COMPLEXITY OF INDEX SETS OF DESCRIPTIVE SET-THEORETIC NOTIONS

REESE JOHNSTON AND DILIP RAGHAVAN

Abstract

Descriptive set theory and computability theory are closely-related fields of logic; both are oriented around a notion of descriptive complexity. However, the two fields typically consider objects of very different sizes; computability theory is principally concerned with subsets of the naturals, while descriptive set theory is interested primarily in subsets of the reals. In this paper, we apply a generalization of computability theory, admissible recursion theory, to consider the relative complexity of notions that are of interest in descriptive set theory. In particular, we examine the perfect set property, determinacy, the Baire property, and Lebesgue measurability. We demonstrate that there is a separation of descriptive complexity between the perfect set property and determinacy for analytic sets of reals; we also show that the Baire property and Lebesgue measurability are both equivalent in complexity to the property of simply being a Borel set, for $\Sigma_{\mathbf{2}}^{\mathbf{1}}$ sets of reals.

§1. Uncountable Computability. Computability is often used to study the relationships between properties, to determine whether one property is more "complex" than another; the general strategy is to establish that the set of indices for structures with one property is reducible (Turing-reducible, m-reducible, 1reducible, or any of a number of other notions of reducibility) to the set of indices for structures with the other property, thereby showing that the latter property is at least as complex as the former. This technique has met considerable success in topics such as group theory and graph theory, settings in which countable structures are of key interest.
In descriptive set theory, however, the properties of interest are of sets of reals rather than sets of natural numbers. Because classical computability is predicated on ω, it is difficult to apply its techniques to descriptive set-theoretic notions. For this reason, we turn to α-recursion, a notion of computability built by replacing ω with a larger ordinal α.

For a full treatment of α-recursion in the general case, see [1]; in this document, we will be largely concerned with ω_{1}-recursion in particular. Further details on ω_{1}-recursion may be found in [5]. To ensure that ω_{1}-recursion will be sufficient to consider the objects of interest, we will operate under the premise that $V=L$.

The fundamental definitions of ω_{1}-recursion will be provided at the beginning of the next section. Over the course of this paper, however, we will rely on an uncountable analogue of the Church-Turing Thesis: anything intuitively

[^0]computable by a machine capable of manipulating countably infinite objects in memory and running for any countable number of stages is ω_{1}-computable.
The work in this paper lies at the intersection of uncountable computability theory and descriptive set theory. Classical descriptive set theory studies the topological complexity of subsets of the set of real numbers \mathbb{R} in terms of their place in the Borel and projective hierarchies. Under the axiom of constructibility, every subset of \mathbb{R}, and more generally, any collection of Borel or projective subsets of \mathbb{R} can be coded as a subset of $L_{\omega_{1}}$ or of ω_{1}. It is then natural to investigate the connection between topological or descriptive complexity and algorithmic complexity in the context of the theory of computability on $L_{\omega_{1}}$ outlined above.
In this paper, the perfect set property, determinacy, the Baire property, and Lebesgue measurability of some point classes in the projective hierarchy will be investigated from the perspective of uncountable computability theory. Recall that a set A of real numbers is called analytic if it is the continuous image of some Borel subset of \mathbb{R}. It is a classical theorem that every uncountable analytic set contains a perfect set, which is a non-empty closed set with no isolated points. However under the axiom of constructibility, this fails to hold for complements of analytic sets, which are called co-analytic sets. In fact, a well-known result of Solovay (see Kanamori [6]) says that all uncountable co-analytic sets contain a perfect set if and only if for every real $a, \omega_{1}^{L[a]}<\omega_{1}$. In particular, if every uncountable co-analytic set contains a perfect set, then ω_{1} is an inaccessible cardinal in L. We first investigate the algorithmic complexity of the (code for the) collection of all uncountable co-analytic sets of real numbers that contain perfect sets. It is shown that this set is Σ_{1}^{0}-complete.

Another central theme in classical descriptive set theory is the determinacy of two player games of perfect information where the payoff set is Borel or projective. For any set A of real numbers, one can define a two player game $\partial(A)$ as follows. Two players, call them In and Out, take turns choosing natural numbers, with the convention that In makes the initial move. At the end of play In and Out have jointly constructed a sequence $\left\langle a_{n}: n \in \omega\right\rangle$ of natural numbers, where $a_{2 n}$ has been played by In and $a_{2 n+1}$ was chosen by Out in response, for every $n \in \omega$. Now this sequence $\left\langle a_{n}: n \in \omega\right\rangle$ codes a real number and In wins this particular play of the game $\partial(A)$ if and only if the real number coded by $\left\langle a_{n}: n \in \omega\right\rangle$ belongs to the set A. The set A is said to be determined if either In or Out has a winning strategy in $\partial(A)$. A major theorem is that every Borel subset of \mathbb{R} is determined (see Kechris [8]). However under the axiom of constructibility, not all analytic sets are determined. The collection of all (codes for) analytic subsets of \mathbb{R} that are determined under the axiom of constructibility is shown to be Σ_{2}^{0}-complete in Theorem 2.10.

These two results nicely tie-in with some well-known results from descriptive set theory. The statement "every uncountable co-analytic subset of \mathbb{R} contains a perfect set" and the statement "every analytic subset of \mathbb{R} is determined" are both consistent relative to large cardinals, and indeed they are both consequences of the existence of large cardinals (see [6]). However the consistency strength of the second of these statements is significantly greater than that of the first. The statement that every uncountable co-analytic subset of \mathbb{R} contains a perfect set is known to be equiconsistent with the existence of a strongly inaccessible cardinal,
while the statement that every analytic subset of \mathbb{R} is determined requires at least the consistency of the much more powerful 0^{\sharp}. Extrapolating from this to the context of the axiom of constructibility, one might expect the collection of all analytic subsets of \mathbb{R} that are determined to be algorithmically strictly more complicated than the collection of all uncountable co-analytic subsets of \mathbb{R} that contain perfect sets. Our results bear out this intuition.

The Baire property and Lebesgue measurability of Σ_{2}^{1} sets is considered next. Here the concurrence with classical results in set theory is less straightforward. It is shown in Theorem 2.13 that the collection of all (codes for) Σ_{2}^{1} sets that have Baire property is Turing equivalent to the collection of all (codes for) Σ_{2}^{1} sets that are Lebesgue measurable. In terms of consistency strength, the statement that all Σ_{2}^{1} sets have the Baire property and the statement that all Σ_{2}^{1} sets are Lebesgue measurable are equally weak. They are both equiconsistent with ZFC - Martin and Solovay showed that they are both consequences of $\mathrm{MA}_{\aleph_{1}}$. However an asymmetry between the Baire property and Lebesgue measurability already appears at the level of Σ_{2}^{1} sets: Raisonnier and Stern showed that if all Σ_{2}^{1} sets are measurable, then all Σ_{2}^{1} sets have the Baire property, while Judah produced a model of ZFC where all Σ_{2}^{1} sets have the Baire property and yet there is even a Δ_{2}^{1} set that fails to be Lebesgue measurable (see [13] for more details). It is well-known that a major asymmetry in consistency strength appears one level higher at Σ_{3}^{1} sets. The statement that all Σ_{3}^{1} sets have the Baire property is equiconsistent with ZFC, while the statement that all Σ_{3}^{1} sets are measurable requires the consistency of a strongly inaccessible cardinal. Hence it would be of interest to investigate whether an asymmetry in Turing complexity also appears between the collection of all Σ_{3}^{1} sets that have the Baire property and the collection of all Σ_{3}^{1} sets that are measurable.
§2. Index Sets of Descriptive Set-Theoretic Notions. The following definitions are essentially due to Kripke [10].

Definition 2.1. A set is hereditarily countable if it is countable and all of its elements are hereditarily countable. Note that, under the assumption $V=L$, $L_{\omega_{1}}$ is precisely the set of hereditarily countable sets.

We develop the Lévy hierarchy of formulas as usual: a formula φ is Σ_{1}^{0} if it has the form $\exists x \psi$, where ψ is a formula with only bounded quantification. A formula φ is Π_{n}^{0} if it is the negation of a Σ_{n}^{0} formula, and is Σ_{n+1}^{0} if it has the form $\exists x \psi$, where ψ is a Σ_{n}^{0} formula.

