.19. If X has the Baire property, then A is Borel.

Proof. By Claim 2.18, we may suppose without loss of generality that X is
nonmeager.
Suppose that X has the Baire property. Then there is an open set U and a

meager set M so that the symmetric difference of X and U is M ; since X is
nonmeager, U is nonempty. There therefore exists some e such that Ue is a code
for U and Me codes a meager set covering M . Fix the least such e.
For each i < e, the symmetric difference of X and Ui is not contained in Mi.

Thus there is some yi such that one of the following holds:

(i) yi ∈ X \ Ui and yi /∈Mi; or
(ii) yi ∈ Ui \X and yi /∈Mi.

If the first possibility holds for a particular i, then as soon as yi is enumerated
into X the pair (Ui,Mi) will be invalidated. Let s0 be a stage large enough that
every i < e that will ever be invalidated has been.
If the second possibility holds instead, then after a certain stage the <L-least

element of Ui \Mi will be the witnessing yi and will never be enumerated into
X; after this point, i will never trigger an action. Let s1 > s0 be a stage large
enough that this has occurred for every i < e for which it will ever occur.
Let V = Ve,s1 =

⋂
i<e valid Ui at stage s1. Note that V is the intersection of

at most countably many open sets, and so is Gδ. Every element of Ue \Me will
eventually be enumerated into X, so e will trigger an action uncountably often
after stage s1. So uncountably many promises of the form (e, 0, V ) will be made,
while only countably many promises of the form (i, 1, Y ) with i < e (which could
potentially cause elements of V to be enumerated into B and prohibited from
A) will be made; so all but countably many members of V will be enumerated
into A.
Likewise, after stage s1 every element enumerated into A will be in V ; if an

action is triggered by some j > e at a later s, any elements enumerated into A
as a result will be required to be in Vj,s ⊆ V . So A \ V consists only of the
countably many points enumerated before stage s1.
Therefore A differs only countably from a Gδ set; in particular, A is Borel. ⊣

Claim 2.20. If X does not have the Baire property, then A is not Borel.

Proof. Suppose that X does not have the Baire property. As noted in the
proof of Claim 2.19, for every pair (Ue,Me) there is some stage se after which
e will never again trigger an action (whether because it has been invalidated or
because the necessary element is simply never enumerated into X). The function
α 7→ supβ<α sβ is continuous, and therefore has a closed and unbounded set of
fixed points. At each such fixed point s, no e < s triggers an action and so no
action is triggered. Thus each Borel set D is eventually addressed under the final
clause of the construction.
Let D be a Borel set, and let t be the first stage at which no action is triggered

and D is addressed. At stage t, the promises (t, 0, D) and (t, 1, D) are entered
into S. Likewise, let D be the complement of D, and let t̂ be the first stage at
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which no action is triggered and D is addressed; at stage t̂, the promises (t̂, 0, D)
and (t̂, 1, D) are entered into S. By possibly exchanging the roles of D and D,
let t > t̂.
Let s0 be a stage large enough that every i < t that will ever be invalidated

has been. Note that for s > s0, Vt,s = Vt,s0 ; call this V . Note that V must be
nonempty, because otherwise any member of X that lies in any Ui for valid i < t
would have to be absent from some Uj for valid j < t; it would then have to be in
Mj . Therefore, if V were empty, X would be covered by the (countably many)
meager sets Mi for i < t, and would therefore itself be meager (and would hence
have the Baire property). Likewise, if V were countable, X would be covered by
the Mi and V ; thus V must be uncountable.

Suppose D ∩ V is uncountable. Then there are uncountably many stages at
which there is an opportunity to satisfy the promises (t, 0, D) and (t, 1, D) (i.e.,
a new y ∈ D∩V has appeared in L). The only circumstance under which neither
is satisfied is when there is a promise of higher priority that is satisfied instead.
But there are only countably many promises of higher priority, and by Claim
2.17 these promises eventually cease to be satisfiable; so eventually (t, 0, D) and
(t, 1, D) will both be satisfied by enumerating an element of D ∩ V into A and
B respectively, such that the member of B enumerated on behalf of (t, 1, D) will
not enter A. Therefore, at least one member of D will never be enumerated into
A, and hence A ̸= D.

Suppose instead that D∩V is countable. Then D∩V is uncountable. By the
symmetric argument to the above, at least one member of D will be enumerated
into A; thus A ̸= D.