A subset $X \subset L_{\omega_{1}}$ is said to be $\omega_{1}-\Sigma_{n}^{0}$ if there exists a Σ_{n}^{0} formula φ and a parameter $c \in L_{\omega_{1}}$ so that for each $x \in L_{\omega_{1}}, x \in X$ iff $L_{\omega_{1}} \models \varphi(x, c)$. X is ω_{1}-computable if both it and its complement are $\omega_{1}-\Sigma_{1}^{0}$.

As usual, we say that a function is ω_{1}-computable if its graph is $\omega_{1}-\Sigma_{1}^{0}$.
For ease of notation, we will use "computable" in place of " ω_{1}-computable" (and likewise Σ_{n}^{0} for $\omega_{1}-\Sigma_{n}^{0}$) except when ambiguity would arise. In general, if a notion is intended in the classical sense, it will be referred to as " ω-computable" or "in the standard setting". Boldface symbols are intended in the descriptive set-theoretic sense, detailed below.

We begin with a few well-known elementary facts regarding ω_{1}-recursion.

FACT 2.2. (i) The map $\alpha \rightarrow L_{\alpha}$ taking each countable ordinal to the corresponding level of the constructible hierarchy is a computable function.
(ii) The canonical well-ordering $<_{L}$, restricted to $L_{\omega_{1}}$, is a computable relation, which orders $L_{\omega_{1}}$ with order-type ω_{1}.

Further, the traditional definitions of many key topics of classical computability carry forward in a natural way to the uncountable setting. The example which is relevant to this paper is the definition of \emptyset^{\prime}.

Definition 2.3. Let \emptyset^{\prime} be the set of (indices for) true Σ_{1}^{0} formulas with parameters in $L_{\omega_{1}}$.

With these definitions in place, we now turn our attention to descriptive set theory.

Definition 2.4. A code for a $\boldsymbol{\Pi}_{\mathbf{1}}^{1}$ set is a tree $T \subseteq(\omega \times \omega)^{<\omega}$; the set coded by a tree T is $X=\left\{g \in \omega^{\omega} \mid\left(\forall f \in \omega^{\omega}\right)(\exists n)\langle f \upharpoonright n, g \upharpoonright n\rangle \notin T\right\}$.

Let C_{Π} be the set of codes for uncountable, co-uncountable $\boldsymbol{\Pi}_{1}^{1}$ sets of reals.
Proposition 2.5. $\boldsymbol{\Pi}_{1}^{1}$ sets (equivalently, $\boldsymbol{\Sigma}_{1}^{1}$ sets) are ω_{1}-computable.
Proof. Given a tree T coding a Π_{1}^{1} set $X, g \in X$ iff $g \in \omega^{\omega}$ and $(\forall f \in$ $\left.\omega^{\omega}\right)(\exists n \in \omega)\langle f \upharpoonright n, g \upharpoonright n\rangle \notin T$. This is a Π_{1}^{0} property by inspection - note that, while the quantifier $\exists n \in \omega$ would be considered an unbounded quantifier within the context of classical computability, ω is itself an ω_{1}-finite object, and the quantifier is hence bounded from the standpoint of ω_{1}-computability.

On the other hand, it is also the case that $g \in X$ iff there exists an map F from the subtree $\{\langle\sigma, \tau\rangle \in T \mid \tau \prec g\}$ into the countable ordinals so that $F\left(\left\langle\sigma_{1}, \tau_{1}\right\rangle\right)<F\left(\left\langle\sigma_{2}, \tau_{2}\right\rangle\right)$ whenever $\sigma_{1} \succcurlyeq \sigma_{2}$ and $\tau_{1} \succcurlyeq \tau_{2}$. Because this map, if it exists, is hereditarily countable and hence a member of $L_{\omega_{1}}$, the statement that such a map exists is Σ_{1}^{0}.

Proposition 2.6. The set of codes for $\boldsymbol{\Pi}_{\mathbf{1}}^{\mathbf{1}}$ sets having the perfect set property is Σ_{1}^{0}.

Proof. X has the perfect set property iff

$$
\left(\exists f: 2^{<\omega} \rightarrow \omega^{<\omega}\right)\left(\forall Y \in 2^{\omega}\right) f[Y] \in X
$$

Because X is $\boldsymbol{\Pi}_{1}^{1}$, the statement $f[Y] \in X$ is $\Pi_{1}^{1}[r]$ for some real r. So the statement

$$
\left(\forall Y \in 2^{\omega}\right) f[Y] \in X
$$

is also a $\Pi_{1}^{1}[r]$ statement. By Proposition 2.5, it is computable; so the full formula is Σ_{1}^{0}.

Definition 2.7. For $X \subseteq \omega^{\omega}$, the Gale-Stewart game G_{X} is the following two-player game.

Players I and II alternate turns playing natural numbers, I going first. In this manner, they construct an infinite sequence x of natural numbers. Player I wins if $x \in X$; Player II wins if $x \notin X$.

A strategy is a function $f: \omega^{<\omega} \rightarrow \omega$. A player may play according to f by playing on each turn $f(\sigma)$, where σ is the sequence of numbers chosen at previous turns. The strategy f is a winning strategy for a given player if playing according to that strategy always results in a win for that player, regardless of the other player's moves.
A set X is determined if the game G_{X} has a winning strategy for either player.
For more information on Gale-Stewart games, see [6], [8], or [12].
It is well-known that all Borel sets are determined (see Kechris [8]). However, not all Σ_{1}^{1} and Π_{1}^{1} sets in L are determined.

Proposition 2.8. The set of codes for determined $\boldsymbol{\Pi}_{1}^{1}$ sets is Σ_{2}^{0}.
Proof. X is determined if there is a winning strategy:
X is determined $\Longleftrightarrow \exists f \forall g$ (the play resulting from f and g is in X)
Since membership in X is computable, this is Σ_{2}^{0}.
Theorem 2.9. ($V=L$) The set of codes for $\boldsymbol{\Pi}_{\mathbf{1}}^{1}$ sets having the perfect set property is Σ_{1}^{0}-complete. In fact, $\emptyset^{\prime} \equiv_{m}\left(P, C_{\Pi} \backslash P\right)$, where P is the set of codes in C_{Π} coding a Π_{1}^{1} set that contains a perfect set.

Proof. For the other direction, we use a construction used extensively in [11] to construct a code for an uncountable, co-uncountable $\boldsymbol{\Pi}_{1}^{1}$ set which contains a perfect set iff a given Σ_{1}^{0} formula is true. The basic idea of this method for constructing $\boldsymbol{\Pi}_{1}^{1}$ sets with special combinatorial properties under the axiom of constructibility goes back to the work of Erdős, Kunen, and Mauldin [3], and it has found several other applications recently, for instance in [7] and [4].

Say that L_{α} is point-definable iff the Skolem-hull of (L_{α}, \in) under the typical Skolem functions for $V=L$ is isomorphic to $\left(L_{\alpha}, \in\right)$. It is known that there are unboundedly many point-definable L_{α} for $\alpha<\omega_{1}^{L}$; see [2] for details. Let $\left\langle L_{\beta_{s}}\right\rangle_{s<\omega_{1}}$ enumerate (in order) the point-definable L_{β}.

Fix a Σ_{1}^{0} formula $\exists x \varphi(x)$ for $\varphi \in \Delta_{0}^{0}$. We construct a set S_{φ} together with an auxiliary sequence $\mathbf{x}=\left\langle x_{s}\right\rangle$ as follows:

Stage 0: Let \mathbf{x} be the empty sequence, and S_{φ} the empty set.
Stage $s>0$: Suppose $L_{\beta_{s}} \models \neg \exists x \varphi(x)$. Let P_{s} be the $<_{L}$-least code in $L_{\beta_{s}}$ for a perfect set P so that $L_{\beta_{s}} \models \neg(\exists y \in P, t<s) y=x_{t}$, and put x_{s} the $<_{L}$-least such y. Let z_{s} be the $<_{L}$-least $z \in L_{\beta_{s}+\omega}$ so that $z \neq x_{t}$ for $t \leq s$ and there is a presentation of $L_{\beta_{s}}$ recursive in z, and include z_{s} in S_{φ}.