In either case, A ̸= D; since D was an arbitrary Borel set, A cannot be
Borel. ⊣

This completes the proof of Theorem 2.15. ⊣

Theorem 2.21. Under the assumption that V = L, Baire2 ≥m Lebesgue2.

Proof. This proof will be very similar to the previous one. Given an index
for a Σ1

2 set X, we aim to construct a Σ1
2 set A so that X is Lebesgue-measurable

iff A has the Baire property. Recall that a set X is Lebesgue-measurable iff there
is a Gδ set G and a null set N so that X = G \N .

Definition 2.22. Recall the definition of an open code from the proof of The-
orem 2.15 above. A Gδ code is an ω-sequence of open codes. If G = ⟨Gi⟩i<ω is
a Gδ code, the set coded by G is

⋂
iAi, where Ai is the set coded by Gi.

A null code is a sequence ⟨Nn⟩n<ω of (possibly infinite) subsets of 2<ω so that

lim
n→ω

∑
σ∈Nn

2−|σ| = 0

If N = ⟨Nn⟩n<ω is a null code, the set coded by N is {x ∈ 2ω | (∀n)(∃σ ∈
Nn)σ ≺ x}.

Observe that the set of Gδ codes and the set of null codes are both computable
sets (recalling that the definition of the limit requires only quantification over the
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rationals, which is bounded for the purposes of ω1-computability) and that the
map from a code of either sort to the set it codes is uniformly computable.
Note that while not every null set is coded by a null code, it is the case that

every null set is covered by a null set that is.

We now begin the construction. Given a code for a Σ1
2 set X, we will construct

a code for a Σ1
2 set A so that A will have the Baire property iff X is Lebesgue-

measurable. We again factor through the equivalence of Σ1
2 sets of reals and c.e.

sets of reals, and for clarity we do not distinguish between a Gδ or null code and
the set it codes. Finally, we arrange that all c.e. sets enumerate at most one
element per stage.
As in the previous proof, we will maintain two structures. First, we will

construct a c.e. set A, together with an auxiliary c.e. set B. Second, we
maintain a collection S of promises of the form (s, i, Y ), where s ∈ ω1, i = 0
or 1, and Y is a (code for a) set. (s, i, Y ) may be thought of as a “promise” to
enumerate an element of Y into A (if i = 0) or B (if i = 1), made with priority s.
We will ensure that elements that are enumerated into B on behalf of a promise
(s, 1, Y ) have not previously been enumerated into A and will not be enumerated
into A except on behalf of a promise of the form (t, 0, Z) with t < s.
Fix an effective enumeration (Ge, Ne) of pairs of Gδ codes and null codes.

These are the candidate witnesses toX being Lebesgue-measurable. At any stage
s, some of these pairs may have been invalidated : an x has been enumerated into
X so that x /∈ Ge. When this occurs, it is no longer possible that X = Ge \N
for a null set covered by Ne, so we disregard the pair; we will consider only valid
pairs (pairs which have not been invalidated). For ease of notation, we again call
an index e valid if (Ge, Ne) is valid.

Also fix an effective enumeration (Ui,Mi), as before, of pairs of open codes
and meager codes; these are the candidate witnesses to A having the property
of Baire.
For each i, let G∗

i = {z ∈ Gi | (∃y ≤L z)y ∈ Gi \Ni}; note that if Gi \Ni is
nonempty then G∗

i is only countably different from Gi, but if Gi \ Ni is empty
then so is G∗

i . Let Ve,s denote the intersection of G∗
i for all i < e that remain

valid at stage s.

Let xs be the real enumerated into X at stage s, if any. Suppose that there
exists e < s so that the following conditions hold:

(i) e remains valid; and
(ii) xs is the <L-least element of Ge \Ne not already enumerated into X.

In such a situation, we say that e triggers an action.
If any action is triggered, let e be the least index that triggers an action.

Enumerate (e, 0, Ve,s) into S.
Otherwise, let (Uj ,Mj) be the first pair of an open code and a meager code

not yet considered. Enumerate into S the promises (s, 1, Uj \Mj) and (s, 0, ωω \
(Uj ∪Mj)).
Finally, we handle promises in the same manner as in the previous proof. Say

that a promise (t, i, Y ) is satisfiable if one of the following holds:
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(i) i = 0, Ls∩Y ∩Vt,s \A is nonempty, and the <L-least member of Y ∩Vt,s \A
is either not in B or was enumerated into B on behalf of a promise of the
form (u, 1, Z) with u > t; or

(ii) i = 1 and Ls ∩ Y ∩ Vt,s \ (A ∪B) is nonempty.