If $L_{\beta_{s}} \models \exists x \varphi(x)$, then put z in S_{φ} for every z so that $z \neq x_{t}$ for $t \leq s$ and z computes some presentation of $L_{\beta_{s}}$, and halt construction.

Because $L_{\beta_{s}}$ is point-definable and L has Skolem functions, there is a presentation of $L_{\beta_{s}}$ computable in the first-order theory of $L_{\beta_{s}}$. Because the first-order theory appears shortly afterward in the constructible hierarchy, this presentation appears by $L_{\beta_{s}+n}$ for a finite n (the precise value of n is unimportant). As a result, $L_{\beta_{s}+\omega}$ is a sufficiently high level of the constructible hierarchy to run the construction up through stage s; there is certainly a $z \in L_{\beta_{s}+\omega}$ which computes
a presentation of $L_{\beta_{s}}$, and determining whether a given z does requires at most three additional levels of definability (one to quantify over sets computable from z, one to determine whether the necessary Skolem functions are realized in a given candidate presentation, and one to determine whether all elements of the candidate are part of the Skolem hull).

Since $L_{\beta_{s}+\omega}$ is sufficient to perform this construction through stage $s, z \in S_{\varphi}$ iff $z=z_{s}$ for some s iff $L_{\beta_{s}+\omega} \vDash z=z_{s}$ for some s. But this holds only if z computes some presentation of $L_{\beta_{s}}$, in which case there is a presentation of $L_{\beta_{s}+\omega}$ hyperarithmetic in z. So $z \in S_{\varphi}$ iff $\left(\exists x \in \Delta_{1}^{1}(z)\right) x$ is a presentation of some $L_{\alpha} \wedge L_{\alpha} \vDash z \in S_{\varphi}$. Determining whether a given x is a presentation of some L_{α} is a Π_{1}^{1} task, because it requires checking for well-foundedness. By a result of Kleene (Kleene [9]), the existential quantifier over $\Delta_{1}^{1}(z)$ does not add further complexity; therefore, S_{φ} is Π_{1}^{1}.

It is evident that S_{φ} contains a perfect set iff $L_{\omega_{1}} \models \exists x \varphi(x)$; if no witness is ever found, then at every step we place one member of the next perfect set into our sequence \mathbf{x}, to be withheld from S_{φ}. If a witness is eventually found, then the entirety of $\left\{z \mid z \geq_{T} L_{\beta_{s}}\right\}$ (minus a countable set) is immediately included in S_{φ}; this is Borel and not countable, and therefore contains a perfect set.

It is also evident that S_{φ} is never countable or co-countable. If no witness to φ is ever found, then one real is added to S_{φ} at every stage and one withheld. If a witness is eventually found, then S_{φ} is only countably different from $\left\{z \mid z \geq_{T}\right.$ $\left.L_{\beta_{s}}\right\}$ for the appropriate s, which is clearly an uncountable and co-uncountable set.
Thus the function f taking φ to this canonical code for S_{φ} is the desired m-reduction.

Theorem 2.10. ($V=L$) The set of codes for determined $\boldsymbol{\Pi}_{1}^{1}$ sets is Σ_{2}^{0} complete. In fact, $S \equiv_{m}\left(D, C_{\Pi} \backslash D\right)$, where S is the set of true $\Sigma_{2}^{0}\left(L_{\omega_{1}}\right)$ formulas and D is the set of codes in C_{Π} for determined Π_{1}^{1} sets.

Proof. To show the other direction, we perform a construction similar to before. Fix a $\Sigma_{2}^{0}\left(L_{\omega_{1}}\right)$ formula $\varphi=(\exists x)(\forall y) \psi(x, y)$. Again we construct a set of reals S_{φ} and an auxiliary sequence of reals $\left\langle x_{s}\right\rangle$; we will ensure that S_{φ} is $\boldsymbol{\Pi}_{\mathbf{1}}^{1}$ by way of an index uniform in φ. Again let $\left\langle L_{\beta_{s}}\right\rangle_{s<\omega_{1}}$ enumerate the countable ordinals β so that L_{β} is point-definable and $\beta=\alpha+\omega$ for some α.

Stage 0: Take $S_{\varphi}=\emptyset,\left\langle x_{s}\right\rangle$ the empty sequence.
Stage $s>0$: If $L_{\beta_{s}} \models(\exists y) \neg \psi(x, y)$ for the first value of x for which this was not true at a previous stage, then let (f, i) be the $<_{L}$-least pair of a strategy in $L_{\beta_{s}}$ and a player (I or II) that has not yet been considered, if any exists. Fix the $<_{L}$-least two reals z_{1}, z_{2} so that the following holds:
(i) $z_{1} \neq z_{2}$;
(ii) Each is the result of the player i playing according to f;
(iii) Neither are in S_{φ} or the sequence $\left\langle x_{t}\right\rangle_{t<s}$;
(iv) $z_{2} \in L_{\beta_{s}}$; and
(v) z_{1} computes a presentation of $L_{\beta_{s}}$.

Observe that such a pair z_{1}, z_{2} does exist; this is because the opposing player may play any sequence of naturals, regardless of the restrictions on the player i.

Since at any countable stage both S_{φ} and $\left\langle x_{t}\right\rangle_{t<s}$ consist only of reals present in $L_{\beta_{t}}$ for $t<s$, to satisfy condition (iii) it is sufficient that the sequence of plays by the opposing player be a real not in any such $L_{\beta_{t}}$. As noted in the previous proof, since $L_{\beta_{t}}$ is point-definable there is a presentation of $L_{\beta_{t}}$ in $L_{\beta_{t}+\omega}$ (in fact, there is a presentation of $L_{\beta_{t}+1}$, which cannot be in $L_{\beta_{t}}$). By the choice of the sequence, $\beta_{t} \geq \sup _{u<t} \beta_{u}+\omega$ for all t, and therefore $L_{\beta_{s}}$ includes reals not in any previous $L_{\beta_{t}}$. By taking one of these reals as the opposing plays, we have a $z_{2} \in L_{\beta_{s}}$ satisfying (ii) through (iv). By taking a sufficiently complicated presentation of $L_{\beta_{s}}$ (e.g., one found only in $L_{\beta_{s}+3}$) and using this for the opposing plays, we obtain a z_{1} satisfying (i) through (v).

Put $z_{1} \in S_{\varphi}$ and set $x_{s}=z_{2}$. Note that, as long as the members of $\left\langle x_{s}\right\rangle$ are withheld from S_{φ}, f cannot be a winning strategy for either player.

If, on the other hand, $L_{\beta_{s}} \models(\forall y) \psi(x, y)$ for the first value of x for which this was true until this stage, then let z_{s} be the $<_{L}$-least real so that $z_{s} \neq x_{t}$ for $t<s$ and z_{s} is a presentation of $L_{\beta_{s}}$. Put $z_{s} \in S_{\varphi}$. This completes the construction.

Note that S_{φ} is $\boldsymbol{\Pi}_{1}^{1}$ for the same reason as before: $L_{\beta_{s}+\omega}$ is enough to run the construction up through stage s.

If we fall in the first case only boundedly often, then S_{φ} is (up to a countable set) a set of reals coding well-founded relations; there is then clearly a strategy that avoids S_{φ}, and S_{φ} is therefore determined. If we visit the first case unboundedly often, on the other hand, then each possible strategy is eventually encountered and diagonalized against, so S_{φ} is not determined. And clearly we visit the first case unboundedly often if and only if $L_{\omega_{1}} \models \neg \varphi$. This completes the proof.

Definition 2.11. $A \Sigma_{\mathbf{2}}^{\mathbf{1}}$ code or a code for a $\Sigma_{\mathbf{2}}^{\mathbf{1}}$ set is a pair $(\varphi(x, b)$, a) where $\varphi(x, b)$ is a formula of the form $\left(\exists y \in \omega^{\omega}\right)\left(\forall z \in \omega^{\omega}\right) \psi(x, y, z, b)$ and $a \in \omega^{\omega}$. The set X coded by a Σ_{2}^{1} code $(\varphi(x, b), a)$ is $\left\{x \in \omega^{\omega} \mid \varphi(x, a)\right\}$.
Definition 2.12. Let Borel $_{2}$ denote the set of codes for Σ_{2}^{1} sets which are Borel. Let Baire ${ }_{2}$ denote the set of $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{1}}$ codes for $\Sigma_{\mathbf{2}}^{\mathbf{1}}$ sets with the Baire property, and let Lebesgue ${ }_{2}$ denote the set of $\boldsymbol{\Sigma}_{2}^{1}$ codes for Lebesgue-measurable Σ_{2}^{1} sets.

The remainder of this section will consist of the proof of the following theorem.
Theorem 2.13. Under the assumption $V=L$, the sets Borel $_{2}$, Baire ${ }_{2}$, and Lebesgue $_{2}$ are pairwise m-equivalent. In particular, they have the same Turing degree.

The following lemma is straightforward, but essential to the proofs that follow.
Lemma 2.14. ($V=L$) A set of reals is $\Sigma_{2}^{\mathbf{1}}$ in the classical sense if and only if it is Σ_{1}^{0} (c.e.) in the sense of ω_{1}.

Proof. (\Rightarrow) : Let X be a $\Sigma_{2}^{\mathbf{1}}$ set of reals. Then there exists an arithmetic formula φ and a parameter $a \subseteq \omega$ such that

$$
x \in X \Longleftrightarrow(\exists y \subseteq \omega)(\forall z \subseteq \omega) \varphi(a, x, y, z)
$$

for all reals x. The formula $(\forall z \subseteq \omega) \varphi(a, x, y, z)$ is Π_{1}^{1}, hence ω_{1}-computable; the full statement is therefore ω_{1}-computably-enumerable.
(\Leftarrow) : Let X be a c.e. set of reals. By definition, X is Σ_{1}^{0}-definable over $L_{\omega_{1}}$, so there exists a formula φ and a parameter $a \in L_{\omega_{1}}$ such that

$$
x \in X \Longleftrightarrow\left(\exists y \in L_{\omega_{1}}\right) \varphi(a, x, y)
$$

By replacing hereditarily countable sets with subsets of ω encoding them, we may replace this with the following:

$$
x \in X \Longleftrightarrow(\exists y \subseteq \omega)\left(W F(y) \wedge \varphi^{*}(a, x, y)\right)
$$

where $W F(y)$ is the formula "the structure coded by y is well-founded" and φ^{*} is φ modified to decode $y . W F(y)$ is a Π_{1}^{1} formula; the rest is Borel, so this is a Σ_{2}^{1} definition of X.

As a consequence of the lemma, we will often transition freely between c.e. sets of reals and Σ_{2}^{1} sets of reals.

Theorem 2.13 is an immediate consequence of Theorems 2.15, 2.21, and 2.26. The proofs of these three results have very similar structure, so before we begin we outline some of the commonalities.

The general aim of each proof is to, given a c.e. set of reals X, produce a c.e. set of reals A. Alongside this, an additional c.e. set, usually called B, is constructed as well; B may be considered as a set of elements that are prohibited from entering A except by actions of sufficiently high priority.

In each proof, we also maintain a collection \mathcal{S} of promises of the form (s, i, Y), where s is a countable ordinal, i is either 0 or 1 , and Y is (some representation of) a set of reals. Intuitively, a promise of the form $(s, 0, Y)$ promises to include the next available element of Y in A, while a promise of the form $(s, 1, Y)$ promises to include it in B. The first component, s, is a priority; lower values have higher priority. Promises are ordered in the natural way: lexicographically, using $<_{L}$ to order each component. At every stage, the first promise that is satisfiable will be satisfied by adding a real to either A or B, and then will be removed from \mathcal{S}; the precise notion of satisfiability will vary slightly between the proofs.

Theorem 2.15. Under the assumption that $V=L$, Borel $_{2} \geq_{m}$ Baire $_{2}$.
Proof. Given a code for a Σ_{2}^{1} set X, we construct a code for another Σ_{2}^{1} set A. Recall that a set has the Baire property iff there is an open set with which its symmetric difference is meager; we therefore require a means of referring to open and meager sets within the construction.

Definition 2.16. An open code is a countable subset of $\omega<\omega$. If U is an open code, the set coded by U is the set $\left\{x \in \omega^{\omega} \mid(\exists \sigma \in U) \sigma \prec x\right\}$.
A nowhere-dense code is a set $X \subseteq \omega^{<\omega}$ so that $\left(\forall \sigma \in 2^{<\omega}\right)(\exists \tau \in X)(\tau \preccurlyeq$ $\sigma \vee \sigma \preccurlyeq \tau)$. If N is a nowhere-dense code, the set coded by N is the set $\left\{x \in \omega^{\omega} \mid \neg(\exists \sigma \in N) \sigma \prec x\right\}$.

A meager code is an ω-sequence of nowhere-dense codes. If M is a meager code, the set coded by M is the union of the sets coded by its members.

Note that every open set has an open code, and while not every nowhere-dense set or meager set has a nowhere-dense or meager code, it is the case that every
nowhere-dense set is covered by a nowhere-dense set that does, and likewise for meager sets.
It is also worth noting that every closed nowhere-dense set has a nowhere-dense code, so the closure of a given nowhere-dense set is an example of a nowheredense set with a nowhere-dense code that covers it.
A Borel code is a well-founded tree $T \subseteq \omega^{<\omega}$ equipped with a function f so that $f(\sigma) \in \omega^{<\omega}$ whenever σ is a leaf node of T and $f(\sigma) \in\{\cup, \cap\}$ otherwise. When $B=(T, f)$ is a Borel code, the set coded by B is defined inductively: let $S_{\sigma}=\left\{x \in \omega^{\omega} \mid f(\sigma) \prec x\right\}$ for σ a leaf node of T; let $S_{\sigma}=\bigcup_{i \in \omega} S_{\sigma i}$ if $f(\sigma)=\cup$; and let $S_{\sigma}=\bigcap_{i \in \omega} S_{\sigma i}$ otherwise. The set coded by B is $S_{\langle \rangle}$.

The set of open codes, the set of nowhere-dense codes, the set of meager codes, and the set of Borel codes are all ω_{1}-computable (henceforth "computable"); note that since $2^{<\omega}$ is hereditarily countable, quantification over it is bounded quantification. Likewise, the set coded by a code of any sort is computable uniformly in the code.
We now begin the construction. Given a code for a Σ_{2}^{1} set X, we will construct a code for a Σ_{2}^{1} set A so that A will be Borel iff X has the Baire property. We factor through the equivalence of Σ_{2}^{1} sets of reals and c.e. sets of reals from Lemma 2.14, and for clarity we do not distinguish between an open or meager code and the set it codes. Finally, we arrange that all c.e. sets enumerate at most one element per stage.
During the construction, we will maintain two structures. First, we will be constructing the c.e. set A, and alongside it an auxiliary c.e. set B. Second, we maintain a collection \mathcal{S} of promises of the form (s, i, Y), where $s \in \omega_{1}, i=0$ or 1 , and Y is a (code for a) set. Intuitively, $(s, 0, Y)$ promises that the $<_{L}$-least element of Y will enter A, and $(s, 1, Y)$ that it will enter B, with priority s. We will ensure that elements that are enumerated into B on behalf of a promise $(s, 1, Y)$ have not previously been enumerated into A and will not be enumerated into A except on behalf of a promise of the form $(t, 0, Z)$ with $t<s$.

Fix an effective enumeration (U_{e}, M_{e}) of pairs of open codes and meager codes. These are the candidate witnesses to the Baire property for X. At any stage s, some of these pairs may have been invalidated: an x has been enumerated into X so that $x \notin U_{e} \cup M_{e}$. When this occurs, it is no longer possible that the symmetric difference of X and U_{e} might be covered by M_{e}, so we disregard the pair; we will consider only valid pairs (pairs which have not been invalidated). For ease of notation, we call an index e valid if the pair $\left(U_{e}, M_{e}\right)$ is valid.