If there is a satisfiable promise in S, let (t, i, Y ) be the first (<L-least) one. If
i = 0, we enumerate the <L-least member of Y ∩ Vt,s \A into A; if this element
was already in B, return to S the promise of the form (u, 1, Z) on behalf of
which that element was enumerated into B. If i = 1, we enumerate the <L-least
member of Y ∩ Vt,s \ (A ∪B) into B. In either case, we declare (t, i, Y ) satisfied
and remove it from S.
Claim 2.23. Every promise eventually ceases to be satisfiable.

Proof. Because the relevant details of the construction are the same, the
proof is identical to that of Claim 2.17. ⊣

Claim 2.24. If X is Lebesgue-measurable, then A has the property of Baire.

Proof. Suppose that X is Lebesgue-measurable. Then there exists a Gδ set
G and a null set N such that G \N = X; call e a code point for X if Ge is a Gδ

code for such a G and Ne is a code for a null set that covers the corresponding
N . Note that such an e will never be invalidated.

Let e be the least code point for X so that Ge \Ne is either empty or uncount-
able. If X is null, there is a code point e for which Ge \ Ne is empty; if X has
positive measure, then every code point e has Ge \Ne uncountable.
Let s0 be a stage late enough that every i < e that will ever be invalidated has

been. Note that, after stage s0, every i < e that remains valid must eventually
cease to trigger actions; otherwise it would be the case that Gi ⊇ X ⊇ Gi \Ni

and uncountably many elements would have been enumerated into Gi \ Ni, in
which case i would have been our chosen e. Let s1 > s0 be a stage large enough
that every i < e has ceased to trigger actions.

Suppose now that Ge \ Ne is empty. Then G∗
e is empty, so no elements will

be enumerated into A on behalf of promises (t, i, Y ) with t > e. If A were
uncountable, then, there would have to be some i < e that triggers an action
uncountably often; by the above observation that cannot be the case. Therefore,
if Ge \Ne is empty, then A is countable.
Finally, suppose instead that Ge \Ne is uncountable. Because X ⊇ Ge \Ne,

every element of Ge \Ne is eventually enumerated into X; so e triggers an action
uncountably often. By the argument above, e is the least index which triggers
an action uncountably often, so (e, 0, Ve,s) is enumerated into S for unboundedly
many s.
For t > s1, Ve,t = Ve,s1 ; call this set V . All promises made after stage s1 will

enumerate only elements of V into A, so A \ V is countable. Uncountably many
promises (e, 0, V ) are eventually made, and eventually all promises (t, i, Y ) with
t < e that will ever be satisfied have been; after this point, all members of V
that have not been placed into B will be enumerated into A. Thus A will differ
from V by only a countable set. Since V is Gδ, A has the property of Baire. ⊣

Claim 2.25. If X is not Lebesgue-measurable, then A does not have the prop-
erty of Baire.
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Proof. Suppose that X is not Lebesgue-measurable. Then, as noted in the
proof of Claim 2.24, for every pair (Ge, Ne) there is some stage se after which
e will never again trigger an action (whether because it has been invalidated or
because the necessary element is simply never enumerated into X). The function
α 7→ supβ<α sβ is a continuous function on the countable ordinals, and hence
has a closed and unbounded set of fixed points; at each such fixed point s, no
e < s can trigger an action, so no action is triggered. Thus each pair (Uj ,Mj) is
eventually addressed under the final clause of the construction.
Fix (Uj ,Mj), and let s be the stage at which it is addressed. At that stage,

the promises (s, 1, Uj \Mj) and (s, 0, ωω \ (Uj ∪Mj)) are enumerated into S.
By some countable stage s0, all promises in S prior to (s, 1, Uj \Mj) that will

ever be satisfied have been. By some stage s1 > s0, all e < s that will ever be
invalidated have been; for t > s1, Vs,t = Vs,s1 . Call this V .

Suppose (Uj \Mj)∩V is uncountable. Then there exists some stage t > s1 at
which there is a new element y ∈ Lt ∩ (Uj \Mj) ∩ V that is not already in A.
At this stage, (s, 1, Uj \Mj) is satisfiable. Since t > s1 > s0, no prior promise is
satisfiable, so (s, 1, Uj \Mj) is satisfied by enumerating such a y into B. Since
by construction this element could only be enumerated into A on behalf of a
higher-priority promise, all of which have ceased to be satisfiable by this stage,
this will not be in A, so Uj \Mj ⊈ A. Therefore the symmetric difference of A
and Uj is not contained in Mj .

Suppose instead that (Uj \Mj) ∩ V is countable. Then V \ (Uj \Mj) is not
(otherwise X would be a null set and hence measurable). Then, by a symmetric
argument to the above, the promise (s, 0, ωω \ (Uj ∪Mj)) is eventually satisfied,
so A \ Uj includes an element not in Mj .

In either case, the symmetric difference of A and Uj is not contained in Mj .
Since Uj was an arbitrary open code and Mj an arbitrary meager code, A does
not have the property of Baire. ⊣

This completes the proof of Theorem 2.21. ⊣

Theorem 2.26. Under the assumption that V = L, Lebesgue2 ≥m Borel2.

Proof. The proof is again very similar. Given an index for a Σ1
2 set X, we

aim to construct a Σ1
2 set A so that X is Borel iff A is Lebesgue-measurable.

Recall the definitions of open codes and Borel codes from the proof of Theorem
2.15, and the definition of null codes from the proof of Theorem 2.21.
We will factor again through the equivalence of Σ1

2 sets of reals and c.e. sets of
reals, and we do not distinguish between a code and the set it codes. As before,
we arrange that all c.e. sets enumerate at most one element per stage.
Fix an effective enumeration of Borel codes ⟨Be⟩e<ω1

, and an effective enumer-
ation (Ge, Ne) of pairs of Gδ codes and null codes. The Be will be the candidates
for X; the (Ge, Ne) will be candidates for witnesses that A is measurable. At
any stage s, we will consider the codes Be for e < s. Some of these may have
been invalidated ; that is, an x has been enumerated into X so that x /∈ Be. We
only consider valid pairs (pairs which have not been invalidated). Let Ve,s be
the intersection of Bi for the i < e that remain valid at stage s.
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We will maintain our usual two structures throughout the construction. First,
the c.e. set A and an auxiliary c.e. set C (a departure from the B of the previous
proofs in order to distinguish it from the Borel sets). Second, a set S of promises
of the form (t, i, Y ) for t ∈ ω1, i = 0 or 1, and Y a (code for a) set of reals.
Intuitively, (t, 0, Y ) promises to include the <L-least element of Y in A with
priority t, while (t, 1, Y ) promises to include it in C.

We now begin the construction. Let xs be the real enumerated into X at stage
s, if any. Suppose that there exists e < s so that the following holds:

(i) e remains valid; and
(ii) xs is the <L-least element of Be not already enumerated into X.

In such a situation, we say that e triggers an action.
If an action is triggered at stage s, let e be the least index which triggers an

action. Enumerate into S the promise (e, 0, Ve,s).
Otherwise, let (Gj , Nj) be the first pair of a Gδ code and a null code not yet

diagonalized against. Then enumerate into S the promises (s, 1, Gj \ Nj) and
(s, 0, ωω \Gj).
We handle the satisfaction of promises in the same manner as in the proofs of

Theorems 2.15 and 2.21. Say that a promise (t, i, Y ) is satisfiable if one of the
following holds:

(i) i = 0, Ls∩Y ∩Vt,s \A is nonempty, and the <L-least member of Y ∩Vt,s \A
is either not in C or was enumerated into C on behalf of a promise of the
form (u, 1, Z) with u > t; or

(ii) i = 1 and Ls ∩ Y ∩ Vt,s \ (A ∪ C) is nonempty.

If there is a satisfiable promise in S, let (t, i, Y ) be the first (<L-least) one. If
i = 0, we enumerate the <L-least member of Y ∩ Vt,s \A into A; if this element
was already in C, return to S the promise of the form (u, 1, Z) on behalf of
which that element was enumerated into B. If i = 1, we enumerate the <L-least
member of Y ∩ Vt,s \ (A ∪C) into C. In either case, we declare (t, i, Y ) satisfied
and remove it from S.

Claim 2.27. Every promise eventually ceases to be satisfiable.

Proof. Because the relevant details of the construction are the same, the
proof is identical to that of Claim 2.17. ⊣

Claim 2.28. If X is countable, then A is countable.