Let $V_{e, s}$ denote the intersection of the U_{i} for $i<e$ that are valid at stage s.
Let x_{s} be the real enumerated into X at stage s, if any. Suppose that there exists $e<s$ such that the following conditions hold:
(i) e remains valid;
(ii) x_{s} is the $<_{L}$-least element of $U_{e} \backslash M_{e}$ not already enumerated into X; and
(iii) for every valid $i<e, x_{s} \in U_{i}$.

In such a situation, we say that e triggers an action. For the least e which triggers an action at stage s, add the promise $\left(e, 0, V_{e, s}\right)$ to \mathcal{S}.

Otherwise, let D be the first Borel set not yet considered. Add the promises $(s, 1, D)$ and $(s, 0, D)$ to \mathcal{S}.

Finally, we consider the contents of \mathcal{S}. Say that a promise (t, i, Y) is satisfiable if one of the following holds:
(i) $i=0, L_{s} \cap Y \cap V_{t, s} \backslash A$ is nonempty, and the $<_{L}$-least member of $Y \cap V_{t, s} \backslash A$ is either not in B or was enumerated into B on behalf of a promise of the form $(u, 1, Z)$ with $u>t$; or
(ii) $i=1$ and $L_{s} \cap Y \cap V_{t, s} \backslash(A \cup B)$ is nonempty.

If there is a satisfiable promise in \mathcal{S}, let (t, i, Y) be the first ($<_{L}$-least) one. If $i=0$, we enumerate the $<_{L}$-least member of $Y \cap V_{t, s} \backslash A$ into A; if this element was already in B, return to \mathcal{S} the promise of the form $(u, 1, Z)$ on behalf of which that element was enumerated into B. If $i=1$, we enumerate the $<_{L}$-least member of $Y \cap V_{t, s} \backslash(A \cup B)$ into B. In either case, we declare (t, i, Y) satisfied and remove it from \mathcal{S}.

Claim 2.17. Every promise eventually ceases to be satisfiable.
Proof. Let (t, i, Y) be a promise in \mathcal{S}, and suppose by induction that all promises that are $<_{L}$-below it eventually cease to be satisfiable. Let $s_{0}>t$ be a stage at which this has happened. If (t, i, Y) is never satisfiable after stage s_{0}, then of course it has already ceased to be satisfiable. On the other hand, if it is satisfiable at some later stage u, then it must be the $<_{L}$-least promise satisfiable at that stage, which means it will be satisfied.

If $i=0$, then by construction, once satisfied the promise will never be returned to \mathcal{S}, and hence will never be satisfiable again.

If $i=1$, then the only circumstance in which (t, i, Y) would be returned to \mathcal{S} would be if a higher-priority promise of the form $(s, 0, Z)$ enumerated into A the element which was used to satisfy (t, i, Y). However, this would only happen if $(s, 0, Z)$ became satisfiable, which by induction does not happen after stage u.

Claim 2.18. If X is meager, then A is countable.
Proof. Suppose that X is meager. Then there is a meager code for a meager set that covers it. Let e be least so that U_{e} is empty and $M_{e} \supseteq X$. Clearly (U_{e}, M_{e}) is never invalidated.

For each $i<e$, the symmetric difference of X and U_{i} is not contained in M_{i}. Thus there is some y_{i} so that one of the following holds:
(i) $y_{i} \in X \backslash U_{i}$ and $y_{i} \notin M_{i}$; or
(ii) $y_{i} \in U_{i} \backslash X$ and $y_{i} \notin M_{i}$.

For a given i, if the first possibility holds, then as soon as y_{i} is enumerated into X the pair $\left(U_{i}, M_{i}\right)$ will be invalidated. Let s_{0} be a stage large enough that every $\left(U_{i}, M_{i}\right)$ for $i<e$ that will ever be invalidated has been.

If the second possibility holds instead, then after a certain stage the $<_{L}$-least element of $U_{i} \backslash\left(M_{i} \cup X\right)$ will be a witnessing y_{i} and will never be enumerated into X. After this point, i will never trigger an action. Let $s_{1}>s_{0}$ be a stage large enough that this has occurred for every $i<e$ for which it will ever occur.

After this stage, at most e elements will be enumerated into A : if no action is triggered at a stage before e, an element of a Borel set might be promised. Any promises made after stage e will never be satisfied, because by construction
the elements added would have to be members of U_{e}, which is empty. So A is countable.

Claim 2.19. If X has the Baire property, then A is Borel.
Proof. By Claim 2.18, we may suppose without loss of generality that X is nonmeager.

Suppose that X has the Baire property. Then there is an open set U and a meager set M so that the symmetric difference of X and U is M; since X is nonmeager, U is nonempty. There therefore exists some e such that U_{e} is a code for U and M_{e} codes a meager set covering M. Fix the least such e.
For each $i<e$, the symmetric difference of X and U_{i} is not contained in M_{i}. Thus there is some y_{i} such that one of the following holds:
(i) $y_{i} \in X \backslash U_{i}$ and $y_{i} \notin M_{i}$; or
(ii) $y_{i} \in U_{i} \backslash X$ and $y_{i} \notin M_{i}$.

If the first possibility holds for a particular i, then as soon as y_{i} is enumerated into X the pair $\left(U_{i}, M_{i}\right)$ will be invalidated. Let s_{0} be a stage large enough that every $i<e$ that will ever be invalidated has been.

If the second possibility holds instead, then after a certain stage the $<_{L}$-least element of $U_{i} \backslash M_{i}$ will be the witnessing y_{i} and will never be enumerated into X; after this point, i will never trigger an action. Let $s_{1}>s_{0}$ be a stage large enough that this has occurred for every $i<e$ for which it will ever occur.
Let $V=V_{e, s_{1}}=\bigcap_{i<e \text { valid }} U_{i}$ at stage s_{1}. Note that V is the intersection of at most countably many open sets, and so is G_{δ}. Every element of $U_{e} \backslash M_{e}$ will eventually be enumerated into X, so e will trigger an action uncountably often after stage s_{1}. So uncountably many promises of the form $(e, 0, V)$ will be made, while only countably many promises of the form $(i, 1, Y)$ with $i<e$ (which could potentially cause elements of V to be enumerated into B and prohibited from A) will be made; so all but countably many members of V will be enumerated into A.

Likewise, after stage s_{1} every element enumerated into A will be in V; if an action is triggered by some $j>e$ at a later s, any elements enumerated into A as a result will be required to be in $V_{j, s} \subseteq V$. So $A \backslash V$ consists only of the countably many points enumerated before stage s_{1}.
Therefore A differs only countably from a G_{δ} set; in particular, A is Borel. \dashv
Claim 2.20. If X does not have the Baire property, then A is not Borel.
Proof. Suppose that X does not have the Baire property. As noted in the proof of Claim 2.19, for every pair $\left(U_{e}, M_{e}\right)$ there is some stage s_{e} after which e will never again trigger an action (whether because it has been invalidated or because the necessary element is simply never enumerated into X). The function $\alpha \mapsto \sup _{\beta<\alpha} s_{\beta}$ is continuous, and therefore has a closed and unbounded set of fixed points. At each such fixed point s, no $e<s$ triggers an action and so no action is triggered. Thus each Borel set D is eventually addressed under the final clause of the construction.

Let D be a Borel set, and let t be the first stage at which no action is triggered and D is addressed. At stage t, the promises $(t, 0, D)$ and $(t, 1, D)$ are entered into \mathcal{S}. Likewise, let \bar{D} be the complement of D, and let \hat{t} be the first stage at
which no action is triggered and \bar{D} is addressed; at stage \hat{t}, the promises $(\hat{t}, 0, \bar{D})$ and $(\hat{t}, 1, \bar{D})$ are entered into \mathcal{S}. By possibly exchanging the roles of D and \bar{D}, let $t>\hat{t}$.
Let s_{0} be a stage large enough that every $i<t$ that will ever be invalidated has been. Note that for $s>s_{0}, V_{t, s}=V_{t, s_{0}}$; call this V. Note that V must be nonempty, because otherwise any member of X that lies in any U_{i} for valid $i<t$ would have to be absent from some U_{j} for valid $j<t$; it would then have to be in M_{j}. Therefore, if V were empty, X would be covered by the (countably many) meager sets M_{i} for $i<t$, and would therefore itself be meager (and would hence have the Baire property). Likewise, if V were countable, X would be covered by the M_{i} and V; thus V must be uncountable.