Proof. If X is countable, then it is Borel. Let Be be the first Borel code for
X. Then, for any t > e and any s, Vt,s ⊆ X, and in particular Vt,s is countable.
Therefore, only countably many elements enter A on behalf of promises of the
form (t, i, Y ) for t > s.
The only other promises are those added to S by the triggering of an action;

but an action is triggered at most once for each element of X, which means only
countably many such promises are made, and therefore only countably many
elements enter A on their behalf. ⊣

Claim 2.29. If X is Borel, then A is Lebesgue-measurable.
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Proof. By Claim 2.28, we may suppose without loss of generality that X is
uncountable. Suppose X is Borel; then there is an e so that Be is a code for X.
Fix the least such e.

For each i < e, Bi ̸= X. Thus for some yi, one of the following holds:

(i) yi ∈ X \Bi; or
(ii) yi ∈ Bi \X.

If the first possibility holds for some particular i, then as soon as yi is enu-
merated into X, Bi will be invalidated. Fix a stage s0 large enough that every
i < e that will ever be invalidated has been.
If the second possibility holds for some particular i, then after a certain stage

the <L-least element of Bi \X will be such a yi, and will never be enumerated
into X; after this point, i will never trigger an action. Fix s1 > s0 large enough
that this has occurred for every i < e for which it will ever occur.
Let V = Ve,s1 . As a countable intersection of Borel sets, V is itself Borel.

After stage s1, e will trigger an action uncountably often, because every member
of Be will eventually be enumerated into X. So every element of V except those
promised to C with priority < e will eventually be enumerated into A, and there
are only countably many such promises. So V \ A will be countable. Likewise,
after stage s1, every new element enumerated into A will be in V . So A \ V
consists only of elements promised to or enumerated into A before stage s1, of
which there are only countably many. Thus A differs only countably from a
Borel set, and is hence Borel (and therefore Lebesgue-measurable). ⊣

Claim 2.30. If X is not Borel, then A is not Lebesgue-measurable.

Proof. Suppose that X is not Borel. Then, as noted in the previous argu-
ment, for every code Be there is some stage se after which e will never again
trigger an action (whether because it has been invalidated or because the neces-
sary element is simply never enumerated into X). The function α 7→ supβ<α sβ
is a continuous function on the countable ordinals, and therefore has a closed
and unbounded set of fixed points. At each such fixed point s, no e < s can
trigger an action, so no action is triggered. Thus each pair (Gj , Nj) is eventually
addressed under the final clause of the construction.
Let (Gj , Nj) be an arbitrary pair of a Gδ code and a null code, and let s be

the stage at which it is addressed. At that stage, the promises (s, 1, Gj \Nj) and
(s, 0, ωω \Gj) are enumerated into S.

By some countable stage s0, all promises in S prior to (s, 1, Gj \Nj) that will
ever be satisfied have been. By some stage s1 > s0, all e < s that will ever be
invalidated have been; for t > s1, Vs,t = Vs,s1 . Call this V .

Suppose that (Gj \Nj)∩V is uncountable. Then there will come a stage t > s1
at which a new y ∈ (Gj \Nj) ∩ V has appeared, which gives an opportunity to
satisfy the promise (s, 1, Gj \ Nj). Since all prior promises that will ever be
satisfied have been already, this is the promise that is satisfied at stage t; so
an element of Gj \Nj is enumerated into C (and consequently never enters A).
Therefore A ⊉ Gj \Nj .

Suppose instead that (Gj \Nj)∩V is countable. Then V \Gj is not (otherwise
X would be Borel). By a symmetric argument to the above, the promise (s, 0, V \
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Gj) is eventually satisfied, so A includes at least one element not in Gj ; hence
A ⊈ Gj .

In either case, it is not the case that Gj ⊇ A ⊇ Gj \ Nj ; since (Gj , Nj) was
chosen arbitrarily, A cannot be the difference of a Gδ set and a null set. Therefore
A is not Lebesgue-measurable. ⊣

This completes the proof of Theorem 2.26. ⊣

We are now able to complete the proof of Theorem 2.13.

Proof of Theorem 2.13. By Theorem 2.15, Borel2 ≥m Baire2. By The-
orem 2.21, Baire2 ≥m Lebesgue2. By Theorem 2.26, Lebesgue2 ≥m Borel2.
Combining these, we have

Borel2 ≥m Baire2 ≥m Lebesgue2 ≥m Borel2

So in fact Borel2 ≡m Baire2 ≡m Lebesgue2. ⊣
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