Suppose $D \cap V$ is uncountable. Then there are uncountably many stages at which there is an opportunity to satisfy the promises $(t, 0, D)$ and $(t, 1, D)$ (i.e., a new $y \in D \cap V$ has appeared in L). The only circumstance under which neither is satisfied is when there is a promise of higher priority that is satisfied instead. But there are only countably many promises of higher priority, and by Claim 2.17 these promises eventually cease to be satisfiable; so eventually $(t, 0, D)$ and $(t, 1, D)$ will both be satisfied by enumerating an element of $D \cap V$ into A and B respectively, such that the member of B enumerated on behalf of $(t, 1, D)$ will not enter A. Therefore, at least one member of D will never be enumerated into A, and hence $A \neq D$.
Suppose instead that $D \cap V$ is countable. Then $\bar{D} \cap V$ is uncountable. By the symmetric argument to the above, at least one member of \bar{D} will be enumerated into A; thus $A \neq D$.

In either case, $A \neq D$; since D was an arbitrary Borel set, A cannot be Borel.

This completes the proof of Theorem 2.15.
Theorem 2.21. Under the assumption that $V=L$, Baire ${ }_{2} \geq_{m}$ Lebesgue $_{2}$.
Proof. This proof will be very similar to the previous one. Given an index for a Σ_{2}^{1} set X, we aim to construct a Σ_{2}^{1} set A so that X is Lebesgue-measurable iff A has the Baire property. Recall that a set X is Lebesgue-measurable iff there is a G_{δ} set G and a null set N so that $X=G \backslash N$.

Definition 2.22. Recall the definition of an open code from the proof of Theorem 2.15 above. $A G_{\delta}$ code is an ω-sequence of open codes. If $G=\left\langle G_{i}\right\rangle_{i<\omega}$ is $a G_{\delta}$ code, the set coded by G is $\bigcap_{i} A_{i}$, where A_{i} is the set coded by G_{i}.
A null code is a sequence $\left\langle N_{n}\right\rangle_{n<\omega}$ of (possibly infinite) subsets of $2^{<\omega}$ so that

$$
\lim _{n \rightarrow \omega} \sum_{\sigma \in N_{n}} 2^{-|\sigma|}=0
$$

If $N=\left\langle N_{n}\right\rangle_{n<\omega}$ is a null code, the set coded by N is $\left\{x \in 2^{\omega} \mid(\forall n)(\exists \sigma \in\right.$ $\left.\left.N_{n}\right) \sigma \prec x\right\}$.

Observe that the set of G_{δ} codes and the set of null codes are both computable sets (recalling that the definition of the limit requires only quantification over the
rationals, which is bounded for the purposes of ω_{1}-computability) and that the map from a code of either sort to the set it codes is uniformly computable.
Note that while not every null set is coded by a null code, it is the case that every null set is covered by a null set that is.

We now begin the construction. Given a code for a Σ_{2}^{1} set X, we will construct a code for a Σ_{2}^{1} set A so that A will have the Baire property iff X is Lebesguemeasurable. We again factor through the equivalence of Σ_{2}^{1} sets of reals and c.e. sets of reals, and for clarity we do not distinguish between a G_{δ} or null code and the set it codes. Finally, we arrange that all c.e. sets enumerate at most one element per stage.
As in the previous proof, we will maintain two structures. First, we will construct a c.e. set A, together with an auxiliary c.e. set B. Second, we maintain a collection \mathcal{S} of promises of the form (s, i, Y), where $s \in \omega_{1}, i=0$ or 1 , and Y is a (code for a) set. (s, i, Y) may be thought of as a "promise" to enumerate an element of Y into A (if $i=0$) or $B($ if $i=1)$, made with priority s. We will ensure that elements that are enumerated into B on behalf of a promise $(s, 1, Y)$ have not previously been enumerated into A and will not be enumerated into A except on behalf of a promise of the form $(t, 0, Z)$ with $t<s$.

Fix an effective enumeration $\left(G_{e}, N_{e}\right)$ of pairs of G_{δ} codes and null codes. These are the candidate witnesses to X being Lebesgue-measurable. At any stage s, some of these pairs may have been invalidated: an x has been enumerated into X so that $x \notin G_{e}$. When this occurs, it is no longer possible that $X=G_{e} \backslash N$ for a null set covered by N_{e}, so we disregard the pair; we will consider only valid pairs (pairs which have not been invalidated). For ease of notation, we again call an index e valid if $\left(G_{e}, N_{e}\right)$ is valid.
Also fix an effective enumeration $\left(U_{i}, M_{i}\right)$, as before, of pairs of open codes and meager codes; these are the candidate witnesses to A having the property of Baire.

For each i, let $G_{i}^{*}=\left\{z \in G_{i} \mid\left(\exists y \leq_{L} z\right) y \in G_{i} \backslash N_{i}\right\}$; note that if $G_{i} \backslash N_{i}$ is nonempty then G_{i}^{*} is only countably different from G_{i}, but if $G_{i} \backslash N_{i}$ is empty then so is G_{i}^{*}. Let $V_{e, s}$ denote the intersection of G_{i}^{*} for all $i<e$ that remain valid at stage s.

Let x_{s} be the real enumerated into X at stage s, if any. Suppose that there exists $e<s$ so that the following conditions hold:
(i) e remains valid; and
(ii) x_{s} is the $<_{L}$-least element of $G_{e} \backslash N_{e}$ not already enumerated into X.

In such a situation, we say that e triggers an action.
If any action is triggered, let e be the least index that triggers an action. Enumerate ($e, 0, V_{e, s}$) into \mathcal{S}.
Otherwise, let $\left(U_{j}, M_{j}\right)$ be the first pair of an open code and a meager code not yet considered. Enumerate into \mathcal{S} the promises $\left(s, 1, U_{j} \backslash M_{j}\right)$ and $\left(s, 0, \omega^{\omega} \backslash\right.$ $\left.\left(U_{j} \cup M_{j}\right)\right)$.

Finally, we handle promises in the same manner as in the previous proof. Say that a promise (t, i, Y) is satisfiable if one of the following holds:
(i) $i=0, L_{s} \cap Y \cap V_{t, s} \backslash A$ is nonempty, and the $<_{L}$-least member of $Y \cap V_{t, s} \backslash A$ is either not in B or was enumerated into B on behalf of a promise of the form $(u, 1, Z)$ with $u>t$; or
(ii) $i=1$ and $L_{s} \cap Y \cap V_{t, s} \backslash(A \cup B)$ is nonempty.

If there is a satisfiable promise in \mathcal{S}, let (t, i, Y) be the first ($<_{L}$-least) one. If $i=0$, we enumerate the $<_{L}$-least member of $Y \cap V_{t, s} \backslash A$ into A; if this element was already in B, return to \mathcal{S} the promise of the form $(u, 1, Z)$ on behalf of which that element was enumerated into B. If $i=1$, we enumerate the $<_{L}$-least member of $Y \cap V_{t, s} \backslash(A \cup B)$ into B. In either case, we declare (t, i, Y) satisfied and remove it from \mathcal{S}.

Claim 2.23. Every promise eventually ceases to be satisfiable.
Proof. Because the relevant details of the construction are the same, the proof is identical to that of Claim 2.17.

Claim 2.24. If X is Lebesgue-measurable, then A has the property of Baire.
Proof. Suppose that X is Lebesgue-measurable. Then there exists a G_{δ} set G and a null set N such that $G \backslash N=X$; call e a code point for X if G_{e} is a G_{δ} code for such a G and N_{e} is a code for a null set that covers the corresponding N. Note that such an e will never be invalidated.

Let e be the least code point for X so that $G_{e} \backslash N_{e}$ is either empty or uncountable. If X is null, there is a code point e for which $G_{e} \backslash N_{e}$ is empty; if X has positive measure, then every code point e has $G_{e} \backslash N_{e}$ uncountable.

Let s_{0} be a stage late enough that every $i<e$ that will ever be invalidated has been. Note that, after stage s_{0}, every $i<e$ that remains valid must eventually cease to trigger actions; otherwise it would be the case that $G_{i} \supseteq X \supseteq G_{i} \backslash N_{i}$ and uncountably many elements would have been enumerated into $G_{i} \backslash N_{i}$, in which case i would have been our chosen e. Let $s_{1}>s_{0}$ be a stage large enough that every $i<e$ has ceased to trigger actions.
Suppose now that $G_{e} \backslash N_{e}$ is empty. Then G_{e}^{*} is empty, so no elements will be enumerated into A on behalf of promises (t, i, Y) with $t>e$. If A were uncountable, then, there would have to be some $i<e$ that triggers an action uncountably often; by the above observation that cannot be the case. Therefore, if $G_{e} \backslash N_{e}$ is empty, then A is countable.
Finally, suppose instead that $G_{e} \backslash N_{e}$ is uncountable. Because $X \supseteq G_{e} \backslash N_{e}$, every element of $G_{e} \backslash N_{e}$ is eventually enumerated into X; so e triggers an action uncountably often. By the argument above, e is the least index which triggers an action uncountably often, so $\left(e, 0, V_{e, s}\right)$ is enumerated into \mathcal{S} for unboundedly many s.
For $t>s_{1}, V_{e, t}=V_{e, s_{1}}$; call this set V. All promises made after stage s_{1} will enumerate only elements of V into A, so $A \backslash V$ is countable. Uncountably many promises $(e, 0, V)$ are eventually made, and eventually all promises (t, i, Y) with $t<e$ that will ever be satisfied have been; after this point, all members of V that have not been placed into B will be enumerated into A. Thus A will differ from V by only a countable set. Since V is G_{δ}, A has the property of Baire. \dashv

Claim 2.25. If X is not Lebesgue-measurable, then A does not have the property of Baire.

Proof. Suppose that X is not Lebesgue-measurable. Then, as noted in the proof of Claim 2.24, for every pair $\left(G_{e}, N_{e}\right)$ there is some stage s_{e} after which e will never again trigger an action (whether because it has been invalidated or because the necessary element is simply never enumerated into X). The function $\alpha \mapsto \sup _{\beta<\alpha} s_{\beta}$ is a continuous function on the countable ordinals, and hence has a closed and unbounded set of fixed points; at each such fixed point s, no $e<s$ can trigger an action, so no action is triggered. Thus each pair $\left(U_{j}, M_{j}\right)$ is eventually addressed under the final clause of the construction.
Fix $\left(U_{j}, M_{j}\right)$, and let s be the stage at which it is addressed. At that stage, the promises $\left(s, 1, U_{j} \backslash M_{j}\right)$ and $\left(s, 0, \omega^{\omega} \backslash\left(U_{j} \cup M_{j}\right)\right)$ are enumerated into \mathcal{S}.
By some countable stage s_{0}, all promises in \mathcal{S} prior to ($s, 1, U_{j} \backslash M_{j}$) that will ever be satisfied have been. By some stage $s_{1}>s_{0}$, all $e<s$ that will ever be invalidated have been; for $t>s_{1}, V_{s, t}=V_{s, s_{1}}$. Call this V.

Suppose $\left(U_{j} \backslash M_{j}\right) \cap V$ is uncountable. Then there exists some stage $t>s_{1}$ at which there is a new element $y \in L_{t} \cap\left(U_{j} \backslash M_{j}\right) \cap V$ that is not already in A. At this stage, $\left(s, 1, U_{j} \backslash M_{j}\right)$ is satisfiable. Since $t>s_{1}>s_{0}$, no prior promise is satisfiable, so ($s, 1, U_{j} \backslash M_{j}$) is satisfied by enumerating such a y into B. Since by construction this element could only be enumerated into A on behalf of a higher-priority promise, all of which have ceased to be satisfiable by this stage, this will not be in A, so $U_{j} \backslash M_{j} \nsubseteq A$. Therefore the symmetric difference of A and U_{j} is not contained in M_{j}.

Suppose instead that $\left(U_{j} \backslash M_{j}\right) \cap V$ is countable. Then $V \backslash\left(U_{j} \backslash M_{j}\right)$ is not (otherwise X would be a null set and hence measurable). Then, by a symmetric argument to the above, the promise $\left(s, 0, \omega^{\omega} \backslash\left(U_{j} \cup M_{j}\right)\right)$ is eventually satisfied, so $A \backslash U_{j}$ includes an element not in M_{j}.

In either case, the symmetric difference of A and U_{j} is not contained in M_{j}. Since U_{j} was an arbitrary open code and M_{j} an arbitrary meager code, A does not have the property of Baire.

This completes the proof of Theorem 2.21.
Theorem 2.26. Under the assumption that $V=L$, Lebesgue ${ }_{2} \geq_{m}$ Borel $_{2}$.
Proof. The proof is again very similar. Given an index for a Σ_{2}^{1} set X, we aim to construct a Σ_{2}^{1} set A so that X is Borel iff A is Lebesgue-measurable.

Recall the definitions of open codes and Borel codes from the proof of Theorem 2.15, and the definition of null codes from the proof of Theorem 2.21.

We will factor again through the equivalence of Σ_{2}^{1} sets of reals and c.e. sets of reals, and we do not distinguish between a code and the set it codes. As before, we arrange that all c.e. sets enumerate at most one element per stage.

Fix an effective enumeration of Borel codes $\left\langle B_{e}\right\rangle_{e<\omega_{1}}$, and an effective enumeration $\left(G_{e}, N_{e}\right)$ of pairs of G_{δ} codes and null codes. The B_{e} will be the candidates for X; the $\left(G_{e}, N_{e}\right)$ will be candidates for witnesses that A is measurable. At any stage s, we will consider the codes B_{e} for $e<s$. Some of these may have been invalidated; that is, an x has been enumerated into X so that $x \notin B_{e}$. We only consider valid pairs (pairs which have not been invalidated). Let $V_{e, s}$ be the intersection of B_{i} for the $i<e$ that remain valid at stage s.

We will maintain our usual two structures throughout the construction. First, the c.e. set A and an auxiliary c.e. set C (a departure from the B of the previous proofs in order to distinguish it from the Borel sets). Second, a set \mathcal{S} of promises of the form (t, i, Y) for $t \in \omega_{1}, i=0$ or 1 , and Y a (code for a) set of reals. Intuitively, $(t, 0, Y)$ promises to include the $<_{L}$-least element of Y in A with priority t, while $(t, 1, Y)$ promises to include it in C.

We now begin the construction. Let x_{s} be the real enumerated into X at stage s, if any. Suppose that there exists $e<s$ so that the following holds:
(i) e remains valid; and
(ii) x_{s} is the $<_{L}$-least element of B_{e} not already enumerated into X.

In such a situation, we say that e triggers an action.
If an action is triggered at stage s, let e be the least index which triggers an action. Enumerate into \mathcal{S} the promise ($e, 0, V_{e, s}$).

Otherwise, let $\left(G_{j}, N_{j}\right)$ be the first pair of a G_{δ} code and a null code not yet diagonalized against. Then enumerate into \mathcal{S} the promises $\left(s, 1, G_{j} \backslash N_{j}\right)$ and $\left(s, 0, \omega^{\omega} \backslash G_{j}\right)$.
We handle the satisfaction of promises in the same manner as in the proofs of Theorems 2.15 and 2.21. Say that a promise (t, i, Y) is satisfiable if one of the following holds:
(i) $i=0, L_{s} \cap Y \cap V_{t, s} \backslash A$ is nonempty, and the $<_{L}$-least member of $Y \cap V_{t, s} \backslash A$ is either not in C or was enumerated into C on behalf of a promise of the form $(u, 1, Z)$ with $u>t$; or
(ii) $i=1$ and $L_{s} \cap Y \cap V_{t, s} \backslash(A \cup C)$ is nonempty.

If there is a satisfiable promise in \mathcal{S}, let (t, i, Y) be the first ($<_{L}$-least) one. If $i=0$, we enumerate the $<_{L}$-least member of $Y \cap V_{t, s} \backslash A$ into A; if this element was already in C, return to \mathcal{S} the promise of the form $(u, 1, Z)$ on behalf of which that element was enumerated into B. If $i=1$, we enumerate the $<_{L}$-least member of $Y \cap V_{t, s} \backslash(A \cup C)$ into C. In either case, we declare (t, i, Y) satisfied and remove it from \mathcal{S}.

Claim 2.27. Every promise eventually ceases to be satisfiable.
Proof. Because the relevant details of the construction are the same, the proof is identical to that of Claim 2.17.

Claim 2.28. If X is countable, then A is countable.
Proof. If X is countable, then it is Borel. Let B_{e} be the first Borel code for X. Then, for any $t>e$ and any $s, V_{t, s} \subseteq X$, and in particular $V_{t, s}$ is countable. Therefore, only countably many elements enter A on behalf of promises of the form (t, i, Y) for $t>s$.
The only other promises are those added to \mathcal{S} by the triggering of an action; but an action is triggered at most once for each element of X, which means only countably many such promises are made, and therefore only countably many elements enter A on their behalf.

Claim 2.29. If X is Borel, then A is Lebesgue-measurable.

Proof. By Claim 2.28, we may suppose without loss of generality that X is uncountable. Suppose X is Borel; then there is an e so that B_{e} is a code for X. Fix the least such e.

For each $i<e, B_{i} \neq X$. Thus for some y_{i}, one of the following holds:
(i) $y_{i} \in X \backslash B_{i}$; or
(ii) $y_{i} \in B_{i} \backslash X$.

If the first possibility holds for some particular i, then as soon as y_{i} is enumerated into X, B_{i} will be invalidated. Fix a stage s_{0} large enough that every $i<e$ that will ever be invalidated has been.

If the second possibility holds for some particular i, then after a certain stage the $<_{L}$-least element of $B_{i} \backslash X$ will be such a y_{i}, and will never be enumerated into X; after this point, i will never trigger an action. Fix $s_{1}>s_{0}$ large enough that this has occurred for every $i<e$ for which it will ever occur.
Let $V=V_{e, s_{1}}$. As a countable intersection of Borel sets, V is itself Borel. After stage s_{1}, e will trigger an action uncountably often, because every member of B_{e} will eventually be enumerated into X. So every element of V except those promised to C with priority $<e$ will eventually be enumerated into A, and there are only countably many such promises. So $V \backslash A$ will be countable. Likewise, after stage s_{1}, every new element enumerated into A will be in V. So $A \backslash V$ consists only of elements promised to or enumerated into A before stage s_{1}, of which there are only countably many. Thus A differs only countably from a Borel set, and is hence Borel (and therefore Lebesgue-measurable).

Claim 2.30. If X is not Borel, then A is not Lebesgue-measurable.

Proof. Suppose that X is not Borel. Then, as noted in the previous argument, for every code B_{e} there is some stage s_{e} after which e will never again trigger an action (whether because it has been invalidated or because the necessary element is simply never enumerated into X). The function $\alpha \mapsto \sup _{\beta<\alpha} s_{\beta}$ is a continuous function on the countable ordinals, and therefore has a closed and unbounded set of fixed points. At each such fixed point s, no $e<s$ can trigger an action, so no action is triggered. Thus each pair $\left(G_{j}, N_{j}\right)$ is eventually addressed under the final clause of the construction.

Let $\left(G_{j}, N_{j}\right)$ be an arbitrary pair of a G_{δ} code and a null code, and let s be the stage at which it is addressed. At that stage, the promises $\left(s, 1, G_{j} \backslash N_{j}\right)$ and $\left(s, 0, \omega^{\omega} \backslash G_{j}\right)$ are enumerated into \mathcal{S}.
By some countable stage s_{0}, all promises in \mathcal{S} prior to $\left(s, 1, G_{j} \backslash N_{j}\right)$ that will ever be satisfied have been. By some stage $s_{1}>s_{0}$, all $e<s$ that will ever be invalidated have been; for $t>s_{1}, V_{s, t}=V_{s, s_{1}}$. Call this V.
Suppose that $\left(G_{j} \backslash N_{j}\right) \cap V$ is uncountable. Then there will come a stage $t>s_{1}$ at which a new $y \in\left(G_{j} \backslash N_{j}\right) \cap V$ has appeared, which gives an opportunity to satisfy the promise $\left(s, 1, G_{j} \backslash N_{j}\right)$. Since all prior promises that will ever be satisfied have been already, this is the promise that is satisfied at stage t; so an element of $G_{j} \backslash N_{j}$ is enumerated into C (and consequently never enters A). Therefore $A \nsupseteq G_{j} \backslash N_{j}$.

Suppose instead that $\left(G_{j} \backslash N_{j}\right) \cap V$ is countable. Then $V \backslash G_{j}$ is not (otherwise X would be Borel). By a symmetric argument to the above, the promise ($s, 0, V \backslash$
G_{j}) is eventually satisfied, so A includes at least one element not in G_{j}; hence $A \nsubseteq G_{j}$.

In either case, it is not the case that $G_{j} \supseteq A \supseteq G_{j} \backslash N_{j}$; since $\left(G_{j}, N_{j}\right)$ was chosen arbitrarily, A cannot be the difference of a G_{δ} set and a null set. Therefore A is not Lebesgue-measurable.

This completes the proof of Theorem 2.26.
We are now able to complete the proof of Theorem 2.13.
Proof of Theorem 2.13. By Theorem 2.15, Borel $_{2} \geq_{m}$ Baire $_{2}$. By Theorem 2.21, Baire $_{2} \geq_{m}$ Lebesgue $_{2}$. By Theorem 2.26, Lebesgue ${ }_{2} \geq_{m}$ Borel $_{2}$. Combining these, we have

$$
\text { Borel }_{2} \geq_{m} \text { Baire }_{2} \geq_{m} \text { Lebesgue }_{2} \geq_{m} \text { Borel }_{2}
$$

So in fact Borel $_{2} \equiv{ }_{m}$ Baire $_{2} \equiv_{m}$ Lebesgue $_{2}$.
§3. Acknowledgements. The authors wish to thank the anonymous referee for pointing out some significant errors in an earlier version of this paper.

REFERENCES

[1] Chi-Tat Chong. Techniques of admissible recursion theory. Springer, 1984.
[2] Fons Van Engelen, Arnold W. Miller, and John Steel. Rigid borel sets and better quasiorder theory. Logic and Combinatorics Contemporary Mathematics, pages 199-222, 1987.
[3] P. Erdös, Kenneth Kunen, and R. Mauldin. Some additive properties of sets of real numbers. Fundamenta Mathematicae, 113(3):187-199, 1981.
[4] Vera Fischer and Asger Törnquist. A co-analytic maximal set of orthogonal measures. The Journal of Symbolic Logic, 75(04):1403-1414, 2010.
[5] Noam Greenberg and Julia F. Knight. Computable structure theory using admissible recursion theory on ω_{1} using admissibility. Effective Mathematics of the Uncountable, pages 50-80.
[6] Akihiro Kanamori. The higher infinite: large cardinals in set theory from their beginnings. World Publishing Corporation, 2011.
[7] Bart Kastermans. The complexity of maximal cofinitary groups. Proceedings of the American Mathematical Society, 137(1):307-316, 2009.
[8] Alexander S. Kechris. Classical descriptive set theory. Springer, 2012.
[9] S. C. Kleene. Quantification of number-theoretic functions. Compositio Mathematica, 14:23-40, 1959-1960.
[10] Saul Kripke. Transfinite recursion on admissible ordinals i, ii (abstracts). J. Symbolic Logic, 29:161-162, 1964.
[11] Arnold W. Miller. Infinite combinatorics and definability. Annals of Pure and Applied Logic, 41(2):179-203, 1989.
[12] Robert Irving Soare. Turing computability: theory and applications. Springer., 2016.
[13] Bartoszyński Tomek and Haim Judah. Set theory: on the structure of the real line. A.K. Peters, 1999.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WISCONSIN - MADISON
MADISON, WI 53715, USA
Current address: Robinson Center for Young Scholars, University of Washington, 3950 Benton Ln NE, Seattle, WA 98195, USA

DEPARTMENT OF MATHEMATICS
NATIONAL UNIVERSITY OF SINGAPORE 21 LOWER KENT RIDGE RD, SINGAPORE

[^0]: Raghavan was partially supported by the Singapore Ministry of Education's research grant number MOE2017-T2-2-125.

